Down-regulation of *coasy*, the gene associated with NBIA-VI, reduces Bmp signaling, perturbs dorso-ventral patterning and alters neuronal development in zebrafish.

Deepak Khatri^{1°}, Daniela Zizioli^{1°}, Natascia Tiso², Nicola Facchinello², Sara Vezzoli¹, Alessandra Gianoncelli¹, Maurizio Memo¹, Eugenio Monti¹, Giuseppe Borsani¹, Dario Finazzi^{1,3*}.

Α					
Hsa-COASY	MRTPRLRAQPRGAVYQAPSPPPAPVGLGSMAVFRSGLLVLTTPLASLAPRLASILTSAAR				
Dre-Coasy	MSMFSTGILVLTSPLHVLPLRIAPVLTSAAQ				
	**** **********************************				
Hsa-COASY	LVNHTLYVHLQPGMSLEGPAQPQSSPVQATFEVLDFITHLYA-GADVHRHLDVRILLTNI				
Dre-Coasy	VVERTLYVHLHPGLNLGTGGQVRPVYIPPVVDLCTLISRLYSNAADICGHLDVRVLLTNI				
	:*:.****:**:.* .* ::: :*:.**: .**: ********				
Hsa-COASY	RTKSTFLPPLPTSVQNLAHPPEVVLTDFQTLDGSQYNPVKQQLVRYATSCYSCCPR				
Dre-Coasy	RGQSAASSAANGPFPAP-QTLSHSPEVVLTDFPIPDSGQSSLITQCLRKYAGHCYVCTPG				
	* :*: . *:*:. *.*:*.****** ** . :.* * .** ** *				
Hsa-COASY	LASVLLYSDYGIGEVPVEPLDVPLPSTIRPASPVAGSPKQPVRGYYRGAVGGTFDRLHNA				
Dre-Coasy	LSSVLLHPQLKEVSGDEDRGAQMKPLETFSDVVVGGTFDRLHGA				
	*:***:.: : ** *: :*: : .***********				
Hsa-COASY	HKVLLSVACILAQEQLVVGVADKDLLKSKLLPELLQPYTERVEHLSEFLVDIKPSLTFDV				
Dre-Coasy	HKTLLNISCLMANRRFIIGVCDQELLKNKVLKELIEPYDQRVEKLHDFLNDVKPSLKYDI				
	..::*::*: .:::**.*:****************				
Hsa-COASY	IPLLDPYGPAGSDPSLEFLVVSEETYRGGMAINRFRLENDLEELALYOIOLLKDLRHTEN				
Dre-Coasy	VPLSDPFGPSITEPELQCIVVSEETRKGGEAVNKRRVQNGLAELVLYEIPLLKDAHRADI				
	*** ***** ****** ******* *** **** ***** ****				
Hsa-COASY	EEDKVSSSSFRORMLGNLLRPPYERPELPTCLYVIGLTGISGSGKSSIAORLKGLGAFVI				
Dre-Coasy	EEEKISSSSLRTRLLGTLLKPPSPELDLPLCPYVIGLTGGSGSGKSSIARRLEDLGAERI				
	:*:*:* *:**.**.** :** * ****** ********				
Hsa-COASY	DSDHLGHRAYAPGGPAYOPVVEAFGTDILHKDGIINRKVLGSRVFGNKKOLKILTDIMWP				
Dre-Coasy	DCDLLGHEAYLPETSAYHRVIQEFGTDILNEDKSINRRVLGGKVFGNQERLKALTDIVWP				
	. *** ** * .**: *:: *****::* ***.**:.****::**				
Hsa-COASY	IIAKLAREEMDRAVAEGKRVCVIDAAVLLEAGWONLVHEVWTAVIPETEAVRRIVERDGL				
Dre-Coasy	EIARLVKKRIDQAKQQGKRVCVVDAAVLLEAGWTHLVHEVWVATIPEEEAVKRIVQRDGV				
	.*: :*.* :***:****** :***********				
Hsa-COASY	SEAAAQSRLQSQMSGQQLVEQSHVVLSTLWEPHITQRQVEKAWALLQKRIPKTHQALD				
Dre-Coasy	KEEDAVRRLKSQWPNAKLIDYANVVLCTLWEPEVTQKQVLKAWSLLQQRIQKRQETRSSL				
	.* * **:** :*:: ::***.**** :**.** ***:***:				
R					
-					
	Hsa17				
	PANIJIME CIQUE				
grnb RAMP2(1of2)	Dro24				
coasy FMNL1(2of2) dcakd	DIe24				
naglu FAM171A2(2of2)					

RT-PCR analysis of *coasy* mRNA

coasy-MO NI ST-MO coasy-MO+CoA

Table S1

	48 hpf			60 hpf		
	H-T	Y-T	E.D.	H-T	Y-T	E.D.
WT	2.90 ± 0.17	1.82 ± 0.15	$8,2 \pm 0.10$	3.80 ± 0.17	1.88 ± 0.14	1.0 ± 0.1
coasy-MO	1.76 ± 0.19	0.82 ± 0.11	0.39 ± 0.10	2.25 ± 0.18	1.18 ± 0.2	$5,5 \pm 0.08$

Table S1 Morphometric measures.

Head-Trunk (H-T), Yolk-Trunk (Y-T) and Eye Diameter (E:D) size were measured in 10wild-type embryos and 10 *coasy* morphants (1.2 pmol/embryo) at 48 and 60 hpf. Mean plus standard deviation is shown. All measures are in mm and P<0,0001 for all comparisons.

bhla S2							
able 52	Oligo		Sequence				
	coasy-MO	coasy morpholino	ACCACCTGAACATAGACATACAGCA				
	ST-MO	standard morpholino	CCTCTTACCTCAGTTACAATTTATA				
	QP1	coasy real time RT-PCR	CATTGGCTCTTCAGTCTCCTC				
	QP2	coasy real time RT-PCR	AGGTTTGGGTCGCAACTATC				
	A1	actin real time RT-PCR	CGAGCAGGAGATGGGAACC				
	A2	actin real time RT-PCR	CAACGGAAACGCTCATTGC				
	P3	cloning of <i>coasy</i> probe	TCCGGAATTCACCTCCACTGTCTGACCCCTT				
	P4	cloning of <i>coasy</i> probe	TCCGCTCGAGTCAGAGTGAAGATCTTGTCTCT				
	P5	coasy RT-PCR (exon 1-3)	GTCCTCACGTCCCCATTACA				
	P6	coasy RT-PCR (exon 1-3)	GTTTTGCACACGCCTCTTGT				
	P7	bmpR1AA RT-PCR	TGTCTTCTTCTCACACTCTGCTC				
	P8	bmpR1AA RT-PCR	TGTTCTTGGCATCATCGGGG				
	P9	bmpR1AB RT-PCR	GTGTTAAAAGCATGCGGCCA				
	P10	bmpR1AB RT-PCR	TGCCCCCATAGGTCTGGTTA				
	P11	bmpR1BA RT-PCR	GAGACGCTGAACAGGAACCA				
	P12	bmpR1BA RT-PCR	TTGGGGAAGGAGGGTCGTAT				
	P13	bmpR1BB RT-PCR	GCGCTACAGTATGGGTCTGG				
	P14	bmpR1BB RT-PCR	CTCGTGTCTCATCAGGACGG				
	P15	bmpR2A RT-PCR	CATCTTCTTGCCTGGTTGGACT				
	P16	bmpR2A RT-PCR	AAAGACAAGTCCTTCCCCACG				
	P17	bmpR2B RT-PCR	GTACTACCCTCATGGCTCGC				
	P18	bmpR2B RT-PCR	GTGCGAAATGGCAGGTTTGT				
	P19	<i>bmp-2A</i> RT-PCR	CAGGTTAGCAGACCCAGAGC				
	P20	<i>bmp-2A</i> RT-PCR	AACTCCTCGTCTGGGATGGA				
	P21	bmp-2B RT-PCR	ATGTAGAAAGGGCAGCCAGC				
	P22	bmp-2B RT-PCR	CTCCGAGAACTTGGTCCCTG				
	P23	bmp-4 RT-PCR	CAGCACGTCAGCTTCGACTA				
	P24	bmp-4 RT-PCR	TGGCGCCTTTAACACCTCAT				

Table S2. Sequences of oligo-morpholinos and primers described in the manuscript.

SUPPLEMENTARY FIGURE LEGENDS.

Figure S1. In silico analysis of coasy zebrafish gene

A) Multiple sequence alignment of human (Hsa) and zebrafish (Dre) COASY polypeptides obtained using the MUSCLE software. In the ClustalW output format asterisks indicate positions which have a conserved residue, colons indicate conservation between groups of strongly similar properties, while periods indicates conservation between groups of weakly similar properties. Residues are colored according to their physicochemical properties.

B) Composite cluster representation of conserved synteny around the *COASY* locus between *Homo sapiens* chromosome 17 (Hsa17) and *Danio rerio* chromosome 24, generated using the Synteny Database (100-gene sliding window). Genes are drawn as squares with their order, but not their physical location preserved. Colored squares are members of the cluster while grey squares represent genes in the interval but that do not have orthologs (or paralogs) in the other segments. Lines connecting squares between the two clusters represent orthologous or paralogous gene pairs. Eight gene pairs can be identified in this orthologous pairwise analysis performed based on *Danio rerio* Zv9 and *Homo sapiens* GRCH 37 genome assemblies.

Figure S2. Expression pattern of coasy transcript during zebrafish development

Spatiotemporal analysis of *coasy* expression by WISH using a *coasy*-specific probe. WISH was performed from 0.2 hpf (1-2 cells) to 36 hpf with a *coasy*-specific antisense probe. (A) Dorsal view, four cells stage; (B) lateral view, sphere stage; (C) dorsal view, germ ring. (D-G) 20, 24, 36 hpf lateral views; (G) 36 hpf lateral view, magnification of somites. For each stage, at least 30 embryos were analyzed in two independent experiments. mhb, midbrain-hindbrain boundary; h, hindbrain; hbv, hindbrain ventricle; tg, tegmentum; s, somites.

A digoxigenin-labelled, *coasy* sense probe was synthezised as described in Material and Methods and applied for in situ hybridization with embryos at different developmental stages (H-J). No specific labelling was evident at any stage. Rapresentative images from one experiment performed with at least 30 embryos and repeated twice.

Figure S3. Embryonal expression of *coasy* analyzed by Real Time RT-PCR.

Total RNA was extracted from different developmental stages (A) and adult tissues/organs (B) and analyzed for *coasy* mRNA levels by real time RT-PCR. Results are expressed as relative quantification (RQ) and normalized to *actin beta 1* as endogenous reference gene. Data in graphs are from a representative experiment repeated twice with similar results.

Figure S4. coasy-MO dose curve.

To determine the efficiency of *coasy*-MO, we injected the morpholino at doses ranging from 0.5 to 2.5 pmol/embryo at one-two cell stage and compared them to embryos injected with the same amount of ST-MO. A) The graph shows the survival rate of embryos evaluated at 48 hpf. B) Representative agarose gel electrophoresis of RT-PCR products for *coasy* at 48 hpf from ST-MO (STD), *coasy*-MO-injected (MO), and not-injected embryos (NI) at different doses. Reduction of the upper band of 852 bp and appearance of the lower band of 281 bp is indicative of the altered splicing induced by *coasy*-MO.

Figure S5. Quantification of CoA concentration in *coasy* morphants by LC-MS/MS.

A) Representative calibration curve with 0.1, 1.0, 10, and 100 pmol/µl standard samples. B) The chromatogram represents the peak of the standard CoA (retention time 3.98 minutes) at a concentration of 1.0 pmol/µl.

The quantifier ion transition (768 \rightarrow 261 in blue) and the qualifier ion transition (768 \rightarrow 428 in violet) have been selected for the identification of CoA with high specificity.

Figure S6. coasy deficency does not affect heart development.

Stereomicroscope lateral views of WISH analysis with *vmhc* probe on ST-(A) and *coasy*-MO (B) injected-embryos (1.2 pmol/embryo) at 48 hpf. *vmhc* marks the hearth ventricle. The experiment was performed with 25 embryos and repeated twice.

Figure S7. Bmp activity at 30 hpf in the transgenic line Tg(Bmp:EGFP) and rescue by CoA injection

Representative images of Tg(Bmp:EGFP) embryos not-injected (A, B) and injected with 1.2 pmol/embryo of ST-MO (C, D) or *coasy*-MO (E, F) at 30 hpf. A net reduction of the fluorescence intensity is evident in *coasy*-morphants. Results are from one representative experiment with at least 38 embryos out of two independent replicates. CoA (0.5 pmol/embryo) was injected in the craniofacial area of Tg(Bmp:EGFP) morphants at 24 hpf (I) and Bmp activity compared to that of untreated embryos (G, H) at 60 hpf. One representative experiment out of two replicates.

Figure S8. Full size images of western blots for pSmad and Smad.

Full size images of western blottings shown in figure 8 D.

Figure S9. Real-Time RT-PCR for *bmp2a*, *bmp2b* and *bmp4*.

ST-MO- and *coasy*-MO-injected embryos were analyzed by qRT-PCR for *bmp2a*, *bmp2b* and *bmp4* expression levels. Data are shown as percentage of the value observed in ST-MO-injected embryos and represent mean and SD of three independent experiments.

Figure S10. Acridine Orange staining.

A) Representative images of embryos not-injected (A, B) and injected with 1.2 pmol/embryo of ST-MO (C, D) or *coasy*-MO (E, F) at 48 hpf obtained by acridine orange staining to assess the presence of dead cells. Morphants show a significant increase of the fluorescence staining, particularly in brain and tail. B) The quantification of the fluorescence intensity performed by a plate reader shows a significant (P<0.001), 2.5-fold increase in *coasy*-MO-injected embryos. Results are from a representative experiment with at least 50 embryos, repeated at least three times.