# **Supplemental Material**

|         | Equilibrate | Phase 1                | Phase 2              | Phase 3              | Equilibrate | Phase 4                  |  |  |
|---------|-------------|------------------------|----------------------|----------------------|-------------|--------------------------|--|--|
|         | 0-60 min    | (3 samples)            | (3 samples)          | (3samples)           | 210-270     | (3 samples)              |  |  |
|         |             | 60-90 min <sup>‡</sup> | 90-150 min           | 150-210 min          | min         | 270-300 min <sup>‡</sup> |  |  |
| Probe 1 | Control     | Control                | Control <sup>‡</sup> | Control <sup>‡</sup> | SNP         | SNP                      |  |  |
| Probe 2 | Control     | Control                | Control*             | Control**            | ACh         | ACh                      |  |  |
| Probe 3 | Apocynin    | Apocynin               | Apocynin*            | Apocynin**           | ACh +       | ACh +                    |  |  |
|         |             |                        |                      |                      | Apocynin    | Apocynin                 |  |  |

### Supplemental Table I. Microdialysis perfusion protocol

\* 100 μM amplex ultrared, 1 U/mL HRP added to perfusate. \*\* 100 μM amplex ultrared, 1 U/mL HRP, 10 U/mL SOD added to perfusate. <sup>‡</sup> Ethanol o/i ratio measured to assess microvascular nutritive blood flow.

**Supplemental Table II.** Effect of Exercise Training on Metabolic Parameters. \*P<0.05 vs. Pre-training.

|                             | Lean-Pre  | Lean-Post | Int-Pre   | Int-Post   | Obese-Pre | Obese-Post |
|-----------------------------|-----------|-----------|-----------|------------|-----------|------------|
| Weight (kg)                 | 61.9±6.1  | 61.0±5.8  | 88.0±4.4  | 88.7±4.5   | 107.2±5.0 | 106.8±5.1  |
| BMI (kg/m <sup>2</sup> )    | 21.1±1.4  | 20.9±1.5  | 30.1±0.5  | 30.3±0.6   | 36.6±0.9  | 36.5±1.1   |
| Body Fat %                  | 24.0±4.2  | 23.4±4.3  | 39.0±1.9  | 38.6±1.8   | 46.7±1.4  | 46.7±1.4   |
| Glucose (mg/dl)             | 83.0±3.8  | 84.3±3.3  | 91.3±2.0  | 87.3±1.9   | 91.4±2.9  | 96.9±3.1*  |
| Insulin (µIU/mI)            | 6.2±1.2   | 5.5±1.2   | 10.6±1.8  | 10.7±1.4   | 20.2±5.1  | 21.8±3.9   |
| HOMA-IR                     | 1.30±0.31 | 1.19±0.29 | 2.37±0.39 | 2.32±0.32  | 4.66±1.26 | 5.26±1.00  |
| Trigs (mg/dl)               | 83.0±7.3  | 89.7±19.8 | 72.0±11.4 | 82.9±19.4  | 99.3±15.6 | 119.1±19.0 |
| Chol (mg/dl)                | 167±13.4  | 149±5.7   | 162±8.2   | 166±10.5   | 161±11.2  | 164±9.4    |
| HDL-C (mg/dl)               | 59.5±7.1  | 56.7±5.9  | 46.8±4.9  | 48.8±4.5   | 47.5±4.6  | 47.3±5.6   |
| LDL-C (mg/dl)               | 93.6±8.9  | 74.6±8.6* | 100.9±8.8 | 100.9±12.3 | 93.9±1.8  | 92.4±10.4  |
| VO <sub>2peak</sub> (I/min) | 2.05±0.26 | 2.19±0.20 | 2.53±0.24 | 3.14±0.42* | 2.57±0.20 | 3.10±0.19* |
| VO <sub>2peak</sub> Rel     | 33.0±2.3  | 36.1±2.2  | 28.6±2.1  | 32.4±2.1*  | 24.1±1.5  | 29.0±1.7*  |
|                             |           |           |           |            |           |            |

Supplemental Table III. Effect of Exercise Training on Vascular Injury Markers

|                    | Lean-Pre  | Lean-Post | Int-Pre   | Int-Post              | Obese-Pre | Obese-Post |
|--------------------|-----------|-----------|-----------|-----------------------|-----------|------------|
| CRP (ng/ml)        | 7.7±3.4   | 11.4±6.4  | 13.9±10.7 | 9.4±5.0               | 33.7±7.4  | 36.0±10.8  |
| VCAM-1 (ng/ml)     | 1.05±0.14 | 1.05±0.19 | 1.14±0.17 | 1.26±0.10             | 1.47±0.15 | 1.26±0.13  |
| ICAM-1 (ng/ml)     | 0.60±0.09 | 1.78±1.24 | 0.87±0.28 | 0.82±0.09             | 0.95±0.10 | 0.89±0.08  |
| sICAM-3 (ng/ml)    | 0.64±0.07 | 0.79±0.34 | 0.58±0.07 | 0.59±0.06             | 0.86±0.06 | 0.80±0.06  |
| E-Selectin (ng/ml) | 3.8±3.6   | 2.7±2.4   | 11.0±2.6  | 13.2 <del>±</del> 2.1 | 19.1±2.1  | 19.4±1.7   |
| P-Selectin (ng/ml) | 64.4±13.0 | 64.9±4.1  | 57.2±7.6  | 59.5±4.4              | 64.3±6.8  | 61.4±8.3   |
| Thromb-1 (ng/ml)   | 3.77±0.46 | 3.86±0.45 | 3.36±0.41 | 3.41±0.26             | 3.58±0.17 | 3.66±0.24  |
| SAA (ng/ml)        | 12.7±6.1  | 26.4±21.5 | 18.2±6.7  | 13.9±2.4              | 38.2±7.7  | 55.1±19.3  |
|                    |           |           |           |                       |           |            |

## **Supplemental Figures**



#### Supplemental Figure I Schematic of microdialysis set-up in skeletal muscle for ROS

**measurement.** Perfusate is pumped by the microdialysis pump at 2.0 µl/min, where it travels through the inlet tubing, down the shaft (brown) of the microdialysis probe, and then to the semi-permeable membrane (white). While perfusate is in the semi-permeable membrane portion of the probe,  $H_2O_2$  and  $O_2^-$  may cross over the pores of the membrane to interact with the reagents. After passing through the semi-permeable membrane, the solution is termed "dialysate", which travels up the shaft of the microdialysis probe, through the outlet tubing, and into the collection vial. Dialysate is transferred from the collection vial to fluorometer for fluorescence measurement. Figure is adapted from previous work.<sup>20</sup>



#### Supplemental Figure II Schematic of molecular flow through the microdialysis circuit.

Arrows indicate direction of flow. Amplex Ultrared (AU), horseradish peroxidase (HRP), superoxide dismutase (SOD), and apocynin (Apo) are perfused through the inlet tubing. Apo delivered via microdialysis may diffuse into the interstitium in the immediate vicinity of the semi-permeable membrane (dotted lines), and ultimately into the cell. Conversely,  $H_2O_2$  and  $O_2^{-1}$  produced by the cell can diffuse into the interstitium, and ultimately into the microdialysis probe where resorufin is produced by reaction of  $H_2O_2$  with AU and HRP. Figure is adapted from previous work.<sup>20</sup>