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Supplementary Table S1 - Results from 1% initial

resistant population

Table S1: Comparison of traditional dosage vectors (runs A, B, C and D), dosage vectors
produced by the GA with deterministic modelling (runs E, F, G and K) and dosage vectors
produced by the GA with stochastic modelling (runs H, I and J) for an infection with a
resistant population of 1% of the total bacterial population.

Run Dosage Vector Total Antibiotic Success Rate (%) [95% CI]

A (21, 21, 21, 21, 21, 21, 21, 21, 21, 21) 210 µg/ml 99.5 [99.3, 99.7]
B (21, 21, 21, 21, 21, 21, 21, 21, 21, 0 ) 189 µg/ml 98.4 [98.0, 98.7]
C (21, 21, 21, 21, 21, 21, 21, 21, 0, 0 ) 168 µg/ml 96.7 [96.2, 97.2]
D (21, 21, 21, 21, 21, 21, 21, 0, 0, 0 ) 168 µg/ml 85.4 [84.4, 86.4]
E (60, 22, 4, 0, 0, 0, 0, 0, 0, 0 ) 86 µg/ml 86.9 [85.9, 87.8]
F (50, 23, 13, 0, 0, 0, 0, 0, 0, 0 ) 86 µg/ml 87.2 [86.2, 88.1]
G (40, 30, 20, 10, 0, 0, 0, 0, 0, 0 ) 100 µg/ml 91.8 [91.0, 92.5]
H (60, 21, 10, 10, 2, 0, 0, 0, 0, 0 ) 103 µg/ml 96.2 [95.6, 96.7]
I (50, 27, 19, 4, 0, 0, 0, 0, 0, 0 ) 100 µg/ml 96.4 [95.8, 96.9]
J (40, 32, 18, 19, 0, 0, 0, 0, 0, 0 ) 109 µg/ml 96.2 [95.6, 96.7]
K (60, 22, 22, 21, 15, 14, 10, 4, 0, 0 ) 168 µg/ml 99.9 [99.8, 100.0]
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Supplementary Equations - Analytical Analysis of

Antibiotic Free System

Using stability analysis the steady states of the system, in the absence of antibiotic,
can be determined. At equilibrium, dS/dt = dR/dt = 0, there are four equilibrium
points:

1) Extinction: (S,R) = (0, 0)

2) Susceptible Only: (S,R) = (K(1 − θ
r
), 0)

3) Resistant Only: (S,R) = (0, K(1 − θ
r(1−a))

4) Co-existence: (S,R) = (S∗, R∗) where

S∗ =
arθ +Kβ (ar − r + θ)

β (ar +Kβ)
(1)

R∗ =
Kβ (r − θ) − arθ

β (ar +Kβ)
(2)

Stability of the equilibrium points are found by calculating the Jacobian (Eq. 3) at
each of the equilibria and calculating the corresponding eigenvalues.

J =

(
r(1 − R+2S

K
) − βR− θ) − rS

K
− βS

− rR(1−a)
K

+ βR r(1 − S+2R
K

)(1 − a) + βS − θ

)
(3)

1) At the extinction equilibrium, (0, 0), the Jacobian is reduced to Eq. 4.

J =

(
r − θ 0

0 r(1 − a) − θ

)
(4)

The Jacobian matrix (Eq. 4) is a diagonal matrix and therefore the eigenvalues can
be found on the diagonal. The extinction equilibrium is stable when Eq. 5 and 6 are
satisfied.

r < θ (5)

r(1 − a) < θ (6)

When the natural death rate is higher than the replication rate, for both the suscep-
tible and resistant strains, the system will tend to extinction.

2) When evaluated at the resistant free equilibrium (K(1 − θ
r
), 0), the Jacobian is

reduced to Eq. 7.

J =

(
θ − r θ − βK − r − βKθ

r

0 βK
(
1 − θ

r

)
− θa

)
(7)
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Eq. 7 is upper triangular and therefore the eigenvalues can be found on the diagonal.
For the resistant free equilibrium to be stable it must satisfy Eq. 8 and 9.

θ < r (8)

βK

(
1 − θ

r

)
< θa (9)

The replication rate must be greater than the death rate otherwise the susceptible
population would die out, therefore Eq. 8 must hold true. A lower transmission rate
or a higher cost benefits the susceptible population.

3) Evaluating the stability at the susceptible free equilibrium (0, K(1 − θ
r(1−a)), the

Jacobian is reduced to Eq. 10.

J =

 θ
(1−a) − βK

(
1 − θ

r(1−a)

)
− θ 0

θ − r(1 − a) + βK
(

1 − θ
r(1−a)

)
θ − r(1 − a)

 (10)

Eq. 10 is lower triangular and the eigenvalues can be found on the diagonal. Therefore
for the susceptible free equilibrium to be stable it must satisfy Eq. 11 and 12

θ

(1 − a)
− βK

(
1 − θ

r(1 − a)

)
− θ < 0 (11)

θ < r(1 − a) (12)

The net replication rate must be greater than the death rate otherwise the resistant
population would die out, therefore Eq. 11 must hold true. A higher transmission
rate or a lower cost benefits the resistant population making it possible for the resis-
tance bacteria to invade and out-compete an entirely susceptible population.

4) Analysis of the stability of the co-existence equilibrium is not possible due to
the eigenvalues being analytically intractable. If it is hypothesised that stable co-
existence is possible then from the previous equilibrium points it can be concluded
that co-existence will occur, assuming a positive net growth rate for both bacteria, if:

βK

(
1 − θ

r

)
− θa > 0

and

θ

(1 − a)
− βK

(
1 − θ

r(1 − a)

)
− θ > 0

Using the analytical analysis parameter values were chosen such that they satisfy Eq.
8 and 9. Therefore the resistant strain would not out-compete the susceptible strain
in the absence of antibiotics.
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Supplementary Figure S1 - Results from varied pa-

rameter values on success rate of regimens T3, S2

and S4
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Figure S1: Success rates for regimens S2 (pink), T3 (red) and S4 (blue) at varying values
for parameters (a) k, (b) micS and (c) β. Black dashed line shows original parameter
values. (a) Increasing k results in an increase in success rate for all 3 regimens. The
difference in success rate between the 3 regimens remains consistent. (b) Altering the MIC
of the susceptible bacteria has little effect on the success rate of the 3 treatment regimens.
(c) Increasing the transmission rate of the resistant bacteria begins to decrease the success
rate. The difference in success rate between the 3 regimens remains consistent.
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Supplementary Table S2 - Results from varied weights

within the objective function

Table S2: Comparison of dosage vectors produced by the GA with deterministic modelling,
for varying values of w1 and w2.

w1 w2 Dosage Vector Total Antibiotic Success Rate (%) [95% CI]

0.5 0.5 (60, 22, 23, 13, 0, 0, 0, 0, 0, 0) 118 µg/ml 91.9 [91.1, 92.6]
(60, 22, 22, 14, 11, 0, 0, 0, 0, 0) 129 µg/ml 95.0 [94.4, 95.6]

0.99 0.01 (60, 22, 21, 15, 0, 0, 0, 0, 0, 0) 118 µg/ml 92.3 [91.5, 93.0]
(60, 22, 18, 17, 11, 0, 0, 0, 0, 0) 128 µg/ml 93.9 [93.2, 94.6]
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