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Supplementary Figure 1. Pulse transmission characteristics of a typical device under investigation. (a)
Schematic illustration of the measurement setup. (b,c) Measured current that flows into the device when a
pulse is applied from the pulse generator for two different devices, w~5 μm and ~50 μm. The current is
estimated using the time domain reflection measurements. The pulse length is ~100 ns (b) and ~2 ns (c).
Results are from film set A.
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Supplementary Figure 2. Temperature dependence of the device resistance. (a) The resistance (RXX) of a
wire made from Sub.|W(~3.1)/Co20Fe60B20(1)/MgO(2)/Ta(1) is measured as a function of measurement
temperature (T). The resistance is normalized by the length (L) and width (w) of the wire. The resistance
hardly changes with temperature: the slope of RXX·(w/L) vs. T is ~−0.013 W/K. Results are from film set B.
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Supplementary Figure 3. Fitting of velocity vs. current density using the 1D model. (a) Optical (Kerr)
microscopy image of the device used to study domain wall motion. (b) Pulse amplitude dependence of the
quasi-static velocity (ୈݒ) for a fixed pulse length ݐ) ൌ 10 ns). The corresponding current density that
flows through the W underlayer is shown in the top axis. The open and solid symbols show the velocity for
↓↑ walls and ↑↓ walls, respectively. Results are from film set B, wire width is ~5 m. The red solid line
represents fitting with the 1D model that takes into account domain wall tilting and pinning. Parameters

used: ୗܯ ൌ 1100 emu cm-3, ܭ ൌ 3.2 ൈ 10 erg cm-3, Δ ൌ ܣ ⁄ܭ ~6.8 nm ܣ) ൌ 1.5 ൈ 10ି erg cm-

1), ୗୌߠ ൌ െ0.21, ܦ ൌ 0.24 erg cm-2, ߙ ൌ 0.05 and the wire width w=5 m. A 1D pinning ୍ܪ ݍ ൌ
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Supplementary Figure 4. Current driven domain wall motion in ~5 m wide wires. (a-c) Experimentally
measured quasi-static velocity ,ୈݒ) black circles) as a function of pulse length for three different pulse
amplitudes: (a) 16 V (J∼0.5×108 A cm-2) (b) 20 V (J ∼0.6×108 A cm-2) and (c) 25 V (J ∼0.8×108 A cm-2).
The errors bars represent variation in ୈݒ due to the uncertainty in the pulse length. Experimental results
are the same with those shown in Fig. 5(a-c). The red solid and black dashed lines show ୈݒ calculated
using the 1D model with and without pinning, respectively. Parameters used are the same with those shown
in Fig. S3 caption. (d-g) Sequences of Kerr images showing the successive wall motion after application of
current pulses described in the legend: (d) ݐ ൌ 100 ns, J<0, (e) ݐ ൌ 100 ns, J>0, (f) ݐ ൌ 10 ns, J<0 and
(g) ݐ ൌ 10 ns, J>0. All results are from film set B, wire width is ~5 m.
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Supplementary Figure 5. Current driven domain wall motion in ~50 m wide wires. (a) Representative
Kerr microscopy image of the ~50 m wide wire used to study domain wall motion. (b) Average of the
quasi-static velocity (ୈݒ) obtained from the three sections A, B, C denoted by the yellow rectangles in (e).
The error bars represent standard deviation of the velocity estimated in the three sections. (c-e) Sequences
of Kerr images showing the successive wall motion after application of current pulses described in the
legend. The left and right panels show images when -16 V and +16 V pulses are applied, respectively. The
pulse length is (c) 4 ns, (d) 20 ns and (e) 90 ns. (f-h) ୈݒ as a function of pulse length obtained from the
three sections A (f), B (g) and C (h) denoted by the yellow rectangles in (e). The pulse amplitude is fixed to
±16 V. Black squares and red circles represent ୈݒ for ↑↓ and ↓↑ walls. The film structure is
Sub.|W(~3.6)/Co20Fe60B20(1)/MgO(2)/Ta(1). Results are from film set A, wire width is ~50 m.
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Supplementary Figure 6. Analyses of the linearized 1D model. (a-d) Instantaneous DW velocity ሻݐሺݒ
(a,b) and the wall magnetization angle ߰ሺݐሻ (c,d) for a fixed current density of ܬ ൌ 0.02 ൈ 10଼ A cm-2 (a,c)
and ܬ ൌ 0.6 ൈ 10଼ A cm-2 (b,d) flowing through the heavy metal layer. The current pulse length is (ݐ) is 100
ns. Fit to data in appropriate ranges using Eq. (S6) are shown by the red and blue solid lines. (e-h) Current
density J dependence of saturation velocity (e), the equilibrium wall angle (f), the acceleration time (g) and
the deceleration time (h) when the current is turned on. Results are obtained by the fitting process described
in (a-d). The blue solid line in (g) and (h) are the analytical solutions provided in Eqs. (2) and (3),

respectively. Parameters used: ୗܯ ൌ 1100 emu cm-3, ܭ ൌ 3.0 ൈ 10 erg cm-3, Δ ൌ ܣ ⁄ܭ ~7.0 nm
ܣ) ൌ 1.5 ൈ 10ି erg cm-1), ୗୌߠ ൌ െ0.21, ܦ ൌ 0.24 erg cm-2, ߙ ൌ 0.05 and w=5 m.
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Supplementary Figure 7. Numerical calculations of the relaxation times using the 1D model. (a)
Instantaneous DW velocity ሻݐሺݒ when a current density of ܬ ൌ 0.6 ൈ 10଼ A cm-2 is flowing through the
heavy metal layer. The current pulse length is (ݐ) is 100 ns. The maximum velocity (୫ୟ୶ݒ) and the velocity
at the end of the pulse, i.e. the terminal velocity (ሻݐሺݒ) are illustrated schematically. (b-g) Acceleration (߬)
and deceleration (τୈ) times numerically computed using the definition described in (a). (b-d) ߬ and ߬ୈ are
plotted as a function of current density (b-d), Gilbert damping constant  (e), spin Hall angle SH (f) and the
DM exchange constant D (g). The Gilbert damping constant  is varied for the plots shown in (b-d): 
=0.01 (b), 0.05 (c) and 0.3 (d). The parameters used unless specified are: ୗܯ ൌ 1100 emu cm-3, ܭ ൌ
3.2 ൈ 10 erg cm-3, Δ ൌ ܣ ⁄ܭ ~6.8 nm ܣ) ൌ 1.5 ൈ 10ି erg cm-1), ୗୌߠ ൌ െ0.21, ܦ ൌ 0.24 erg cm-2,
ߙ ൌ 0.05 and w=5 m.
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Supplementary Figure 8. Micromagnetic simulations of the quasi-static velocity: grain pattern
dependence. Quasi-static velocity (ୈݒ) as function of the pulse length under current pulses of fixed
amplitude ܬ ൌ 0.8 ൈ 10଼A cm−2.	Experimental results (solid circles, same with those shown in Fig. 5(c)) are
compared to the full micromagnetic predictions considering different degrees of disorder and grain pattern
A. The width of the wire (w) is ~5 μm for the experiments (film set B) and w is set to 1.5 μm for the
simulations.
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Supplementary Figure 9. Comparison of calculated quasi-static velocity using 1D model and
micromagnetic simulations. (a-c) Quasi-static velocity (ୈݒ) as function of the pulse length under current
pulses of fixed amplitude: (a) ܬ ൌ 0.5 ൈ 10଼A cm−2, (b) ܬ ൌ 0.6 ൈ 10଼A cm−2 and (c) ܬ ൌ 0.8 ൈ 10଼A cm−2.
Experimental results (black circles, same with those shown in Fig. 5(a-c)) are compared to full
micromagnetic simulations (open symbols). The degree of disorder in the micromagnetic simulations is
fixed to ߝ ൌ 0.12. Blue, red and black open symbols correspond to micromagnetic results using the
following conditions: blue squares are for grain pattern A with T=0 K, red triangles are for grain pattern A
with T=300 K and black diamonds are for grain pattern B with T=0 K. Grain patterns A and B are randomly
generated. (d-f) Micromagnetic snapshots of the initial state and states long after application of current
pulses ݐ) ൌ 5 and 30	ns). The width of the wire (w) is ~5 μm for the experiments (film set B) and w is set
to 1.5 μm for the simulations.
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Supplementary Figure 10. Micromagnetic simulations of the quasi-static velocity: current density
dependence Quasi-static velocity (ୈݒ) as function of the pulse length under current pulses of fixed
amplitude. Experimental results (big solid circles, same with those shown in Fig. 5(a-c)) are compared to full
micromagnetic simulations (small open circles) with wire width set close to the experiments. (a) ܬ ൌ 0.5 ൈ
10଼A cm−2 , (b) ܬ ൌ 0.6 ൈ 10଼A cm−2 and (c) ܬ ൌ 0.8 ൈ 10଼A cm−2 . The degree of disorder in the
micromagnetic simulations is fixed to ߝ ൌ 0.12 for grain pattern A with T=300 K. A grain size of 20 nm was
considered for these micromagnetic results. The width of the wire (w) is 5 μm for both the experiments (film
set B) and the simulations. The error bars of the simulations represent five independent calculations using
different thermal noise patterns.



Films
N |SH| N MS 

(a) KEFF 
(a)

cm nm emu cm-3 erg cm-3

Set A 150 0.24 1.1 790 2.9×106

Set B 125 0.23 1.3 780 3.2×106

(a) Values when d~3 nm

Supplementary Table 1. Magnetic and transport properties of film sets A and B. The film structure is 
Sub./W(d)/Co20Fe60B20(1)/MgO(2)/Ta(1) (units in nanometers).  Resistivity (N), absolute value of the spin 
Hall angle (|SH|), spin diffusion length (N), saturation magnetization (MS) and the effective magnetic 
anisotropy energy (KEFF) are listed. For MS and KEFF values are taken from films with the W layer thickness 
d~3 nm.
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Supplementary Note 1 

Experimental setup 

Shape of the current pulse 

Since short voltage pulses (a few nanoseconds long) are used, any glitches in the 

transmission line can distort the pulse shape. We thus use time domain reflection 

measurements to study the temporal evolution of the current that flows into the wire. 

Supplementary Fig. 1(a) shows schematic illustration of the measurement setup.  A constant 

amplitude voltage pulse is applied from the pulse generator and we measure the reflected 

voltage pulse, via a power divider, using a real time oscilloscope.  The normalized current 

pulses measured for pulse lengths of ~100 ns and ~2.1 ns are shown in Supplementary Fig. 

1(b) and 1(c), respectively.  As evident, there is no obvious glitch in the current pulse shape 

for both pulses. Since the input impedance of the pulse generator is not perfectly 50 Ohm, we 

take this into account to calculate the current applied to the device. The fluctuations in the 

signals found at times of ~30 ns and ~100 ns in Supplementary Fig. 1(b) are due to this 

correction.  The difference in the rise and fall times of the pulse (Fig. S1(c)) is largely to do 

with the pulse generator: the rise and fall times of the pulse generator is <0.3 ns and 0.75 ns, 

respectively. The pulse length is measured using a real time oscilloscope. 

Effect of Joule heating 

The device temperature evolution with the current pulse due to Joule heating in a similar 

structure was reported previously in Ref. 1. The temperature variation was analyzed from 

anomalous hall resistance. Based on these results, the temperature rise due to Joule heating is 

expected to be at most 100 K for the maximum pulse amplitude and length applied to the 

device in this work. The increase of temperature is smaller for shorter current pulses.  The 
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effect of temperature on the pulse length dependent velocity is evaluated using 

micromagnetic simulations (see Supplementary Note 3, below). 

Since the pulse generator outputs a constant-amplitude voltage pulse, the time evolution 

of the current that flows into the device may vary if Joule heating takes place.  Fortunately, 

for the heterostructure studied here (W/CoFeB/MgO), the temperature variation of the device 

resistance is nearly constant due to the amorphous-like structure2 of the conducting path 

(CoFeB and W). Supplementary Fig. 2 shows the measurement temperature dependence of 

the longitudinal resistance (RXX) normalized by the ratio of wire width (w) and wire length 

(L).  Unlike typical metals, the temperature variation of RXX/(w/L) is flat: the slope is ~−0.013 

/K.  Thus the shape of the current pulse will not be distorted if Joule heating was to occur.   

Note that the wall velocity is almost constant with the current density once it saturates; 

see Fig. 1(a-f) and Supplementary Fig. 3(b).  Such saturation of velocity at high current is in 

accordance with the 1D model (Eq. (1)), which assumes constant magnetic properties at all 

currents. We thus consider Joule heating at high current has little impact on the magnetic 

properties of the films.  

Domain wall tilting in 5 m and 50 m wide wires 

As described in the main text, the degree of wall tilting depends on the wire width.  In the 

following, we show results of current induced domain wall tilting and its influence on the 

velocity in ~5 m and ~50 m wide wires.   

An optical microscopy image of the ~5 m wide wire is shown in Supplementary Fig. 

3(a). Supplementary Fig. 3(b), circles and squares, show measured ݒୈ  as a function of 

pulse amplitude for a fixed pulse length (ݐ ൌ 10 ns). The corresponding pulse length (ݐ) 

dependence of ݒୈ  is plotted in Supplementary Fig. 4(a-c), circles, for different pulse 

amplitudes. (The results are the same with those shown in Fig. 5(a-c).) In all cases, the 
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velocity increases with decreasing pulse length.  Signatures of domain nucleation are found 

for ݐ>30 ns when the pulse amplitude is set to ~25 V (Supplementary Fig. 4(c)), which 

hinders accurate evaluation of the velocity in this regime. In contrast to the pulse length 

dependent ݒୈ found for the wider wires (~50 m wide, Fig. 1(g-l)), ݒୈof the narrower 

wires (~5 m wide, Supplementary Fig. 4(a-c)) continues to decrease as the pulse length is 

increased beyond ~20 ns. 

Supplementary Fig. 4(d-g) show sequences of Kerr images when voltage pulses (~16 V) 

are applied to the ~5 m wide wire. The bright and dark contrasts correspond to 

magnetization pointing along +z and –z, respectively. The top image shows the initial state of 

the wire in which two domain walls with opposite wall types (↓↑ and ↑↓ walls) are placed.  

For ݐ ൌ100 ns, the domain wall becomes tilted as it moves along the wire. We define the 

wall tilt angle ߯ as the angle between the wall normal and +x (see Fig. 2(a)).  The tilt angle is 

opposite for the ↓↑ and ↑↓ domain walls and it reverses when the current direction is changed.  

The way the domain wall tilts is opposite to that if the Oersted field was to tilt the wall.  This 

is in agreement with previous reports, which attribute the DMI as the source of the wall 

tilting3-6.  For shorter pulses, the tilting is not obvious from the images.  

As discussed in the main text, the wall tilting can influence the wall velocity, in 

particular, for longer pulses.  According to Supplementary Eq. (9), the time it takes for the 

wall tilting to develop, defined as ߬ఞ , scales with the square of the wire width. Thus an 

increase in the wire width by a factor of ten will increase ߬ఞ by 100.  For typical material 

parameters found in this system, we expect negligible tilting when we increase the width 

from ~5 m to ~50 m for the maximum pulse length (~100 ns) used in the experiments.   

To study the wire width dependence of the wall tilting, Supplementary Fig. 5 summarizes 

the wall motion in ~50 m wide wire in comparison to that shown in Supplementary Figs. 4. 
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and 5(a) shows a Kerr microscopy image of a typical ~50 m wide wire. Successive Kerr 

images of the magnetic state of the wide wires after application of current pulses are shown in 

Supplementary Figs. 5(c-e) for 4 ns, 20 ns and 90 ns long pulses (the pulse amplitude is fixed 

to ±16 V).  We do not find observable wall tilting in these wide wires, in contrast to the 5 m 

wide wires. However, domain walls tend to be more distorted when longer pulses (~90 ns) 

are used, Supplementary Fig. 5(e).  

To estimate ݒாே, here we divide the wire into small sections and calculate the velocity 

of wall segments present within each section and take the average of all sections (as 

described in the Methods section of the main text).  The yellow rectangles depicted in 

Supplementary Fig. 5(e), bottom right panel, show examples of the small sections.  The pulse 

length dependence of ݒୈ of the wall segments present in sections A, B and C are displayed 

in Supplementary Figs. 5(f), 5(g) and 5(h), respectively. The black square and red circles 

indicate ݒୈ  for ↑↓ and ↓↑ walls, respectively. The pulse length dependence of ݒୈ  is 

similar for all segments of the walls despite the different pinning profile each segment will 

experience when moving along each section. The velocity obtained from the three sections 

are averaged and shown in Supplementary Fig. 5(b). As observed for the ~5 m wide wires 

(Fig. 5 and Supplementary Fig. 4), the velocity increases for shorter pulses (ݐ ≲ 20 ns). 

However, the gradual reduction in ݒୈ at longer pulses is not evident for the ~50 m wide 

wires. These results indicate that the tilting effect is small for the ~50 m wide wires, 

suggesting that the increase in the velocity for shorter pulses is likely to do with the inertia 

effect.   
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Supplementary Note 2 

The one dimension (1D) collective coordinate model of a domain wall 

 Model description 

In order to describe the experimental observations, first the dynamics of chiral domain 

walls under current pulses is studied using the 1D collective coordinate model with the spin 

Hall torque and the DMI included1,7-9.  The domain wall dynamics is described using the 

following three time ( ݐ ) dependent variables4,10: the wall position ݍሺݐሻ , the wall 

magnetization angle ߰ሺݐሻ and the wall tilting angle ߯ሺݐሻ (߰ሺݐሻ and ߯ሺݐሻ are defined with 

respect to +x, see inset of Fig. 3(a)).  The tilting of the wall arises due to the DMI.  Details of 

the 1D model used here can be found in Ref. 5.  

ሺ1  ଶሻߙ ୡ୭ୱఞ
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For out of plane magnetized systems, the domain wall magnetization is pointing along the 

film plane: ߰ ൌ 0, ߰ and ߨ ൌ గ

ଶ
,െ గ

ଶ
 corresponds to Neel and Bloch walls, respectively. The 

magneto-static anisotropy field associated with the wall is expressed as ܪ ൌ

ସ௧ూெ౩ሺଶሻ


	 5,11, where ܯୗ  is the saturation magnetization, Δ  is the domain wall width 

parameter (the physical domain wall width is ߨΔ) and ݐ is the thickness of the magnetic 
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layer. ߙ and ܭare the Gilbert damping parameter and  the effective magnetic anisotropy 

energy of the magnetic layer, respectively. ݓ  is the width of the wire. ߁  represents the 

domain wall pattern; ߁ ൌ 1for the ↑↓ wall and ߁ ൌ െ1 for the ↓↑ wall.  ܪ୍ሺݍሻ , ܪୈ and 

 ୗୌ are the pinning field, the Dzyalonshinskii-Moriya (DM) offset field and the spin Hallܪ

effective field, respectively. ܪୈ  and ܪୗୌ  can be explicitly written as ܪୈ ൌ 

ெ
߁  and 

ୗୌܪ ൌ െ
ఏౄ

ଶெ௧ూ
 ୗୌ is the spin Hall angle ofߠ ,where D is the DM exchange constant , 12,13ܬ

the heavy metal layer and ܬ is the current density that flows into the heavy metal layer.  Here, 

only the damping-like component of the spin Hall torque13 is included. For simplicity, the 

spin transfer torques, both the adiabatic and the non-adiabatic terms14, that occur within the 

magnetic layer is neglected since their contribution is much smaller than that of the damping-

like spin Hall torque for the system under consideration1. The definitions of the constants 

used here are: ߛ  is the Gyromagnetic ratio,  is the reduced Planck constant and ݁  is the 

electron charge. 

One can linearize Supplementary Eqs. (1) and (2) to obtain the characteristic equation of 

a domain wall (the wall tilting is set zero here)1,8,9,15.  

݉డమ

డ௧మ
 

ఛ

డ

డ௧
ൌ ,ܨ  (4) 

where ݉ is the effective domain wall mass, ߬ is the relaxation time and ܨ is the driving force.  

These parameters are derived as: 

݉ ൌ ቀ
ଶெ

ఊ
ቁ
ଶ ൫ଵାఈమ൯௪௧ూ

൫ట౧൯
  (5) 

߬ ൌ 

ఈ
ቀ
ଶெ

ఊ
ቁ
൫ଵାఈమ൯

൫ట౧൯
 (6) 
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ܨ			 ൌ

ଵ

൫ట౧൯

ە
ۖ
۔

ۖ
െۓ

డఙ

డ
 ቀ

ଶெ

ఊ
ቁ
ଶ ఉ௨


൨ ∙

డమఙ

డటమቚ

 Γ గ

ଶ
γ sin߰ୣ୯ ቈെ ቀ

ଶெ

ఊ
ቁ
ଶ
ݑୗୌܪ  ቀ

ଶெ

ఊ
ቁܪୗୌ

డఙ

డట
ቚ
ୣ୯


Γ గ
ଶ
γ cos߰ୣ୯ ቈെ ቀ

ଶெ

ఊ
ቁܪୗୌ

డమఙ

డటమቚ
ୣ୯
	

ۙ
ۖ
ۘ

ۖ
ۗ

  

(7) 

Here  ݂൫߰ୣ୯൯ ൌ ቈడ
మఙ

డటమቚ
ୣ୯
 Γ గ

ଶ



ఈ
ቀ
ଶெ

ఊ
ቁ   and ߰ୣ୯ is the equilibrium (steady state)	୯ୣ߰݊݅ݏୗୌܪߛ

magnetization angle of the wall.  The domain wall energy density (ߪ) can be defined as:  

ߪ ൌ ߪ  Δܪୗܯ cosଶ ߰ െ ୈܪୗܯΔߨ cos߰   (8) 

where ߪ is the domain wall energy density that is just a constant (i.e., not a function of ݍ or 

߰ୣ୯).  Note that  


ఛ
ൌ ௪௧ూ


ቀ
ଶெ

ఊ
ቁ  gives the friction against the wall motion.   

The spin Hall torque tends to rotate the wall magnetization away from the Neel 

configuration (߰ୣ୯~0	or	ߨ) to that of the Bloch configuration (߰ୣ୯~
గ

ଶ
	or െ గ

ଶ
). When current 

is applied, one can substitute ߰ୣ୯~
గ

ଶ
	or െ గ

ଶ
 into Supplementary Eq. (6) to obtain the 

acceleration time (߬), as shown in Eq. (2) of the main text.  The deceleration time (߬ୈ) (Eq. 

(3) of the main text) can be evaluated by substituting ߰ୣ୯~0	or	ߨ in Supplementary Eq. (6). 

One can associate the relaxation time ߬ with the effective wall mass ݉ using the relation 

that derives from Supplementary Eqs. (5-7), i.e. ݉ሺୈሻ ൌ
ଶெఈ௪௧ూ

ఊ
߬ሺୈሻ. ݉ represents the 

effective mass when the domain wall is driven by current whereas ݉ୈ corresponds to the 

effective mass when the wall is at rest (i.e. when the current is turned off). Since the 

proportionality factor that relates ݉  and ߬  is a constant, these equations indicate that the 

effective wall mass is different when the domain wall is driven by current and when it is at 
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rest. Note that ߬ሺୈሻ  and ݉ሺୈሻ  evolve during the transient process and therefore are not 

constant. 

For domain wall tilting, the 1D model predicts that the time it takes to reach the steady 

state tilting angle (߬ఞ) depends on the wire width and the damping constant.  According to 

Boulle et al.4, ߬ఞ is expressed as: 

߬ఞ ൌ 2ݓSܯߙ

Δߛߪ6
 (9) 

where ߪ is the domain wall energy density at rest (see Ref. 4).  The velocity saturates once 

the tilting is in its equilibrium state: see the black solid lines (0.01~ߙ) in Fig. 2(a) and 2(c), 

which correspond to ߬ఞ~20 ns. The 2D pinning and the wall tilting have little effect on the 

velocity for the short pulses because the time is not enough to develop sizeable amount of 

tilting. 

 Comparison to experimental results 

The current density dependence of ݒୈ for the ~5 m wide wire (Supplementary Fig. 

3(b)) is fitted with the 1D model that includes wall tilting and pinning. The model parameters 

are chosen based on the material parameters of film set B (see Supplementary Table 1). 

However, MS used in the calculations is larger than that found in the experiments. M/V in 

Supplementary Table 1 underestimates the saturation magnetization since it includes 

information of magnetic dead layer. We thus use an intermediate value between M/V and the 

bulk MS of Co20Fe60B20 reported in the literature16. To account for the non-zero threshold 

current density, a one dimensional periodic pinning field17 ܪ୍ሺݍሻ ൌ

ଵ

ଶெ௪௧ూ
ቀబగ
బ
ቁ ݊݅ݏ ቀ

గ

బ
has been included in the model to fit the results: here ܸ	ቁݍ ൌ 1.6 ൈ

10ିଵଵ erg and ݍ ൌ 7nm are used. The fitting parameter is the DM exchange constant: the 

best fit gives ܦ ൌ 0.24 erg/cm2, which is in agreement with that found from the fitting of 
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 ୈ vs. pulse amplitude (Fig. 1) using Eq. (1).  Note that smaller V0 and larger q0 alsoݒ

provide reasonably good agreement for the results shown in Supplementary Fig. 3(b). To 

reproduce the pulse length dependence of ݒୈ shown in Supplementary Fig. 4(a-c), however, 

small ݍ  of 5-10 nm is needed. Such small pinning periodicity is consistent with the 

amorphous structure of the CoFeB layer. With the D value obtained from the fitting, the 

equilibrium wall magnetization at rest is pointing close to the x axis, i.e. the wall forms a 

Neel-like structure1,18. 

The pulse length dependence of ݒୈ  is calculated using the 1D model with the 

parameters obtained above. The results are shown by the solid line (pinning is considered) 

and the dashed line (without pinning) in Supplementary Figs. 4(a-c). In agreement with the 

experiments, the calculated ݒୈ  increases with decreasing pulse length for short pulses 

ݐ) ≲ 20 ns). However, the 1D model fails to reproduce the experimental results at longer 

pulses.  Note that ݒୈ vs. ݐ is nearly identical for the tilted walls and the rigid walls (data 

not shown).  In the 1D model, the wall tilting angle is underestimated due to the 1D nature of 

the pinning and consequently, the tilting has little effect on ݒୈ. We find that the velocity 

reduction for longer pulses is only well reproduced when full micromagnetic simulations with 

realistic 2D disorder are considered. 

Validity of the linearized equation of motion 

The wall angle ߰ changes from 0 (or ) to±/2 and vice versa when the current is tuned 

on and off. Thus the linearization process used to obtain the relaxation times (Eqs. (2) and 

(3)) needs justification. To study this, we have numerically calculated the domain wall 

velocity and extracted the relaxation times (߬ and ߬ୈ) using the solutions of the linearized 

model. Supplementary Figs. 6(a,b) show the instantaneous velocity as a function of time 

when a 100 ns long current pulse is applied.  The parameters used are similar to those 
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described in Fig. 2 (with Gilbert damping α=0.05). For simplicity, we assume the tilt angle  

to be zero here. The acceleration and deceleration times are obtained by fitting the velocity vs. 

time using the following exponential function, the solution of the linearized equation 

(Supplementary Eq. (4)). With ݒሺݐሻ ൌ பሺ௧ሻ

ப௧
, the solution takes the form: 

ሻݐሺݒ ൌ ቐ
ଵݒ ቂ1 െ exp ቀെ

௧

ఛఽ
ቁቃ 					for	0  ݐ ൏ ݐ

ଶݒ exp ቀെ
௧ି௧ౌ
ఛీ
ቁ 																					for	ݐ  ݐ

 (10) 

where ݒଵሺଶሻ  are the fitting parameters and ݐ  is the current pulse length. The boundary 

condition at ݐ ൌ ݐ  suggest that ݒଵ ൌ ଶݒ  (in the text, we use ݒଵ ൌ ଶݒ ൌ  ୈ). Here, for theݒ

purpose of fitting, we use two different parameters ݒଵሺଶሻ for the reason described below.  

As the time variation of the wall angle is the main source of the relaxation effects, we 

have calculated and fitted ߰ vs. time using similar exponential functions (i.e. replace ݒଵሺଶሻ 

with ߰ଵሺଶሻ): the calculated and fitted curves are shown in Supplementary Figs. 6(c,d). The left 

and right panels show calculation results using different current densities. Note that the 

equation of motion (Supplementary Eq. (4)) and its solution (Supplementary Eq. (10)), i.e. 

the exponential function, are valid only when the wall angle ߰ is close to ±/2 when the 

current is on and 0 (or ) when it is off. We therefore limit the fitting range to which the 

exponential function can be applied: to a time range in which deviation of ߰  from its 

equilibrium value is less than ~20 deg.  This is why we have to define the amplitudes of the 

exponential function (ݒଵሺଶሻ and ߰ଵሺଶሻ) separately when the current is on and off.  

First, from the fitting, we obtain the saturation velocity (ݒୈ ) and the corresponding 

equilibrium wall angle (i.e. ߰ୣ୯ ) when current is applied. ݒୈ  and ߰ୣ୯  are equivalent to, 

respectively, ݒଵ  and ߰ଵ  in Supplementary Eq. (10). These quantities are plotted in 

Supplementary Figs. 6(e) and 6(f) using the solid symbols. (As a guide to the eye, the solid 
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line in Supplementary Fig. 6(e) shows the numerically calculated saturation velocity at the 

end of the current pulse (t=100 ns).). Supplementary Figs. 6(e) and 6(f) show that ߰ୣ୯ 

decreases with decreasing current density, resulting in a smaller velocity at lower current. In 

the parameter set used here, a considerably decrease in ߰ୣ୯ and ݒୈ occurs when the current 

density is smaller than ~0.2×108 A/cm2.   

The corresponding acceleration ( ߬ ) and deceleration ( ߬ୈ ) times are shown in 

Supplementary Figs. 6(g) and 6(h). We show ߬ and ߬ୈ obtained by fitting the velocity vs. 

time (black squares) and ߰ vs. time (red circles) and compare those to the values calculated 

using Eqs. (2) and (3) (blue solid line). We find that the numerical calculations and the 

analytical solutions of the acceleration time ߬ are in good agreement even for small current 

densities at which ߰ୣ୯ is much smaller than /2.  These calculations show that the estimation 

of ߬ using Eq. (2) is valid at smaller current although its derivation assumes ߰ୣ୯ ൎ
గ

ଶ
. 

The numerical calculations of the deceleration time (Supplementary Fig. 6(h), solid 

symbols) show that ߬ୈ varies little with the current density. This is in good agreement with 

Eq. (3), which dictates that ߬ୈ  is constant against the current density.  The numerical 

calculations of the deceleration time are ~10-20% smaller than the analytical estimate. From 

these results, we consider the expressions given in Eqs. (2) and (3) provide good estimates of 

the relaxation times.  

The difficulty in fitting the relaxation process arises since the wall mass, or the relaxation 

time, continues to evolve during the transient processes. Under such condition, it is not 

appropriate to use a single relaxation time to describe the process. We have therefore limited 

the fitting range to estimate a relaxation time that more or less describes the equilibrium state 

(Supplementary Fig. 6). Ideally, to describe the relaxation process, one would need to use a 

relaxation time that is a weighted average of the processes involved  
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Numerical evaluation of the relaxation times 

As the velocity or the wall angle cannot be fitted well with an exponential function with a 

constant relaxation time, we have computed the relaxation times numerically using the 

calculation results of the 1D model. To illustrate how the relaxation times are obtained 

numerically, we show in Supplementary Fig. 7(a) the temporal evolution of the wall velocity 

when a current pulse is applied.  The results are similar to that presented in Fig. 2(a), solid 

line. The maximum velocity (ݒ୫ୟ୶) and the velocity at the end of the pulse, i.e. the terminal 

velocity (ݒሺݐሻ) are defined schematically in Supplementary Fig. 7(a). The acceleration time 

(߬) is obtained by calculating the time needed to reach 
ଶ

ଷ
 .୫ୟ୶ after the pulse is turned onݒ

The deceleration time (߬ୈ) is estimated by time it takes to reach 
ଵ

ଷ
 ሻ after the pulse isݐሺݒ

turned off. Although the relaxation times obtained in such a way quantitatively differ from 

those calculated using the linearized solutions (Eqs. (2) and (3)), the former provides a 

qualitative view of how the relaxation times depend on key material parameters. 

The numerically calculated relaxation times are displayed in Supplementary Figs. 7(b-d) 

as a function of current density and in Supplementary Figs. 7(e-g) as a function of Gilbert 

damping, spin Hall angle and the DM exchange constant.  The difference in ߬ and ߬ୈ is 

apparent when the damping is small and when the DM exchange constant is small such that 

గ

ଶ
HDM approaches the domain wall anisotropy field (HK). These results qualitatively support 

the relaxation times (Eqs .(2) and (3)) obtained using the linear approximation of the 1D 

model. 
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Supplementary Note 3 

Full micromagnetic simulations 

In order to further support the experimental observations and the 1D model calculations, 

full micromagnetic (M) simulations have been performed by solving the Landau Lifshitz 

Gilbert equation augmented with the damping-like component of the spin Hall torque:  

డሬሬሬԦ

డ௧
ൌ െߛ ሬ݉ሬԦ ൈ ሺܪሬሬԦୣ   ሬሬԦ୲୦ሻܪ  ߙ ሬ݉ሬԦ ൈ డሬሬሬԦ

డ௧
 ߛ ఏౄሺ௧ሻ

ଶெ
ሬ݉ሬԦ ൈ ሺߪԦ ൈ ሬ݉ሬԦሻ  (11) 

where the effective field ܪሬሬԦୣ   includes exchange, magnetostatic, magnetocristalline 

anisotropy (i.e. uniaxial perpendicular magnetic anisotropy) and Dzyaloshinskii-Moriya 

interactions. ܪሬሬԦ୲୦ is the thermal field and ߪԦ ൌ  ሬԦ୷ is the polarization of the spin current (seeݑ

Ref. 19 for numerical details) entering the magnetic layer. The material parameters are the 

same with those used for the 1D model: ܯୗ ൌ 1100	emu/cm3 ܣ , ൌ 1.5 ൈ 10ି erg/cm , 

~3.2ܭ ൈ 10 erg/cm3, ߠୗୌ ൌ െ0.21, ߙ ൌ 0.05 and ܦ ൌ 0.24	erg/cm2. 

In order to take into account the effects of disorder due to imperfections and defects in a 

more realistic way than that of the 1D model, we assume the easy axis anisotropy direction is 

distributed among a length scale defined by a "grain" size. The grains vary in size taking an 

average diameter of ܦୋ ൌ 30 nm. The direction of the uniaxial anisotropy of each grain is 

mainly directed along the perpendicular direction (z-axis) but with a small in-plane 

component which is randomly generated over the grains. The maximum percentage of the in-

plane component of the uniaxial anisotropy unit vector is varied from 10% to 15% (0.10 

ߝ  0.15). In this work, we have computed the domain wall velocity as a function of pulse 

length for five different grain patterns (A-E) generated randomly and the average velocity are 

compared to the experimental results shown in Supplementary Fig. 4(a-c).  
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In order to evaluate the influence of the wall tilting, two strips with two different widths 

were studied numerically using 2D micromagnetic simulations: ݓ ൌ 1536	݊݉  and ݓ ൌ

4997	݊݉. Note that the latter is the same as that of the experimental wire studied in the main 

text. The strips are discretized using a finite difference scheme with cells composed of  

3݊݉ ൈ 3݊݉ ൈ 1݊݉ : the thickness of the cell is the same with that of the CoFeB strip 

ݐ) ൌ 1݊݉). A micromagnetic study using the real dimensions of the experimental samples 

(~30-40 m long wires) is not possible due to computer memory limitations. Therefore, the 

length of the strips considered in the modeling is ݈ ൌ  ,Similar to the experiments .݉ߤ	12.3

two domain walls are placed in the strips and the current-driven motion of domain walls is 

evaluated. The quasi-static velocity ݒୈ  is estimated by dividing the total distance the 

domain wall traveled both during and after the current pulse application with the pulse length. 

We first focus on the strip with a width of ݓ ൌ 1536	݊݉ and study the effect of the 

degree of disorder (ߝ) on ݒୈ. Supplementary Fig. 8 shows the simulated ݒୈ as a function 

of the pulse length ݐ for grain pattern A with three degrees of disorder: ߝ ൌ 0.10, 0.12, 0.15. 

The current density is fixed to ܬ ൌ 0.8 ൈ 10଼	A/cm2, a condition that corresponds to that of 

Supplementary Fig. 4(c). The ݐ  dependence of ݒୈ  is similar for the three degrees of 

disorder evaluated. In terms of quantitative agreement with the experiments (black solid 

circles in Supplementary Fig. 8) the best fit is found for the case with ߝ ൌ 	0.12.  Based on 

this agreement, the degree of disorder is fixed to ߝ ൌ 	0.12 from hereafter.  

The effects of grain pattern and temperature on ݒୈ are presented in Supplementary Fig. 

9. Similar results are obtained for different grain patterns and with different temperatures, i.e. 

zero and room temperature. The simulations are in good agreement with the experimental 

results. Snapshots of the magnetic contrast, before and after the current pulse application, are 

shown in Supplementary Figs. 9(d-f). For larger ݐ, in contrast to the 1D model calculations, 

the tilting angle is non-zero even after the current pulse is turned off. In addition, we find that 
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the tilting angle during the current pulse is larger when the 2D pinning is introduced 

compared to that estimated using the 1D model. Thus for longer pulses, where the tilting 

becomes more significant, the velocity reduction is larger in the simulations and thus 

accounts for the gradual reduction of ݒୈ with increasing ݐ. For short pulses (ݐ ≲ 20 ns), 

the inertia effect determines the enhancement in ݒୈ, as predicted by the 1D model.  

As the domain wall tilting scales with the strip width ݓ, the strip width influences the 

time scale of domain wall tilting (see Supplementary Eq. 10) and therefore it can modify the 

domain wall velocity. In order to evaluate this effect a second micromagnetic study was 

carried out using the same strip width as in the experimental measurements (5~ݓ	݉ߤ). The 

results of these simulations are shown in Supplementary Fig. 10 in comparison to the 

experimental results. As it is clearly shown, the results for the wider strip are in very good 

agreement with the experimental data and they exhibit similar trend with the previous 

simulations for narrow wires in Supplementary Fig. 9.  Agreement with experimental results 

is slightly better for simulations with the wider wires.  Note that the increase in the velocity at 

shorter pulses is a little more abrupt for the narrower wire (Supplementary Fig. 9) compared 

to that of the wider wire (Supplementary Fig. 10), which is due to the wire width dependent 

time scale of domain wall tilting.  

These micromagnetic simulations corroborate the experimental results and the 

interpretation based on the 1D model discussed in the main text. The 1D model description is 

valid for short current pulses with ݐ ≲ 10 െ 20 ns. However, as the pulse length increases, 

the model fails to provide a quantitative agreement with the experimental results. The reasons 

behind this are described as follows. In the framework of the 1D model, the pinning is 

introduced as a one dimensional space-dependent effective field defined by a given energy 

barrier and a period. This pinning field is purely 1D (only depends on the x coordinate), and 

therefore it cannot capture the 2D pinning present in real samples. As ݐ  increases, the 



16 
 

domain wall tilting increases, however its degree is larger when a 2D pinning is assumed. 

Since the velocity becomes smaller as the tilting increases, the velocity reduction is larger in 

the simulations (compared to the 1D model calculations) due to the 2D pinning that gives rise 

to larger tilting.  
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