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1 Empirical Observations
1.1 School size analysis

From the videos, we selected single frames of the sardine schools (n = 123 frames; 8 different schools; see
Table S1 for number of images per school) to be analysed and exported them using VirtualDub (v 1.9.11).
We imported the images into ImageJ (v 1.36b) and measured the lengths of five haphazardly selected fish
in each image (in pixels) using ImageJ’s internal measure function. We marked a polygon around the edge
of the school’s members and calculated the internal area of this polygon, again using the measure function.
Dividing the area of this polygon (in pixels) by the average length of the five selected fish gave us a proxy for
the relative size of each school (Fig. S1a). Sardine length is generally uniform across these schools [1].

1.2 Approach frequency

We recorded the time between consecutive approaches by different sailfish towards the sardine schools (n = 7
schools) (Fig. S1b). The time of approach was determined as the time when a sailfish was within one sailfish
body length of the sardine school with its dorsal fin raised. This behaviour is typically observed before an
imminent attack [1, 2]. If a sailfish was already approaching the sardine school at the very start of the video,
we recorded the time of approach as zero. We also recorded the time at which this sailfish departed the school,
which was defined as when the sailfish swam away from the school. The time between the approach and the
departure was measured as the ‘attack length’. We also determined the time between one sailfish departing
and another sailfish approaching. On 19% of occasions, one sailfish approached the school before another
sailfish had departed it. In these cases, one or both sailfish always abandoned their attack.

1.3 Injuries on individual fish

We investigated the extent to which individual sardines were injured. We sampled images from the videos
where unobstructed individual injured fish could be seen. In each image, we selected 1- 2 individuals that were
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visibly the most injured (n = 45). We only selected a fish if another fish obstructed less than ∼ 10% of its
body surface. Like in the school injury analysis, but now based only on single individuals, we drew a polygon
around the outline of the focal fish, calculated the area of the polygon and cleared all pixels from outside this
polygon (making their intensity = 255). We then adjusted the brightness and contrast of each image before
binary thresholding, and then imported these binary images into MATLAB. We then summed the number of
pixels indicating injures (values equal to zero) and divided this total by the area of the polygon measured in
ImageJ to determine the proportion of the body of a sardine that was injured.

1.4 Group size effects

Whilst we concentrated on how the sailfish progressively injured prey over time, and how capture rates were
correlated with the level of injury in the prey school, there was also a weaker correlation between capture rates
and school size (Spearman Correlation; ρ = -0.54, P = 0.24, n = 7). If indeed capture rates do increase as
school size decreases (and we could not detect this effect due to limited sample size), then our model could
be more broadly applied to other systems. The confusion effect decreases as group size decreases, sometimes
making it easier to catch prey in smaller group sizes [3,4]. If individual hunters progressively decrease the size
of the prey group over time, then this could allow hunters in the future to increase capture rates in subsequent
attacks. Hence this model may not only apply when prey are injured or fatigued, but also when prey group
size decreases over time.

1.5 Injury in the school

There was a negative trend between injury level and school size (Spearman Correlation; ρ = -0.69, P = 0.07,
n = 8). Whilst again, the non-significant trend could be due to limited sample size, it may also be due to the
dynamics of the hunt. Sailfish break off smaller schools from larger schools numbering into the hundreds of
thousands of fish. If a small school was isolated relatively recently, it could in theory have a very low injury level
compared to a larger group that had been under attack for a long time. Presumably our observed schools had
variable initial sizes and attack durations that could introduce confounding variation into the levels of injury.
We also note that our measure of the proportion of the school that was injured combines both the severity
of injuries on individual fish, and the spread of injuries across different fish. Both the severity of injuries and
spread of injuries across individuals are likely to be important in this system. We sometimes observed very
injured sardines breaking off from the school, and these individuals were quickly consumed by the sailfish.
Hence the level of injuries on singular fish are likely to be important for improving capture success rates as
well as the general injury level of the school.

1.6 Why capture rates are likely to be important for group hunting sailfish

We identified that increased capture rates per unit time was a key benefit for individual hunters in groups.
But why might these rates be important to increase, and why might hunting time be restricted? On two
occasions we observed spotted dolphins, (Stenella attenuata), arriving at the sardine school that were under
attack by sailfish. On arrival at the sardine school, the dolphins used their tails to stun and disperse the
whole school. Sailfish that have potentially invested hours into injuring and exhausting their prey can thus
lose their fish to the kleptoparasitic dolphins in a few seconds. The number of daylight hours is also likely
to put an upper limit on available hunting time. Studies on tagged sailfish show that their time spent near
the surface increases during the day (compared to the night) [5], which suggests that hunting primarily takes
place at the surface during daytime periods. Hunting time is also likely to be constrained because once the
targeted school has been consumed, the sailfish have to find another larger school, separate off a smaller
school, and begin hunting again. Reducing the time between these events is presumably important in a time
limited system. Further, because individual prey items are not shared, prey caught per unit time may be a
particularly important measure of success during these hunts.
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2 Modelling Group Hunting
2.1 Mathematical model - capture probability pc
We assume that the capture probability pc is a monotonically increasing function of the global injury level I,
and is bounded by pmin, pmax: 0 ≤ pmin ≤ pc(I) ≤ pmax ≤ 1. There are infinitely many functions that
fulfil these requirements, and based on our empirical observations, we have no a priori arguments to choose
a particular one. However, the qualitative results will be independent on the particular choice of pc(I). Here
we choose

pc(I) = pmin + (pmax − pmin)(1− e−aII) (S1)

which increases linearly with I for small injury levels and approaches pmax asymptotically for I →∞ (see Fig.
2a, main text). This function naturally fulfils the monotonic increase in injury level with a necessary saturation
level. We have also checked whether a nonlinear dependence of na on I affects our qualitative findings (see
below, Sec 2.2). It is impossible to obtain a reliable value for the initial probability to catch a prey during a
full attack sequence (approach to departure), but it appears to be very small. For simplicity we set pmin = 0.
Therefore, if not otherwise stated, we use pmin = 0 and pmax = 1 as default parameters. We have checked
that this simplification does not affect the qualitative results. Note that we cannot measure the global injury
level I directly, and the fraction of prey school covered by injuries is only a visual proxy for I. Therefore it is
advantageous to express pc as a function of total number of attacks on the prey na.

The increment in the injury level ∆I per attack may in principle be an arbitrary function of the global
injury itself: ∆I = g(I). This in general implies a nonlinear dependence of I on the number of attacks
na: I(na) = f(na). However, if we assume that the increment in the level of injury per attack is constant
∆I = const., then I is simply proportional to na (I ∝ na). In this case we can set, without loss of generality,
∆I = 1, rescale aI to a new constant a, and replace I by na. The probability can then be directly expressed
as a function of the number of attacks na as:

pc(na) = pmin + (pmax − pmin)(1− e−ana) . (S2)

We have explored how the rate of increase of the capture probability, a, and pmin affects whether group
hunting is beneficial for individuals in groups (Fig. S6). The main observation is a decrease of the maximal
beneficial hunter group size with increasing pmin. The choice of a will strongly affect the overall time of the
hunt before all prey individuals are captured and the average capture efficiency during the hunt (no. prey
captured / no. attacks). Large values of a yield high average capture efficiencies already after a 1h of hunting
(pc > 0.3) and as a consequence very short hunts (< 1h) for reasonable prey school sizes. On the other hand
extremely low values lead to very low initial capture efficiencies (pc � 0.1) and eventually result in very long
hunting times > 4h (see Fig. S4). In combination with other parameters used, a choice of a = 5 · 10−4 yields
total hunting times which appear consistent with our observations: T ∼ 2h for predator groups > 5.

2.2 Nonlinear dependence of injuries on number of attacks

In the main text, we assumed that the injury increment per attack is independent of the number of previous
attacks, which implies a linear relationship between the number of attacks na and the prey injury level I.
Here, we demonstrate that the qualitative results of our model remain unchanged for a nonlinear dependence
of the injury level on na. We assume I(na) = (βna)γ with γ > 1. A direct consequence of such a nonlinear
dependence is a sigmoid shape of pcatch(na), where the function changes from convex to concave (change in
sign of the second derivative) at a finite number of attacks. The factor β controls the location of the midpoint
of the sigmoid (pcatch = 0.5), wheras the exponent γ determines the steepness of the sigmoid. In order to be
able to compare results obtained for the linear and nonlinear model variants, we choose the additional nonlinear
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parameters so that the cumulative capture probability
∑na

j=0 pcatch(j) for na = 2000 attacks is approximately
the same for both the nonlinear and linear model variant (see Fig. S7a).

In general, the nonlinear injury dependence results in a lower capture probability at low number of attacks
in comparison to the linear case. This situation reverses for large na as pcatch increases strongly in the vicinity
of the sigmoid midpoint before asymptotically approaching pcatch = 1 (Fig. S7a). As a consequence we expect
in general lower capture rates at short times for all group sizes, as well as larger potential benefits from free
riding at short hunting times. This is confirmed by the corresponding simulation results: First, we observe a
very low capture success for small hunting group sizes and short hunting times (low accumulated number of
attacks) as shown in Fig. S7b. In particular, this has a strong effect on the relative capture rate, normalised by
the rate of solitary hunters. We observe a strong increase in the effective capture rates at short hunting times
for group hunting, with respect to the number of prey a solitary hunter would have caught under the same
conditions (Fig. S7c). Second, in the nonlinear case (see main text and Supplementary section 2.4 & 2.5), we
observe an increased fitness benefit for free riders. This becomes particularly prominent at short hunting times
(Figs. S8a,b) and yields a larger region in the energetic parameter space where free riding appears beneficial
(Fig. S8c). However, our model predicts that also in the nonlinear case, free riding is unlikely to give fitness
benefits for reasonable energetic parameters (in particular c0 � 0.5h−1).

2.3 Stochastic model with random attack and preparation times

In the main text we assume fixed, constant attack and preparation times. This yields perfect turn-taking
of individuals with the order of attacking individuals set by the initial condition, which are randomised for
each hunt. However, a perfect turn-taking behaviour may be questioned from a biological point of view.
Furthermore, in general, deterministic temporal sequences may lead to pathological behaviour of mathematical
models for certain parameter combinations (“resonances”). In order to confirm that our results are robust and
independent on the turn-taking behaviour, we extended the simple model discussed in the main text, to random
attack and preparation durations: Instead of fixed duration, we model the attack and preparation times as
random variables ta and tr drawn from an exponential distribution with averages τa and τr, respectively. The
initial order of attacking hunters is again random as in the main text, but now the order of the hunters within
a single run does not persist but changes randomly due to the stochasticity of the attack and preparation
durations. Figure S9 shows the comparison between the simulation results for the (scaled) number of prey
captured for this modified model with our theoretical predictions (compare to main text, Fig. 2b and Fig. S5).
All simulation results were obtained by averaging over 100 independent simulations. In particular for longer
hunts (T large), only the average waiting times are relevant and the results of the fully stochastic model
strongly match our theoretical predictions. For short times T , the additional stochasticity of the hunting
process leads to smoothening of the maximum number of prey captured, but the position of the maximum
and the maximal group size beneficial for hunting remain essentially unchanged.

2.4 Energy Balance Equation

As the detailed metabolic costs of swimming and attacking in sailfish are not documented, we considered a
simple, yet generic model, where different energetic costs and benefits are summarised in a few key parameters.
We assume that each hunter has a base rate of energy expenditure C0, which includes all metabolic costs of
swimming required to stay with the prey school, but excludes any additional energetic investment required to
perform an actual attack sequence. For simplicity, we assume that attacks and captures are instantaneous
events, which happen at discrete points in time ta and tc. This is a reasonable approximation as in general the
average attack time τa will be much shorter than the total hunt time Th. Prey capture is only possible during
an attack, thus capture points tc are always a subset of the attack points ta. The additional costs of attack
are included into the model as a constant energy decrement due to an increased energy consumption rate
during an attack ∆Ea = Caτa. The energy benefit from each captured prey is given by a constant increment
∆Ec. Thus the total energy Ei for an individual hunter i during a hunt evolves according to the following
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balance equation:
dEi(t)
dt

= −C0 −∆Eaδ(t− ta) + ∆Ecδ(t− tc) (S3)

= −C0 − Caτaδ(t− ta) + ∆Ecδ(t− tc) (S4)

with δ(t − t′) being the Dirac delta function. Without loss of generality, we rescale all terms by the energy
increment due to prey capture ∆Ec, thus we measure the energy in units of the average energy content of a
single prey item. The rescaled equation reads:

dei(t)
dt

= −c0 − caτaδ(t− ta) + δ(t− tc) (S5)

with ei = Ei/∆Ec, cx = Cx/∆Ec.
By integrating over the entire time of the hunt Th, we obtain the overall energy payoff per individual as:

∆etotal,i = −c0Th − caτana,i + nc,i (S6)

with na,i =
∫ t0+Th

t0
δ(t− ta)dt and nc,i =

∫ t0+Th

t0
δ(t− tc)dt being the number of attacks and the number of

prey captured by the focal individual.
Finally we rewrite the energy payoffs by pulling out the base rate c0 to obtain:

∆etotal,i = −c0(Th + δcτana,i) + nc,i (S7)

Here the dimensionless number δc = ca/c0 represents the effective increase of the energy consumption during
an attack relative to the base consumption rate. A value of δc = 1, would correspond to doubling of the
energy consumption rate during an attack sequence. We discuss only biologically relevant parameter values
c0 and δc, where the average energy pay-offs are positive 〈∆etotal〉 > 0. All other model parameters are the
same as in the main text.

Because the routine metabolic rate of adult sailfish in unknown, we estimated a conservative value of c0
based on the routine metabolic rate (RMR) of Blue-fin tuna (Thunnus orientalis). The RMR of a 8.1 kg tuna
is ∼ 280 mg O2 kg

−1 h−1 at 25 oC [6]. The length:weight relationship of adult sailfish is given by: Log W =
−5.443L3.007 where W is the mass and L is the length of a sailfish [7]. A sailfish 240 cm in length, therefore,
has a mass of 51.8 kg. We can scale the RMR of tuna according to the mass of the sailfish by the following
scaling factor: RMRsailfish = RMRtuna(8.1/51.8)(1−0.8) [8, 9]. This gives a RMR for a sailfish as 193.2
mg O2 kg

−1 h−1. This equates to a sailfish requiring 240 g O2 per day. Given the oxycalorific coefficient is
13.59 [10], this equates to a sailfish requiring 3263 kJ of energy per day to maintain RMR. Domenici et al.
(2014) found that the average length of sardines found in a sailfish’s stomach was 19 cm [1]. This gives a
mass of 57 g per sardine, based on their length:weight relationship [11]. The energy content of similar species
(Sardinops melanostictus and Clupea harengus pallasi) is ∼ 6 - 9.6 kJ g−1 [12, 13]. An individual sardine,
therefore, may provide 342 - 547 kJ of energy to a sailfish. Combining this information together, we estimate
that a sailfish would require between 6 - 9.5 sardines per day to maintain RMR. This equates to ∼ 0.25 -
0.4 sardines per hour. Here we choose a value of c0 = 0.0001, meaning that a sailfish would need to eat 1
sardine every 10000 seconds (2.8 hours, or 0.35 sardines per hour) to balance energy intake and expenditure.
We note that with decreasing values of c0, the free riding strategy becomes increasingly unlikely.

Another key question is; what is the realistic range of values for δc? Our earlier observations indicate
that the speed of approach towards the prey school during an attack sequence is similar to the continuous
swimming of non-attacking individuals [1,2]. However, sailfish sometimes initiate rapid swimming bursts when
the school attempts to escape into the depths or when chasing single prey that have left the school. Thus
significant additional energetic costs of an attack sequence can only originate from these burst swims, the
slashing motion of the bill, turning, and prey handling, which are likely to only take-up a small fraction of the
entire attack sequence. Even in the case of extremely high costs of slashing/capture, the relative increase in
costs of an attack are most likely of the order of the base rate energy consumption (δc ∼ 1 − 10). It seems
unlikely, therefore, that a free riding strategy could yield benefits to individuals.

5



2.5 Free riding during interrupted hunts

We also take into account the possibility of the hunt being interrupted due to external influences, for example,
the arrival of other predators (e.g. dolphins). This is modelled by a constant probability pint of the hunt being
terminated. For pint = 0, no interruption takes place and the hunt continues until all prey are captured. For
finite pint > 0 the hunt is interrupted randomly, and times available for hunting are exponentially distributed
with the average time Th = 1/pint.

The qualitative findings do not depend on this model extension, and a significant energetic advantage of
free riding can be observed only for very large δc values (Fig. S10). Interestingly, in these extreme cases with
the finite probability of interruption of the hunt, the free rider advantage becomes more pronounced. This can
be understood from the high energetic costs and negligible payoffs for producers in cases where the hunt was
interrupted at an early stage.
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3 Supplementary Figures
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Figure S1. Empirical Data (a) Proxy of the sizes of the sardine schools we analysed. School 1 was composed
of approximately 25 fish, whereas school 8 consisted of approximately 100-150 fish. Schools are ordered from
smallest to largest (b) Distribution of the times between consecutive approaches by different sailfish towards
the sardine schools. (c) The maximum proportion of injury on the bodies of individual sardines.
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Figure S2. (a) Number of prey captured after time T = 1h versus predator group size for varying the attack
time τa and (b) varying the refractory time τr. nc is normalised by the number of prey captured by a solitary
predator. Solid lines show the contours corresponding to the value of nc = 1 (same as solitary hunter) and
represent therefore the border of the region where group hunting is beneficial. Default parameters as in the
main text (if not varied): pmin = 0, a = 5 · 10−4, τa = 2.6, τr = 20, S = 200.
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Figure S3. (a) Number of attacks per predator versus group size and (b) average number of prey captured
per attack versus group size at different times T . Solid lines represent analytical predictions, whereas
symbols represent results of model simulations. The number of attacks remains constant for N < 1 + τr/τa
- no temporal penalty of group hunting. For larger groups the number of attacks per individual decreases
with group size as individuals have an increased idle time, where they have to wait until others perform their
attacks. For all times, the average number of prey captured per attack increases initially with group size
until N = 1 + τr/τa and reaches a plateau for larger group sizes, as 〈nc〉 (Fig. S5) scales in the same way as
na(N,T ) (left) for large N . Parameters as in the main text: pmin = 0, a = 5 · 10−4, τa = 2.6s, τr = 20s,
S = 200.
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Figure S6. (a) Number of prey captured after a time T = 1h versus predator group size for varying the
growth rate of the capture probability a and (b) the min. capture probability pmin. nc is normalised by the
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attack for a solitary hunter 〈pc〉s calculated from the number of attacks of a solitary hunter required to catch
100 fish. Solid lines show the contours corresponding to the value of nc = 1 (same as solitary hunter) and
therefore represent the border of the region where group hunting is beneficial. Default parameters as in the
main text (if not varied): pmin = 0, a = 5 · 10−4, τa = 2.6, τr = 20.
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Figure S7. Nonlinear dependence of injury on number of attacks: (a) Comparison of the linear and
nonlinear capture probability, where the factor β of the nonlinear model were chosen to match the
cumulative pcatch for na = 2000 (γ = 3). (b) Absolute number of prey captured per hunter versus predator
group size at different hunting times. (c) Relative capture rate versus groups size for different hunting times.
All other simulation parameters as in the main text.
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Figure S8. Nonlinear dependence of injury on number of attacks:: Relative fitness difference ∆f with
c0 = 0.36h−1 and different values of the relative energetic costs of attacks (a) δc = 100, and (b) δc = 500.
(c) ∆f versus c0 and δc for fixed Tfr = 0.5h and N = 10 (blue region indicates ∆f < 0; i.e. where free
riding is not beneficial). Parameters: pint = 0 (no interrupt), γ = 3 and β chosen accordingly to match the
cumulative pcatch for na = 2000 of the linear model; all other simulation parameters as in the main text.
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Figure S9. Group hunt model with stochastic attack and preparation times: (a) Number of prey captured
per individual versus predator group size at different times available for hunting. Solid lines represent the
prediction of Eq. 1 (main text) taking into account the upper limit given S0/N shown by the dashed line.
Symbols represent the results of model simulation. Each point represents an average over 100 independent
runs. (b) Number of prey captured per individual as a function of N scaled by the number of prey captured
for a solitary predator (horizontal dotted line). The largest group sizes, which offer an advantage to solitary
hunting are typically observed for short times T ≤ 1h and decreases for large times (or small prey schools).
For details on the modified model see section 1.3 above. Model parameters as in the main text: τa = 2.6s,
τr = 20s, a = 5 · 10−4, pmin = 0, pmax = 1, S0 = 200.
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Figure S10. Relative fitness difference ∆f for the extended model with the possibility of interruption of the
hunt with pint = 0.0001, with c0 = 0.36h−1 and different values of the relative energetic costs of attacks
δc = 100 (a), δc = 250 (b) and δc = 500 (c). All other simulation parameters as in the main text.
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4 Supplementary Movies
Movie S1: One sailfish approaches and attacks a school of approximately 25 sardines. When the sailfish’s bill
makes contact with the sardines, the sardines’ scales are removed. Note the injury marks on the sardines’
bodies. The video is played at 1/8 of real time.

Movie S2: Sequence demonstrating that sailfish alternate attacks on their prey. Notice not all approaches
results in attacks. Multiple prey are injured in the attack at 12 seconds, while only one sardine is caught. Not
all attacks result in prey capture, for example, see attack at 27 seconds. Not all attacks result in prey being
injured (attempted slash at 33 seconds). Also notice that sailfish tend to abandon attacks if they get out of
position, or if another sailfish approaches the school at the same time. Video is played in real time.

Movie S3: An injured sardine break aways from the school and is quickly captured by a sailfish. The video is
played at 1/8 of real time.

5 Supplementary Tables

School #Images: School Size #Images: Proportion of injuries
1 12 1
2 18 14
3 11 4
4 10 1
5 9 1
6 13 1
7 10 8
8 40 9

Table S1. Shoal identity and the number of images used to calculate school size or the number of images
uses to calculate the proportion of injuries in the school.
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Symbol Description
Base Model
N number of predators
S0 initial number of prey
τa average time required to perform an attack sequence
τr average time required to prepare for an attack sequence
pmin capture probability at zero injury
pmax maximal possible capture probability
a growth rate of injury/capture probability with each attack

Model Extensions
c0 metabolic base rate measured in number or prey items per unit time
δ increase of the energy consumption during an attack relative to the base rate
pint constant probability per unit time of the hunt being interrupted
γ nonlinearity exponent for the dependence of injury levels on the number of attacks
β nonlinearity factor

Table S2. Model parameters with description including parameters for the base model and the different
extensions of the model discussed in the main text and supplementary information.
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