

Supplementary Figure 1: Pedigree of the family with the homozygosity mapping. A. Pedigree of the family, underlined by corresponding schematic representation of the homozygosity mapping results that has been performed on 3 affected individuals and 1 unaffected individual using the Affymetrix 250K SNP array. This representation shows the chromosome 3 homozygous region that is common for the three affected individuals and the position of the *PIK3R4* gene. Gray shading indicates homozygous SNPs (light gray for AA and darker for BB) and white zones indicate heterozygous alleles (AB). **B.** Supplemental homozygous regions specific to the three affected individuals. Positions are given following GRCh37 hg19 reference genome.

1

mock

VPS15-HA

-FCS

merge

Supplementary Figure 3: Controls of zebrafish and yeast experiments. A-B: RT-PCR with cDNA of 6 different developmental stages (from 1,25 to 72 hpf) amplifies a 1000 bp band (arrow) as expected. *vps15* mRNA is maternally expressed before midblastula transition (1,25 hpf) and mRNA is detectable until at least 72 hpf. PCR without prior reverse transcription did not yield a 1000 bp band (**B**) indicating that the amplified fragment is not due to contamination with cDNA or genomic DNA. **C**: *In situ* hybridization with *vps15* antisense probe in zebrafish embryos showing ubiquitous expression at 14 hpf and prominent localization in the head as well as in the pronephric duct (pd) at 48 hpf. Ov: otic vesicle.

D. Co-injection of *vps15*-mo with zVps15-GFP plasmid completely blocked GFP expression. As expected, co-injection of the mismatch control *vps15cont*-mo with the zVps15-GFP reporter did not reduce the GFP expression as compared to controls injected with the zVps15-GFP plasmid. Embryos are 20 hpf old. **E** picture of WT and morphant zebrafish showing kidney cysts in the morphant (black arrow) but not the WT. **F.** *vps15* Δ yeast cells were transformed with a control empty plasmid (ctrl), an expression (CEN) or overexpression (2 μ) plasmid bearing wild-type hVPS15 or mutant hVPS15-R998Q and a western blot against hVPS15 was performed. **G.** Wild-type (WT) and *vps15* Δ yeast cells transformed with a control (ctrl), hVPS15 or hVPS15-R998Q expression plasmid (CEN) were labeled with a soluble dye (CMAC) staining the lumen of the vacuole. White arrows show the additional CMAC positive compartment (CPC) in *vps15* Δ yeast cells. **H.** Drop test assays of wild-type WT and *vps15* Δ yeast cells expressing (CEN) or overexpressing (2 μ) hVPS15 or hVPS15-R998Q. Plates were incubated at 30°C. Yeast strains transformed with an empty plasmid (ctrl) were used as controls.

Supplementary Figure 4: VPS15 and VPS15-R998Q protein complexes and PtdIns(3)P staining in human fibroblasts. A. Control (ctrl) and patient (II.1, II.3 and II.5) fibroblasts were grown in complete medium (+FCS) or deprived of FCS for 24 hours. Immunoprecipitation with a VPS15 antibody was done on cell lysates (input) and interaction (IP VPS15) with the indicated proteins (VPS34, Beclin1 and GAPDH) was detected by western blot. IPneg represent the control immunoprecipitation done without VPS15 antibodies. **B.** Control and patient II.5 fibroblasts were grown in complete medium and transfected with a GFP-2XFYVE plasmid, 24 hrs post transfection cells were observed on a fluorescence microscope. **C.** VPS15 was immunoprecipitated from control (ctrl1 and ctrl2) and patient (II.5, II.1 and II.3) fibroblast protein lysates and samples prepared for and analysed by mass spectrometry. Interaction partners were determined by searching against the complete Human proteome set from the SwissProt database. All retained interaction partners were completely absent from the negative control immunoprecipitations (IPneg) omitting VPS15 antibodies (mean number of spectra "0" in the IPneg column) but present in all five VPS15 immunoprecipitation samples (ctrl1, ctrl2, II.5, II.1 and II.3).

Supplementary Figure 5: Primary cilia and VPS15 do not colocalize and VPS34 is not Golgi-localized. A. Control (ctrl) and patient II.5 fibroblasts were deprived of serum for 24 hrs and fixed. Immunofluorescence against acetylated tubulin (green) and VPS15 (red) and DAPI staining were performed and pictures taken on a fluorescence microscope, only the merge is shown. **B.** Control (ctrl) and patient II.5 fibroblasts were deprived of FCS for 24 hrs and fixed. Immunofluorescence against GM130 (green) and VPS34 (red) and DAPI (blue) staining were performed and pictures taken on a confocal microscope. White square: zoomed area. **C.** Control (ctrl) and patient (II.5) fibroblasts were deprived of serum for 24 hrs. An immunoprecipitation against GM130 was performed on total cell lysates and VPS15 and GM130 detected by western blot. Negative immunoprecipitation without antibodies (IP neg) was used as a control.

Supplementary Figure 6: Intracellular localization of IFT20 in control and patient fibroblasts. A. Control (ctrl) and patient II.5 fibroblasts were grown in complete medium (+FCS) or deprived of serum for 24 hrs (-FCS) and fixed. Immunofluorescence against IFT20 (red and inverted black/white panel) and GM130 (green), and DAPI staining were performed and localization of IFT20 in the cells was observed on a fluorescence microscope. **B.** The same immunofluorescence stained slides were observed with a confocal microscope. **C.** Control (ctrl) and patient (II.5) fibroblasts were deprived of serum for 24 hrs. An immunoprecipitation against IFT20 was performed on total cell lysates and GMAP210 and IFT20 detected by western blot. Negative immunoprecipitation without antibodies (IP neg) was used as a control.

Supplementary Figure 7: Uncropped images of western blots for Figure 4B. A. Ponceau staining of the blot, the blot was cut in several pieces that were incubated with the indicated antibodies. **B.** Western blots were revealed with anti-VPS34, -VPS15, -UVRAG, -ATG14 and -GAPDH antibodies, as indicated.

Supplementary Figure 8: Uncropped images for western blots for Figure 5A. A. Ponceau staining of the two blots, the blots were cut in two pieces that were incubated with the indicated antibodies. **B.** Western blots were revealed with anti-GM130 and anti-GAPDH antibodies, as indicated.

Patients	II.1		II.3		11.5	;	١١.	4
Type of sequence variant	SNV	Indel	SNV	Indel	SNV	Indel	SNV	Indel
Total number of variants	52646	8185	52434	8178	52576	8253	55365	8522
After exclusion of non- pathogenic variants (as determined from the ClinicalSignificance field in dbSNP) validated by at least 2 methods in dbSNP (as determined from the "Validation Status" field)	8980	5296	8427	5294	8962	5378	10899	5578
After exclusion of variants with an allele frequency > 1% (extracted from the dbSNP database, the Exome Variant Server, the 1000g and the ExAC database)	7132	3790	6533	3813	7081	3883	8830	4084
After exclusion of variants found in the homozygous state + exclusion of variants found more than once in the heterozygous state in 70 control exomes	2193	844	1633	816	2199	892	4227	926
After exclusion of 5'UTR, 3'UTR, downstream, upstream and intron locations without local splice effect prediction (from the "localSpliceEffect" field of Alamut-Batch)	1120	204	778	196	1121	233	2190	245
After exclusion of synonymous variants without local splice effect prediction (from the "localSpliceEffect" field of Alamut-Batch)	881	204	597	196	891	233	1764	245
After selection of variants consistent with recessive transmission (compound heterozygous, homozygous variants).	1 homozygous variant in the <i>PIK3R4</i> gene 2 compound heterozygous variants in the <i>AK9</i> and <i>RECQL4/MFSD3</i> genes							

Supplementary Table 1: Summary of the exome sequencing results from the three affected probands and the healthy sister.

RefSeq Gene	Gene	Forward (5'-3')	Reverse (5'-3')		
	PIK3R4-ex2	TGGTGTTTCACAGCTTCTTTG	GCAGGAATGCTGCCTCTAAC		
Human VPS15/PIK3R 4 NM_014602.2	PIK3R4-ex3	GGTTTTGCATTTTGGGTTTT	TTAAAGCAAAAGTGGGAACTAGA		
	PIK3R4-ex4	GCCTTTGTAGCTTTCATCTGG	TGAGAGAACACACAAACGTTGA		
	PIK3R4-ex5	GACAGGGAGGAAAAGTTAATAAGC	GTTTTACAAGTTAGCATCAGCAATTC		
	PIK3R4-ex6	TGGGACTATCTGTATGGGGAAA	TGCATGGAAGTATTTGAGAGGA		
	PIK3R4-ex7	TCCTTACATGTCTTGAAATGACTTT	AGTAGGAACCCCACACAATCA		
	PIK3R4-ex8	TTTGTTTATCCCGATAGTTTGAA	CCTTCAAAGGTGCTTGGTTC		
	PIK3R4-ex9	CTTCTACACACTTACAGATGTTG	TGCCTAAGATGTTTGCCAGA		
	PIK3R4-ex10	TGGGTGATTTGTCCCTTCAG	TCTGTGAAATGGGGCTTTTT		
	PIK3R4-ex11	GGCAATAAAAGCACATAATGGTT	CGTTCAAAGACATTAGGAGGAC		
	PIK3R4-ex12	TGTCTTCAAATATACTTTGCTTACGAC	TTCTGGGTTTCCCAAATAACA		
	PIK3R4-ex13	TTGCCAAATTGATGTCTCAG	CACAGAAGAAGGATTTTTGTCCA		
	PIK3R4-ex14	TTTAACATTAGCAGTGACATTGGTT	CATTGCAGGGTAGAAAGGAGA		
	PIK3R4-ex15	TCGGCTTTCGTTTTCTTGAT	CAGGCATTAGTGGCATTCAA		
	PIK3R4-ex16	ATGCAGCTTGATGCACTTTG	CCAAGAAAATCTCCCAACACA		
	PIK3R4-ex17- ex18	TGTCTCTCCCCCTGAAAGAA	TGATTTTAAACATTACAGTGCCATC		
	PIK3R4-ex18- ex19	CGGATGTCTTTTATTTGACTCCA	CACTTTCTTTATGCTTATTTTAC		
	PIK3R4-ex20	CTGACGAGAGGAAAAATGTG	CCACCAAAACCACAAACTCTT		
Zebrafish zvps15/pik3r4 ZDB-GENE- 050309-84	pikwt	cttgaattcATGGGGAACCAACT GGCTGGAATTGCTCCATCG	cttctcgaggggACTTCCAGACTTT GACAATGCCATCTCTAGAG		
	pikmut	GCACAAATCTGCTGTCAAC CaAATCCGAGTCTCAGATGAG	CTCATCTGAGACTCGGA TTtGGTTGACAGCAGATTTGTGC		
	pik3r4WM	gtgggagaagcatctgtgatc	ctacacaggttgttgaggatg		

Supplementary Table 2: Primers used in this study

List of antibodies used in this study							
Name Primary Antibodies	ry Antibodies Applications		Conditions				
Mouse Anti-Acetylated alpha Tubulin [6- B11-1]	western, IF	Abcam #ab24610	IF: 1/200				
Rabbit Anti-PIK3R4	western, IF, IP	Novus Biologicals #NBP1- 30463	WB 1/1000 IF: 1/200-1/300 IP: 1µl Ab/100µg prot				
Mouse Anti-PIK3R4	IF	Abnova #H00030849 M02	IF:1/100				
Rabbit anti-Beclin-1	Western	Cell Signaling #3495	WB: 1/1000				
Anti-UVRAG	Western	Abcam #ab174550	WB: 1/1000				
Rabbit Anti-GAPDH	Western	Abcam #ab181602	WB: 1/5000				
Rabbit Anti-PI3 Kinase Class 3 (VPS34)	IF	Abcam #ab137784	IF : 1/500				
Mouse Anti-PI3 Kinase Class 3 (D9A5) (VPS34)	IP, Western, IP	Cell Signaling #5289	WB: 1/1000 IP: 200µg Prot+ 2µl Ab				
Mouse Anti-GM130	Western, IF	Abcam #ab169276	western: 1/1000 IF:1/250 IP: 2µl/200µg Prot				
Rabbit Anti-IFT20	Western, IF, IP	Proteintech #13615-1-AP	WB:1/1000-2000 IF: 1/300 IP:300µg Prot + 3µl Ab				
RabbitAnti-Atg14	Western	Cell Signaling #5504	WB:1/1000				
Mouse Anti- GMAP210	Mouse Anti- GMAP210 Western		WB:1/500				
Mouse anti-HA Western, IF		Abcam #ab130275	WB: 1/1000 IF: 1/200				
Rat monoclonal Anti-HA	Western , IF	Roche #1 867 423	WB:1/1000 IF:1/200				
Name Secondary Antibodies	Applications	Producer	Conditions				
Mouse Anti-rabbit IgG (Conformation Specific) (L27A9) mAb (HRP Conjugate)	Western	Cell Signaling #5127	WB:1/1000				
Donkey anti rabbit IgG FITC	IF	Santa Cruz #sc 2090	IF:1/200				
Donkey anti-Mouse IgG (H+L), Alexa Fluor 594 conjugate	IF	Thermo Scientific A-21203	IF:1/500				
Chicken anti-Rabbbit IgG-HRP	Western	Santa Cruz #sc 2955	WB: 1/5000				
Goat anti-mouse Alexa Fluor coupled (either 488 or 568) IgG (Invitrogen)	IF	Thermo Scientific #A-11001 #A-11031	IF: 1/500				
Goat anti-Rabbit IgG (H+L) Alexa Fluor 568 conjugate	at anti-Rabbit IgG (H+L) Alexa Fluor IF 568 conjugate IF		IF:1/400				
Goat anti-rat Alexa Fluor 488 coupled IgG	IF	Abcam #ab150157	IF:1/600				
Donkey anti-Mouse IgG (H+L), FITC conjugate	IF	Thermo Scientific #A16012	IF:1/500				
Goat anti mouse IgG-HRP	Western	Santa Cruz #sc-2060	WB: 1/5000				
Goat anti mouse IgG FITC	IF	Thermo Scientific # A16085	IF:1/400				

Supplementary Table 3: Antibodies used in this study