SUPPLEMENTARY INFORMATION

Distinct role of IL-1 β in instigating disease in *Sharpin*^{cdpm} *mice*

Prajwal Gurung¹, Bhesh Raj Sharma¹ and Thirumala-Devi Kanneganti^{1,*}

¹Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.

* Correspondence should be addressed to:

Thirumala-Devi Kanneganti

Department of Immunology, St Jude Children's Research Hospital

MS #351, 570, St. Jude Place, Suite E7004

Memphis TN 38105-2794

Tel: (901) 595-3634; Fax. (901) 595-5766.

E-mail: <u>Thirumala-Devi.Kanneganti@StJude.org</u>.

Running Title: IL-1 β provokes skin inflammation.

Keywords: SHARPIN, IL-1 β , IL-1 α , IL-1R, skin inflammation

Extended Data Figure 1. Frequencies of antigen-experienced activated T cells are significantly increased in the spleens of diseased *Sharpin*^{cpdm} mice. Flow cytometry analysis of splenocytes from control and diseased *Sharpin*^{cpdm} mice on day 70 to examine the status of activated T cells. **a**, Representative flow plots showing the frequency of CD8⁺CD11a^{hi} T cells in the spleen. **b**, Cumulative bar graphs representing frequencies of CD8⁺CD11a^{hi} T cells in the spleen. **c**, Representative flow plots showing the frequency of CD4⁺CD44⁺CD11a^{hi} T cells in the spleen. **d**, Cumulative bar graphs representing the frequencies of CD8⁺CD11a^{hi} T cells in the spleen. **d**, Cumulative bar graphs representing frequencies of CD8⁺CD11a^{hi} T cells in the spleen. **d**, Cumulative bar graphs represented as means \pm s.e.m. Control, n=4; *Sharpin*^{cpdm}, n=4 for bar graphs. Statistical significance between groups was determined by Mann-Whitney test and *P* values less than 0.05 were considered statistically significant. **P*<0.05.

Extended Data Figure 2. Cellular characterization of control and diseased *Sharpin*^{cpdm} **in PBL.** Flow cytometry analysis of PBL from control and diseased *Sharpin*^{cpdm} mice on day 70. Representative flow plots of CD11b⁺Gr1⁺ neutrophils (**a**), CD19⁺MHCII⁺ B cells (**c**), CD4⁺ and CD8⁺ T cells (**e**), CD8⁺CD11a^{hi} T cells (**h**), and CD4⁺CD44⁺CD11a^{hi} T cells (**j**) in the PBL. Cumulative bar graphs representing frequencies of CD11b⁺Gr1⁺ neutrophils (**b**), CD19⁺MHCII⁺ B cells (**d**), CD4⁺ T cells (**f**), CD8⁺ T cells (**g**), CD8⁺CD11a^{hi} T cells (**i**), and CD4⁺CD44⁺CD11a^{hi} T cells (**k**) in the PBL. Control, n=7; *Sharpin*^{cpdm}, n=5 for **b**, **d**, **f**, **g**, **i** and **k**. Bar graphs are presented as means \pm s.e.m.. Statistical significance was determined by Mann-Whitney test and *P* values less than 0.05 are considered statistically significant. **P*<0.05, ***P*<0.01. **Extended Data Figure 3. PBL analysis demonstrates cellular dysregulation in prediseased** *Sharpin*^{cpdm} **mice.** Flow cytometry analysis of PBL from control and prediseased *Sharpin*^{cpdm} mice on day 25 to examine immune cell dysregulation. Representative flow plots of CD11b⁺Gr1⁺ neutrophils (**a**), CD19⁺MHCII⁺ B cells (**c**), CD4⁺ and CD8⁺ T cells (**e**), CD8⁺CD11a^{hi} T cells (**h**), and CD4⁺CD44⁺CD11a^{hi} T cells (**j**) in the PBL. Cumulative bar graphs representing frequencies of CD11b⁺Gr1⁺ neutrophils (**b**), CD19⁺MHCII⁺ B cells (**d**), CD4⁺ T cells (**f**), CD8⁺ T cells (**g**), CD8⁺CD11a^{hi} T cells (**i**), and CD4⁺CD44⁺CD11a^{hi} T cells (**k**) in the PBL. Control, n=4; *Sharpin*^{cpdm}, n=4 for **b**, **d**, **f**, **g**, **i** and **k**. Statistical significance between groups was determined by Mann-Whitney test and *P* values less than 0.05 are considered statistically significant. **P*<0.05.

Extended Data Figure 4. Frequencies of antigen-experienced activated T cells are significantly increased in the spleen of pre-diseased *Sharpin*^{cpdm} mice. Flow cytometry analysis of splenocytes from control and pre-disaesed *Sharpin*^{cpdm} mice on day 25 to examine the status of activated T cells. **a**, Representative flow plots showing the frequency of CD8⁺CD11a^{hi} T cells in the spleen. **b**, Cumulative bar graphs representing frequencies of CD8⁺CD11a^{hi} T cells in the spleen. **c**, Representative flow plots showing the frequency of CD4⁺CD44⁺CD11a^{hi} T cells in the spleen. **d**, Cumulative bar graphs representing frequencies of CD8⁺CD11a^{hi} T cells in the spleen. **d**, Cumulative bar graphs representing frequencies of CD8⁺CD11a^{hi} T cells in the spleen. **d**, Spleen. **d**, Cumulative bar graphs. Statistical significance between groups was determined by Mann-Whitney test and *P* values less than 0.05 are considered statistically significant. **P*<0.05.

Extended Data Figure 5. *Sharpin*^{cpdm} hematopoietic cells are not sufficient to instigate dermatitis in WT recipients. *Sharpin*^{cpdm} >> WT and WT >> WT chimeras were generated by transferring bone marrow cells from *Sharpin*^{cpdm} and WT mice into

lethally irradiated WT recipients. *Sharpin*^{cpdm} >> WT and WT >> WT chimeras were monitored for signs of dermatitis and disease post chimerism. **a**, Disease free curves for *Sharpin*^{cpdm} >> WT and WT >> WT chimeras. **b-I**, PBL from *Sharpin*^{cpdm} >> WT and WT >> WT chimeras on day 100 to examine immune cell dysregulation. Representative flow plots of CD4⁺ and CD8⁺ T cells (**b**), CD4⁺CD44⁺CD11a^{hi} T cells (**e**), CD8⁺CD11a^{hi} T cells (**g**), CD11b⁺Gr1⁺ neutrophils (**i**), and CD19⁺MHCII⁺ B cells (**k**) in the PBL. Cumulative bar graphs representing frequencies of CD4⁺ T cells (**c**), CD8⁺ T cells (**d**), CD4⁺CD44⁺CD11a^{hi} T cells (**f**), CD8⁺CD11a^{hi} T cells (**h**) CD11b⁺Gr1⁺ neutrophils (**j**), and CD19⁺MHCII⁺ B cells (**I**) in the PBL. WT >> WT, n=4; *Sharpin*^{cpdm} >> WT, n=5 for **c**, **d**, **f**, **h**, **j** and **I**. Statistical significance between groups was determined by Mann-Whitney test and *P* values less than 0.05 are considered statistically significant. **P*<0.05.

Extended Data Figure 6. Histological analysis of skin sections from *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1a*^{-/-} mice. a, Representative hematoxylin and eosin (H&E) images of control, *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1a*^{-/-} mice. b, Epidermal thickness measured from the skin sections of control, *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1a*^{-/-} mice. The epidermal thickness was measured using FIJI Image J open source software. n=4 for control, n=4 for *Sharpin*^{cpdm} and n=4 for *Sharpin*^{cpdm} × *II1a*^{-/-} groups. Statistical significance was determined by Mann-Whitney testing, and *P* values less than 0.05 are considered statistically significant. **P*<0.05.

Extended Data Figure 7. IL-1 α deficiency does not rescue activated T cell phenotype in *Sharpin*^{cpdm} mice. Flow cytometry analysis of splenocytes from control, *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1a*^{-/-} mice on day 45 to examine the status of activated T cells. **a**, Representative flow plots showing the frequency of CD4⁺CD44⁺CD11a^{hi} T cells in the spleen. **b**, Cumulative bar graphs representing frequencies of CD4⁺CD44⁺CD11a^{hi} T cells in the spleen. **c**, Representative flow plots showing the frequency of $CD8^+CD11a^{hi}$ T cells in the spleen. **d**, Cumulative bar graphs representing frequencies of $CD8^+CD11a^{hi}$ T cells in the spleen. Control, n=6; *Sharpin*^{cpdm}, n=6; *Sharpin*^{cpdm} × *II1a*^{-/-}, n=4 for bar graphs. Statistical significance was determined by one-way ANOVA, Dunnett's multiple comparisons test and *P* values less than 0.05 are considered statistically significant. ***P*<0.01.

Extended Data Figure 8. PBL analysis of *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1a*^{-/-} mice. Flow cytometry analysis of PBL from control, *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1a*^{-/-} mice on day 45 to examine immune cell dysregulation. Representative flow plots of CD11b⁺Gr1⁺ neutrophils (**a**), CD4⁺ and CD8⁺ T cells (**c**), CD4⁺CD11a^{hi} T cells (**f**), and CD8⁺CD11a^{hi} T cells (**h**) in the PBL. Cumulative bar graphs representing frequencies of CD11b⁺Gr1⁺ neutrophils (**b**), CD4⁺ T cells (**d**), CD8⁺ T cells (**e**), CD8⁺CD11a^{hi} T cells (**g**), and CD4⁺CD44⁺CD11a^{hi} T cells (**i**) in the PBL. Control, n=11; *Sharpin*^{cpdm}, n=4; *Sharpin*^{cpdm} × *II1a*^{-/-}, n=4 for **b**, **d**, **e**, **g**, and **i**. Bar graphs are presented as means ± s.e.m. Statistical significance between groups was determined by one-way ANOVA, Dunnett's multiple comparisons test and *P* values less than 0.05 are considered statistically significant. *****P*<0.0001.

Extended Data Figure 9. Histological analysis of skin sections from Sharpin^{cpdm}

and *Sharpin^{cpdm}* × *II1b^{-/-}* mice. a, Representative hematoxylin and eosin (H&E) images of control, *Sharpin^{cpdm}* and *Sharpin^{cpdm}* × *II1b^{-/-}* mice. b, Epidermal thickness of skin sections from control, *Sharpin^{cpdm}* and *Sharpin^{cpdm}* × *II1b^{-/-}* mice. The epidermis of the H&E sections were measured using FIJI Image J open source software. n=4 for control, n=4 for *Sharpin^{cpdm}* and n=4 for *Sharpin^{cpdm}* × *II1b^{-/-}* groups. Data represented as means \pm s.e.m. Statistical significance was determined by Mann-Whitney testing, and *P* values less than 0.05 are considered statistically significant. **P*<0.05, ns=not significant.

Extended Data Figure 10. PBL analysis of *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1b*^{-/-} mice. Flow cytometry analysis of PBL from control, *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1b*^{-/-} mice to examine immune cell dysregulation. Representative flow plots of CD11b⁺Gr1⁺ neutrophils (**a**), CD4⁺ and CD8⁺ T cells (**c**), CD4⁺ CD44⁺CD11a^{hi} T cells (**f**), and CD8⁺CD11a^{hi} T cells (**h**) in the PBL. Cumulative bar graphs representing frequencies of CD11b⁺Gr1⁺ neutrophils (**b**), CD4⁺ T cells (**d**), CD8⁺ T cells (**e**), CD4⁺CD44⁺CD11a^{hi} T cells (**g**), and CD8⁺CD11a^{hi} T cells (**i**) in the PBL. Control, n=11; *Sharpin*^{cpdm}, n=9; *Sharpin*^{cpdm} × *II1b*^{-/-}, n=7 for **b**, **d**, **e**, **g**, and **i**. Bar graphs are presented as means ± s.e.m. Statistical significance between groups was determined by one-way ANOVA, Dunnett's multiple comparisons test and *P* values less than 0.05 are considered statistically significant. **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001.

Extended Data Figure 11. IL-1 β deficiency does not rescue activated T cell phenotype in *Sharpin*^{cpdm} mice. Flow cytometry analysis of splenocytes from control, *Sharpin*^{cpdm} and *Sharpin*^{cpdm} × *II1b*^{-/-} mice to examine the status of activated T cells. **a**, Representative flow plots showing the frequency of CD4⁺CD44⁺CD11a^{hi} T cells in the spleen. **b**, Cumulative bar graphs representing frequencies of CD4⁺CD44⁺CD11a^{hi} T cells in the spleen. **c**, Representative flow plots showing the frequency of CD8⁺CD11a^{hi} T cells in the spleen. **d**, Cumulative bar graphs representing frequencies of CD8⁺CD11a^{hi} T cells in the spleen. **d**, Cumulative bar graphs representing frequencies of CD8⁺CD11a^{hi} T in the spleen. Control, n=13; *Sharpin*^{cpdm}, n=11; *Sharpin*^{cpdm} × *II1b*^{-/-}, n=10 for bar graphs. Statistical significance between groups was determined by one-way ANOVA, Dunnett's multiple comparisons test and *P* values less than 0.05 are considered statistically significant. **P*<0.05, ***P*<0.01, ****P*<0.001.

6

b

14

b

16

