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1. Supplementary Methods 

1.1.  Parameter Selection 

1.1.1. Determination of type 1 error level 𝜶 

Here, we discuss how to determine the type 1 error level α to be used in Algorithms 1 and 2 

presented in the Methods Section of the main text when applying the COMBI method to the 

WTCCC data1. When comparing the performance of the COMBI method with that of RPVT, α 

should correspond to the error level applied in the original WTCCC study1. In that case, t* = 

5*10-7 was determined to be a reasonable threshold for type 1 error control in RPVT stating 

that, “the posterior odds in favor of a ‘hit’ being a true association would be 10:1” using this 

threshold1. A sound upper bound on the expected number of false rejections (ENFR) level that 

this threshold implies is obtained by calculating the empirical distribution of p-values using the 

Westfall-Young2 procedure. It turned out that the threshold of t* = 5*10-7 will, on average, 

produce 0.17 non-replicated discoveries per disease, or 1.19 for all seven. Out of the 24 SNPs 

reported in WTCCC at t* = 5*10-7, only one can be expected to be a false positive, which 

corresponds to a true-to-false-positives ratio of 23:1. 

WTCCC also reported SNPs at the level t* = 10-5, stating that “if we relax the significance 

threshold by a factor of ten […], the posterior odds that a ‘hit’ is a true association would also 

be reduced by a factor of ten.”1 The relaxed threshold of 10-5 would thus refer to posterior odds 

of 1:2. According to our simulations, the controlled number of non-replicated discoveries to be 

expected is 3.32 per disease on average. This suggests that out of the 82 loci reported by the 

WTCCC at t* = 10-5, we can expect that approximately 23 are false positives, corresponding to 

an actual rate of true-to-false-positives of ~ 3:1. 

To compare the performance of the COMBI method with that of RPVT in a fair way, we 

consequently calibrated the COMBI method (using the Westfall and Young-type procedure 

described in Algorithm 2 presented in the Methods Section of the main text) in a way such 

that the number of non-replicated discoveries is bounded by 3.32 per disease (using the 
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augmentation for ENFR control of both algorithms). It should be noted that, when investigating 

the performance of the COMBI method with semi-real data simulations, we observed that the 

COMBI method produces only approximately 20% of the number of type 1 errors one is aiming 

to control for (See Supplementary Section 2.2.2.). Although it is not known whether this 

relation is true in the case of real data, we could expect still substantially fewer errors than what 

the calibration aims for, i.e., around 0.664 instead of 3.32 per disease, if the data-generating 

distribution is as in the simulations. 

1.1.2. Other free parameters 

In this section, we discuss how we chose the values of the free parameters of the COMBI 

method for the investigation of the WTCCC data presented in the Methods Section of the main 

text. To this end, the semi-real datasets investigated in Supplementary Section 2. where used 

to determine performance changes induced by varying the free parameters of the COMBI 

method. The optimal settings were assumed to be good choices for the application of the 

COMBI method to real data. 

As described in Problem Setting and Notation in the Methods Section of the main text, the 

genotypic feature encoding method was applied, where all features where normalized such that 

the 6th centered moments were all one (this is similar to the common practice of scaling each 

feature to unit standard deviation). 

As we can see from Equation 1 in The machine learning step in the Methods Section of the 

main text, there are a number of parameters to be determined in the training of an SVM. During 

the simulation experiments on the semi-real data sets, the value of the parameter C was 

computed by internal cross-validation, in order to maximize the (estimated) generalization 

ability of the function f. We found no significant effect of this parameter on the performance of 

the COMBI method. We thus applied a fixed C = 0.00001 for the investigation of the real data, 

economizing computation time and memory space. A linear L2 regularized L1-loss dual 
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classifier was applied3 to solve the SVM minimization problem. We trained the SVM on each 

chromosome separately, as genome-wide training is very time and memory consuming on the 

one hand, and can only improve performance marginally on the other hand, as intergenic 

correlations between chromosomes are very rare. 

Reasonable choices of the free parameters of Equation 3 in the filtering and screening step in 

the Methods Section of the main text were shown to be optimal in the simulation experiments. 

The window size l of the moving average filter was set to 35, which is in agreement with the 

results of Alexander and Lange4, who investigated similar associations. The norm parameter p 

of the filter was set to 2. 

A reasonable upper bound for the number of active SNPs in one chromosome was found to be 

100, which is why the parameter k of The Screening Step presented in the Methods Section 

of the main text was set to this value.  

The simulation experiments also showed better performance when the χ2 test for trend was 

applied instead of the Cochran-Armitage test in The Statistical Testing Step presented in the 

Methods Section of the main text. 

1.2.  Comparing SVM weights with RPVT p-values 

A legitimate concern of readers could be that, even if Steps 1 and 2 of COMBI are run 

independently of each other – in the sense that the w value of a SNP is obtained irrespectively 

of what the p-value of the same SNP would be in a trend test performed under the usual 

univariate RPVT setup – high correlations between w and p-values might still occur. If this was 

the case, the statistical testing step in the COMBI procedure might have to use a more stringent 

Bonferroni correction. Supplementary Fig. S1 and S2 below show that w and the 

corresponding p-values are not highly correlated. While it is clear that COMBI hits tend to be 

located in the area with high w values, note that several highly significant SNPs reported in the 
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WTCCC have moderate w values and, vice versa, that not all SNPs with high w turn out to be 

significant. This was expected, since COMBI produces a simultaneous analysis of all SNPs, 

rather than considering each SNP in isolation. 

 

Supplementary Figure S1 

Relation between SVM weights and p-values for all 444K SNPs for all seven diseases 

studied. Following a general trend, higher weights tend to have more significant p-values. 

However, clear cases with medium or lower weights also turn to be significant, pointing towards 

the need of a full combined approach (SVM + p-value thresholding step) 
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Supplementary Figure S2 

Scatter plot of p-values (on –log scale) vs. SVM weights, least-squares regression line, and 

R2. As in the former figure, there is a general trend of higher weights having more significant 

p-values, but there are also many exceptions. 

 

To analyze whether SNPs with high w values could be selected as potential hits (thus removing 

the need of the 2nd step in the COMBI method), we took the top 2,000 SNPs with highest 

weights and selected a single representative SNP for each of the loci included in the top weights 

list. We obtained sets of SNPs of the following sizes for each disease: BD (n=115), CAD (117), 

CD (n=96), Hypertension (103), Rheumatoid Arthritis (106), T1D (85) and T2D (114). We 

excluded hits already reported by the full COMBI approach (those in Table 2 in the Main Text). 

All of these sets were evaluated using the validation pipeline and precision-recall and ROC 

curves can be seen in Figure 4 of the main text. 
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2. Simulation study on controlled phenotypes 

This section aims to assess the effectiveness of the proposed algorithm and investigating its 

optimal parameter values in a controlled environment, i.e., where we have access to the true 

phenotypes by synthetically generating them. The genotypes are taken from real WTCCC data 

to obtain realistic semi-real data sets. 

2.1. Simulation data 

To this end, we randomly generate 10,000 data sets (i.e., real genotypes and synthetic 

phenotypes) by repeatedly drawing a random block of 20 subsequent SNPs from chromosome 

1 and a random block of 10,000 subsequent SNPs from chromosome 2 of WTCCC's IBD data. 

The former, smaller block represents the set of informative SNPs to be associated with the 

phenotype in this experiment, while the latter, larger block constitutes the set of uninformative 

SNPs. These noisy SNPs are placed surrounding the 20 informative loci, which thus are to be 

found at the positions 5001 to 5020. The phenotypes are synthetically computed, based on only 

one of the 20 associated SNPs (at position 5010), using the following logistic regression model: 

to any allele sequence 𝑥𝑖∗ in nominal feature encoding (i.e. xij = mij where mij is the number 

of minor alleles in SNP j of subject i), the phenotype is randomly assigned according to 

ℙ(𝑌𝑖 = +1|𝑋𝑖∗ = 𝑥𝑖∗) = (1 + exp(−γ(𝑥𝑖5010 − median(𝑥∗5010)))
−1

, 

where γ is the effect size or noise parameter. Due to the real correlation structure within the set 

of 20 informative SNPs, generating the phenotypes based on one informative SNP will produce 

associations of different strengths to all 20 SNPs.   Thus, we produce tower structured p-values 

with realistic covariances; exemplary data sets are shown in Supplementary Figure S3. 
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Supplementary Figure S3 

p-values of several exemplary semi-real data sets. Note the tower structure induced by the 20 

informative SNPs located at the positions 5001 to 5020. While the data sets (a), (b), and (d) 

present quite strong associations, data set (c) only shows rather minor ones - this is a result of 

the randomness involved in the generation process. 

 

Note that the associations between the informative SNPs and the labels vary a lot in strength 

due to the randomness in the generation process, which increases similarity to real genome data 

sets.  

The process of drawing random genotypes and generating the corresponding phenotypes is 

repeated 10,000 times to generate 10,000 data sets.  

 

An additive heritability model was assumed appropriate for this simulation study for a number 

of different reasons. Most importantly it is the standard model in the field of SNP effect 

estimation, genome risk score computation and other related problems5,6. This is especially true 

for the seven diseases that are studied in this work. In the original WTCCC study, they used an 

additive test as the null model, spotting only a few cases were departure from this additivity 

was observed1. Additive, infinitesimal models have been shown to work well in the research 

area of quantitative genetics and, indeed, most GWAS hits seem to behave additively7,8,9. It is 
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also the most agnostic model, with less parameters and no need to make any assumptions on 

values of dominance or complex interactions between loci5,6. The investigation of other models 

for the genetic architecture of a disease could be the subject of future research projects. 

 

2.2. Results 

In the following, we report results averaged over the 10,000 data sets realized by the Monte 

Carlo simulation described above. The proposed COMBI method is compared to the standard 

RPVT procedure using a Westfall-Young correction as well as the approach of Meinshausen et 

al.10 (which itself is an extension of the method of Wasserman and Roeder11). As evaluation 

criteria, we report the family-wise error rate, FWER, the expected number of false rejections, 

ENFR, and the true-positive rate, TPR. The results are presented in the following section. 

 2.2.1. COMBI method vs. standard RPVT 

The identification of SNPs that have an influence on the probability of having a positive label 

in the semi-real data sets can be improved by applying the COMBI method, which achieves 

significantly better results than the ordinary RPVT approach. The superiority of the new method 

is displayed in Supplementary Figure S4, where we compare the power, as measured by the 

TPR (averaged over the 10,000 runs) of the COMBI method to that achieved using the standard 

RPVT procedure. Those rates can be determined for various levels of FWER (shown on the 

left) and ENFR (shown on the right), respectively. It is obvious that the COMBI method 

achieves greater power for all levels of FWER and ENFR, which is based on the fact that the 

selection step of the COMBI method correctly filters out most of the noise SNPs and identifies 

the informative SNPs accurately.  
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Supplementary Figure S4 

Main results of both COMBI and RPVT method applied to the simulated data sets with 

controlled phenotypes: (a) TPR averaged over 10,000 synthetic data sets as a function of the 

FWER. (b) TPR averaged over 10,000 synthetic data sets as a function of ENFR. (c) Precision-

Recall curves. (d) ROC curve. The dark blue lines (representing the COMBI method) are 

uniformly above the light blue ones (representing RPVT) in all plots. The COMBI method thus 

achieves higher TPR (i.e., multiple power) for all levels of FWER and ENFR. The dots in (a) 

mark measurements of the permutation-based calibration where the corresponding thresholds 

were calibrated to guarantee a FWER of 𝜶 ≤ 𝟎. 𝟎𝟓. Although the COMBI method in 

combination with the permutation-based calibration is overly conservative and does not exploit 

the error rate of 5%, it has greater power than RPVT with permutation-based threshold 

calibration.  

 

We illustrate an exemplary replication in Supplementary Figure S5 to provide some intuitive 

understanding of the advantages of the COMBI method. Not only does the selection step of the 

COMBI method precisely identify the correct tower, but it also flattens out any noisy SNPs 

even when - by chance - they achieved considerably high significance. The method thus not 

only increases the probability of finding the correct tower but also, and potentially more 

importantly, decreases the probability of falsely selecting a noise tower.  
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Supplementary Figure S5 

An exemplary replication. Plotted are the p-values of the standard RPVT approach on the left 

and the new COMBI method on the right for all SNPs (top row) and for the 100 SNPs located 

at 4960 to 5060 (bottom row). On the one hand, there is a very significant tower representing 

the informative SNPs at positions 5001-5020 (p-values of up to 𝟏𝟎−𝟏𝟑), but on the other there 

is a considerably large noise tower around the position 1000 with p-values of up to 𝟏𝟎−𝟓. This 

tower causes problems in the standard testing approach where it is incorrectly classified as an 

informative locus. The selection step of the COMBI method, however, precisely identifies the 

correct tower and flattens out all noise SNPs. 

 

Going back to the averaged results, Supplementary Figure S4 also shows that the permutation-

based threshold calibration based on Algorithm 2 (See the Methods Section in the main text) 

yields a rather conservative error rate. The COMBI method does not exploit the full significance 

level, but makes fewer errors than anticipated. Instead of the previously set error rate of 𝛼 ≤

0.05, a FWER of only around 1% is achieved. Even though it is desirable to increase power by 

simultaneously making more mistakes, i.e. as many as anticipated, it is important to note that 

the COMBI method has lower error rate and higher power than the RPVT method in 

combination with the same permutation-based calibration principle. Reasons for the 

conservativeness of the COMBI method will be investigated in Supplementary Section 2.2.2. 
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To understand the results in more detail, we now investigate the individual data sets. 

Supplementary Figure S6 shows for all 10,000 synthetic data sets the level of difficulty of the 

problem, represented by the power that can be achieved via RPVT, and how well it can be 

solved using the COMBI method, represented by the gain in TPR of the COMBI method over 

RPVT. In the majority of cases, the COMBI method helps performance, i.e., increases the TPR. 

However, it decreases performance in very few cases (about 3% of the 10,000 data sets). As 

expected, those cases represent difficult problems with high noise where the baseline TPR of 

RPVT is very low.  

 

Supplementary Figure S6 

The TPR gain of the COMBI method is plotted as a function of the TPR of RPVT, which is 

interpreted as a measure of the difficulty of the problem (i.e. level of noise). Each dot represents 

one replication and indicates how much can be gained in terms of TPR by applying the COMBI 

method instead of RPVT for this specific data set. In most cases, the TPR gain is positive, 

indicating an increase in performance when using the COMBI method. The few cases where 

power is lost with the COMBI method are characterized by a high level of difficulty in the first 

place, i.e. RPVT TPR is low. Four replications are highlighted. Three of them represent special 

cases with extraordinary characteristics (i.e. maximum TPR gain, minimum TPR gain with low 

and high noise) and the fourth represents an average run with medium TPR gain and medium 

noise. See Supplementary Figure S7 for the individual results of those replications. 
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In order to investigate the different situations to be encountered in a real world setting, we now 

analyze a number of special replications. Detailed plots of exemplary runs that either represent 

an average run (i.e. medium TPR gain and medium noise) or have extraordinary characteristics 

(i.e. maximum TPR gain, minimum TPR gain with low and high noise) are shown in 

Supplementary Figure S7. The first row represents the replication with maximum TPR gain 

where the COMBI method worked extremely well. Although there is a lot of noise and the 

tower of SNPs associated with the phenotype located at positions 5001-5020 is not very high 

in this example, the COMBI method finds it accurately. An average replication with medium 

noise and medium TPR gain, i.e., where both methods find the tower and the COMBI method 

can only moderately help performance, is presented in the second row. The third example 

illustrates that RPVT is sufficient for very easy problems (i.e. low noise and high tower yielding 

minimum TPR gain), and that using the COMBI method does not decrease performance. The 

most crucial case is presented in the last row. In this worst case scenario of a minimum TPR 

gain and high noise, there is an extremely small tower that is very hard to identify. In addition, 

there is another high-noise tower with very high SVM weights. In contrast to the RPVT 

approach, which identifies the correct tower, the COMBI method selects the wrong tower. This 

example shows that the COMBI method selects the wrong towers in very few cases.   



14 
 

 

Supplementary Figure S7 

Detailed plots of exemplary runs with (1) maximum TPR gain, (2) medium TPR gain and 

medium noise, (3) minimum TPR gain and low noise and (4) minimum TPR gain and high 

noise. The p-values of the COMBI method and the SVM weights are shown for each replication 

the p-values of RPVT. The first three replications represent problems where the COMBI 

method does better or at least as well as the RPVT approach. The last example illustrates that 

the COMBI method selects the wrong towers in some cases. 

 

We now investigate whether these pathological cases can be identified a priori. As observed in 

Supplementary Figure S7, these cases are characterized by a high noise level, indicating that 

a very hard problem must be solved. Finding the data sets where an SVM trained for 

classification of the subjects does not have high accuracy is an intuitive idea. Those cases would 

be expected to be those where the COMBI method also fails, which is exactly what can be seen 

when investigating the SVM accuracies for each replication in Supplementary Figure S8. The 

problematic cases -- where power is lost with the COMBI method -- are indeed characterized 

by a low SVM classification accuracy. These cases can thus roughly be estimated in advance, 

and a measure of trust in the results of the COMBI method can be given for each replication. 
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Supplementary Figure S8 

For each replication, the AUC gain of the COMBI method is plotted against the corresponding 

SVM accuracy. Negative AUC gain marks the problematic cases where power is lost. It can be 

seen that the COMBI method only yields a loss in performance in some of the experiments with 

low SVM accuracy, which means that problematic cases can be identified and a measure of 

trust can be reported along with the results of the COMBI method for each data set. 

 

 2.2.2. Conservativeness of the FWER control 

Supplementary Figure S4 showed that the COMBI method achieves an overall FWER of 

around 1%, even though the resampling threshold was a priori set to guarantee that FWER≤

5%. We provide an explanation for the conservativeness of the COMBI method in the following 

section. 

An effect that makes the COMBI method conservative is the different number of uninformative 

(or “noisy”) SNPs the threshold calibration is based on and eventually applied to. To illustrate 

this, assume that k equals 30, indicating that the 30 SNPs with the highest SVM weights are 

selected for each replication in the permutation test and p-values are computed for only those. 

The significance threshold based on these p-values is then determined. As the threshold is 

calibrated on random labels, it is based on the p-values of 30 uninformative SNPs. However, 

when we train on real labels when applying the threshold, it is very likely that 20 informative 

SNPs are selected as part of the 30 highest ranked SNPs. There are thus only 10 spots left for 

the noisy SNPs, which are rejected only if they exceed the threshold. Having 10 instead of 30 
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noisy SNPs makes an erroneous rejection much more unlikely. Thus, the COMBI method 

makes fewer mistakes than anticipated and is rather conservative. To validate this hypothesis, 

we perform a number of experiments where parameter values are altered to achieve the correct 

FWER of 5%. In the first experiment, k is increased in a way that the number of noisy SNPs 

remains constant. Instead of only selecting k SNPs (noisy or informative), we select the 

informative SNPs that are amongst the k best SVM weights; in addition to that, the best k noisy 

SNPS, i.e., 𝑘𝑖
∗ = 𝑘 + 𝑛𝑇𝑃,𝑖 where 𝑛𝑇𝑃,𝑖 is the number of true positives among the k best SNPs 

in the i-th replication of the experiment. This should eliminate the effect described above and 

hence yield a FWER closer to that set prior to the permutation test. Applying this slightly 

modified COMBI method to the 10,000 semi-real data sets leads to a FWER of around 5% and 

thus supports this hypothesis. Note that these modifications can only be applied to data sets 

where the ground truth, and thus 𝑛𝑇𝑃,𝑖, is known. To investigate this effect in more detail, we 

now perform an experiment where we increase the number of selected SNPs, in order to check 

whether this also yields a less conservative error rate. Supplementary Figure S9 shows that 

increasing k to a maximum of 1,000 yields a FWER of 5%. This is reasonable, as increasing k 

means increasing the fraction of noisy SNPs in the set of SNPs that are picked via the 

permutation-based calibration procedure. For k=1,000, all SNP towers are selected and we 

simply perform the standard RPVT method which yields a non-conservative FWER of 5%. The 

fewer the selected SNPs, the better the curve and the more conservative the permutation-based 

calibration. The optimal curve but also most conservative threshold calibration is reached for k 

= 30, which is the parameter chosen for all other applications of the COMBI method. For a 

lower value of k, the FWER-TPR-curve is noticeably below the optimal one, and the 

permutation-based calibration suffers a severe loss in power. 
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Supplementary Figure S9 

Results of the COMBI method for different values of k, the number of SNPs to select in the 

screening step. (a) TPR is plotted against ENFR for increasing k from 10 to 500. The points 

represent the results of the COMBI method after applying the permutation-based threshold. The 

lime green curve of k = 30 is optimal. This is also the parameter value that yields the highest 

power using the permutation-based calibration (lime green circle). The higher k, the less optimal 

are the resulting curves (from green over blue to purple), but also the closer is the ENFR of the 

permutation-based calibration method to the anticipated 5%. Decreasing k below 30 results in 

a severe loss in power (red curve). (b) Mean and standard deviation of ENFR are shown for 

different values of k. The maximum error rate which equals the pre-set bound of 𝜶 ≤ 𝟎. 𝟎𝟓 is 

attained for k=1,000, which corresponds to selecting almost all towers and therefore is almost 

equivalent to applying RPVT.  

 

The next parameter to be investigated is the noise parameter, which is involved in the data 

generation process. We expect that for high levels of noise, i.e. when there is basically a lack 

of any kind of real association, the FWER of the COMBI method approaches the expected 5% 

because the 30 selected SNPs selected are all noisy SNPs. Thus, the threshold is not only based 

on noisy SNPs but also only applied to noisy SNPs. Observe from Supplementary Figure S10 

that for 𝛼 = 0.05, the correct FWER is actually achieved for a maximum level of noise. 

However, the curve is optimal for minimum noise where the identification of true associations 

is much easier. This experiment supports the hypothesis presented earlier. 
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Supplementary Figure S10 

Results of the COMBI method for different values of the noise parameters 𝛄 where the low 

values correspond to high noise and the high values to low noise in the process of simulating 

the datasets. (a) TPR is plotted against ENFR for increasing the noise parameter from 0.25 to 

1000. The points represent the results of the COMBI method after applying the permutation test 

threshold. The curve is optimal for minimum noise (purple curve), which was to be expected 

as a low level of noise makes true associations easier to detect. (b) Mean and standard deviation 

of ENFR are shown for different values of the noise parameters. The maximum error rate, which 

equals the pre-set bound of 𝜶 ≤ 𝟎. 𝟎𝟓, is attained for a noise parameter of 0.25, which is almost 

equivalent to having maximum noise and therefore no informative SNPs associated with the 

disease. 

 

Observe from Supplementary Figure S11 that we achieve the error rate for filter length 1 that 

we would expect after setting it to 𝛼 ≤ 0.05 in the permutation test. The error rate decreases 

and power increases with increasing filter length up to 35. The method yields higher error rates 

and less power for greater filter lengths. We therefore decided to use a filter length of 35, which 

yields optimal but conservative results. We learn from these experiments that the proposed 

method may achieve lower error rates and higher TPR than anticipated.  
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Supplementary Figure S11 

Results of the COMBI method for different values of the filter window size l. (a) TPR is plotted 

against ENFR for increasing l from 1 to 501, where the former corresponds to applying no filter 

at all and the latter to an extremely flattening filter. The points represent the results of the 

COMBI method after applying the permutation-based threshold. The curve is optimal for a filter 

window size of 35. This finding is in agreement with what Alexander and Lange4 found. (b) 

Mean and standard deviation of ENFR are shown for different values of the filter window size 

l. The maximum error rate is attained for filter length 1, which corresponds to applying no filter. 

 

 2.2.3. Further experiments 

Choosing an optimal SVM parameter using cross-validation-based model selection in each 

repetition of the Westfall-Young permutation procedure did not result in a higher power of the 

COMBI method. Performance results for constant and cross-validated C were hardly 

distinguishable. Thus, time-consuming cross-validation was avoided for C, and a fixed C was 

used for all further applications of the COMBI method. 
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2.2.4. Comparison to other state of the art methods 

In addition to comparing the COMBI method with the RPVT approach, we investigate here 

whether slight alterations and simplifications of the COMBI method can achieve the same level 

of effectiveness and also examine other appropriate state-of-the-art algorithms using semi-real 

data (See Supplementary Section 2. for a description of these semi-real data experiments and 

the Discussion Section of the main paper for a discussion of related machine learning work).  

Beginning with the investigation of simplifications of the COMBI method, we now present the 

results of corresponding simulations. As mentioned earlier, applying a moving average filter to 

the SVM weights prior to the selection step is crucial. Observe in Supplementary Figure S12 

that the COMBI method cannot increase power or precision of RPVT at all without this filtering 

step. 

To find out whether the filtering step, which improves the performance of the COMBI method, 

can also be applied to the p-values, 𝑝𝑗, in log-space in order to achieve the same effect, we 

define 𝑤𝑗 ≔ − log10 𝑝𝑗 and apply the filter as described in Summary of the COMBI method 

and Figure 1 (see main text). We employ RPVT in the original p-value space. Supplementary 

Figure S12 illustrates that this decreases the performance of the RPVT method and thus cannot 

reach the effectiveness of the COMBI method. In conclusion, the COMBI method is most 

effective when both screening approaches, i.e. SVM and filter screening, are applied 

simultaneously (Supplementary Figure S4).  

Besides checking whether easy simplifications of the COMBI method achieve the same effect, 

the performances of other competitor methods were investigated. As discussed in the 

Discussion Section of the main paper, there are a number of related machine learning methods, 

out of which we selected three as representatives to be compared to the COMBI method in this 

simulation setup.  
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The most related method separates the two steps of COMBI method, i.e. machine learning and 

statistical testing, from each other and was proposed by Wasserman and Roeder11. In the course 

of this algorithm, half of the data points (i.e. half of the individuals) are first randomly selected 

and an SVM is trained to identify the k SNPs with the highest corresponding weights. In the 

second step, p-values are computed on the other half of the data points considering only the 

SNPs identified in the previous step. Even though the significance threshold 𝛼 can now simply 

be corrected with 𝛼𝑛𝑒𝑤 = 𝛼/𝑘  (which is much less conservative than the Bonferroni correction 

𝛼𝐵𝑜𝑛𝑓. = 𝛼/𝑑  when considering all SNPs), this method comes with a loss of power (see 

Supplementary Figure S13), where the corresponding curves are constantly below the curve 

of the regular COMBI method. 

Meinshausen et al.10 present an extension of the method proposed by Wasserman and Roeder11. 

Instead of splitting the data once into two sets and using one for SVM training and the other for 

statistical testing, they suggest aggregating the results of multiple random splits, arguing that 

this will decrease error rates and increase power. They propose using quantiles as summary 

statistics for the p-values of the multiple splits. After defining qγ (・) to be the empirical γ-

quantile function the p-value for each predictor j = 1, …, p is calculated with Pj = min {1, (1 

−log γmin) inf
γ ∈(γmin,1)

Qj(γ ) }where Qj(γ ) = min{1, qγ({P(b)
j /γ ; b = 1, . . . ,B})}. In our 

simulation, this method does not reach the performance level of the COMBI method (See 

Supplementary Figure S13) and also fails to reach that of the RPVT approach. The results 

indicate that it may be more effective to use the full data set for selection of candidate SNPs 

and multiple testing on these SNPs (as done in the course of the COMBI method), rather than 

using a subset for selection and another subset for testing (as done in the single- and multi-split 

methods by Wasserman and Roeder11 and Meinshausen et al.10). 
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Another method for identifying associated regions was proposed by Roshan et al.12. It consists 

of a statistical testing step where the top χ2-ranked SNPs are selected, and put into the next step 

to train an SVM. This basically boils down to a version of the COMBI method, where the order 

of the two steps (SVM training and statistical testing) is reversed. Applying this method to our 

10,000 simulated datasets yields no gain in performance (See Supplementary Figure S13), 

suggesting that it is not of importance whether the SVM is trained on the whole dataset or on a 

subset of SNPs with high p-values. The ordering of the weights will remain the same for those 

top SNPs. 

 

Supplementary Figure S12 

Results of the simulation for various baseline algorithms presented via the precision-recall 

curve and the FWER-TPR curve. The COMBI method yields the most power only if the filtering 

step is applied (dark blue line); otherwise no effect in comparison to RPVT can be achieved 

(turquoise dashed and light blue line are almost identical). Applying a filter directly to the p-

values does not have the same effect as the combined SVM and filter screening step (light green 

line). Both of these selection levels are therefore crucial. Separating the SVM selection and 

multiple testing step from each other yields a loss in power and cannot reach comparable 

effectiveness.  
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Supplementary Figure S13 

Results of the simulation for various competitor algorithms presented via the precision-recall 

curve and the FWER-TPR curve.  The COMBI method yields the highest power, while no other 

method can achieve the same performance. Note that the yellow curve is almost identical to the 

green one in the figure to the right, which is why it is hardly visible.  
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3. Analysis of real data (WTCCC, 2007) 

3.1. Data preparation 

Genotype and phenotype data for the seven disease and two control groups used in the WTCCC1 

were downloaded from the EGA website (European Genome-phenome Archive, ega.crg.eu) 

after being granted the corresponding access. Seven case-control datasets, one for each disease, 

were built combining both control groups. SNPs and samples that did not fulfill the quality 

control in the original WTCCC paper were removed from each dataset using the lists provided 

at the WTCCC site. 

Based on lists provided by the WTCCC (see www.wtccc.org.uk), we removed an additional set 

of 579 false-positive SNPs from analysis (for instance, SNPs that are significant, isolated hits, 

with no significance in surrounding SNPs in high LD, i.e., with no “tower” around them). Since 

these lists seemed to lack the information corresponding to the coronary artery disease (CAD) 

study, all genome-wide significant SNPs (<5e-7) for that study that did not appear in the original 

WTCCC paper were manually removed. 

3.2. Automatic validation procedure 

Our automatic validation procedure is based on identifying associations to a disease reported in 

the GWAS catalog for either the target SNP or other SNPs in high LD with them. That is, to 

validate the SNPs COMBI identifies as good predictors upon analysis of the WTCCC data, we 

used the conservative criterion of ascertaining whether our candidate SNPs or other SNPs in 

high LD with them had been reported as associated to the corresponding disease by independent 

GWAS published after the WTCCC study. Our validation procedure considers a physical 

window of 200kb around any given SNP associated with a given disease and selects all SNPs 

within this window presenting strong LD with the target SNP. LD calculations were performed 

with PLINK13 and were based on the genomic sequences of the 85 CEU individuals from Phase 

1 of the 1000 Genomes Project. Runs with different thresholds were performed: (r2>0.7, >0.8, 
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>0.9 and =1) without any change in our results. For the resulting high-LD SNPs, our algorithm 

queries the GWAS catalog to check if these SNPs have been associated to a disease with p-

values <10-5. A hit indicates that a GWAS other than the original WTCCC study reported this 

SNP to be associated with the relevant disease and, thus, that independent evidence validates 

the discovery. 

3.3. Prediction performance 

In Supplementary Table S1, we present the prediction performances of an SVM as used in the 

first step of the COMBI method applied to the WTCCC data in comparison to the reported 

performance rates of other machine learning methods presented in the Discussion Section of 

the main paper. We use the area under the receiver operating characteristic curve (AUC) as the 

measure of performance. 

 

Supplementary Table S1 

Reported Prediction Performances (AUC in %) of the SVM in the first step of the COMBI 

method and other machine learning methods. 

 
 SVM (first step of 

COMBI method) 

Mittag 

et al.14 

Davies 

et al.15 

Evans 

et al.16 

Kooperberg 

et al.17 

Wei et 

al.18 

BD 70.4  61 - 66.8 - - 

CAD 62  - 60.2 60.0 - - 

CD 64.9  - - 61.0 63.7 - 

HT 65.8  - - 62.7 - - 

RA 63  - - 66.6 - - 

T1D 74.9  88  - 74.9 88 89 

T2D 63.4 62 - 60.1 - - 

 

Note that the AUC values of the optimal parameter values and methodological settings are 

reported for all methods (i.e. we chose the most successful feature encoding, p-value feature 
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selection, statistical test, SVM solver etc., for the SVM of the COMBI method, and the optimal 

parameter values corresponding to the methodology applied in that paper for all other methods). 

The linear SVM of the COMBI method performs similarly well as most other competing 

methods, except for type 1 diabetes, where a non-linear kernel performs better. We excluded 

the results of Quevedo et al.19 from this table, since they were flawed by a lack of a step in their 

data processing procedure (J.R. Quevedo, personal communication).  

 

3.4. Stability analysis 

Stability is a desirable property of any SNP-selection method: if a method is not stable, it could 

either indicate that too many locations are selected, meaning that the result contains a random 

subset of non-significant SNPs, or that not enough locations are selected, so that the result 

contains only a random subset of the significant SNPs.  

To investigate stability, we proceeded as follows: the original data was randomly split into two 

equally sized subsets (of individuals), A and B, for a number of 10 repetitions. The method 

under scrutiny, i.e., either the COMBI method or standard RPVT, is applied separately to the 

data from sets A and B, leading to sets S(A) and S(B) of respectively reported SNPs. Using the 

Tanimoto Index20 𝑇(𝑆(𝐴), 𝑆(𝐵)) =
|𝑆(𝐴)∩𝑆(𝐵)|

|𝑆(𝐴)∪𝑆(𝐵)|
, the similarity of these two sets and thus the 

stability of the used method were measured. Here |𝑆| denotes the cardinality of the set S. In this 

manner, the stability of the COMBI method can be compared to the stability of standard RPVT. 

Simulation results considering internal stability of the two methods when applied to the 

WTCCC Crohn’s Disease data are shown in Supplementary Figure S14. COMBI produces 

more stable results than RPVT. The Tanimoto stability index is plotted against the mean number 

of reported associations, i.e.  
|𝑆(𝐴)|+|𝑆(𝐵)|

2
. When we repeatedly split the data into two parts and 

investigate how similar the results of the two methods are in the two subsets, we find that the 
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results of the COMBI method are more similar and thus more stable. This is true for all levels 

of ENFR and thus for the mean number of reported associations. 

 

Supplementary Figure S14 

Tanimoto Stability Indices for Crohn’s Disease. We observe that the stability of the COMBI 

method is higher than that of RPVT. Note that higher Tanimoto index denotes higher stability.  
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This result holds for all seven diseases and is robust with respect to the choice of the parameter 

k (number of SNPs selected in the screening step) (See Supplementary Fig. S15). 

 

Bipolar disorder    Coronary artery disease  Hypertension 

   

 

Rheumatoid arthritis        Type 1 diabetes    Type 2 diabetes 

   

Supplementary Figure S15 

Tanimoto Stability Indices for the other diseases. We observe that the stability is relatively 

robust to the choice of the parameter k (the number of SNPs to select in the screening step) of 

the COMBI method. Note that higher Tanimoto index denotes higher stability.  

 

3.5.  Functional study of two non-replicated SNPs 

The automatic validation procedure that we used to ascertain whether SNPs COMBI detected 

using the original WTCCC data have been discovered and/or replicated by subsequent studies 

(described in Supplementary Section 3.2.) failed to validate two of the 46 significant 

associations COMBI detected. To evaluate the potential biological meaning of these two 

SNPs, we carried out a functional analysis. Results are reported in Supplementary Table S2 

below. See main text for discussion. 
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Supplementary Table S2 

Functional analysis of two SNPs detected by COMBI and not replicated in subsequent GWAS 

studies. 

 SNP detected by COMBI 

 rs11110912 rs6950410 

Disease HT (Hypertension) T1D (Type 1 diabetes) 

Chr / Position 

(hg19) 
12:102042213 7:4038917 

Functional 

consequence 

Intronic MYBPC1 (myosin binding 

protein C)  

Intronic SDK1 (sidekick cell adhesion 

molecule 1) 

OMIM1 
Yes (involved in familial hypertrophic 

cardiomyopathy) 
- 

GWAS Catalog2 No No 

Genes (in 200 Kb 

window) 
MYBPC1, CHPT1, SYCP3 SDK1 

eQTL activity3 (P-

value) 
CHPT1 (P<10-8) - 

RegulomeDB4 1d ("strong") - 

Haploreg5 Transcription factor activity (BATF,PU1) DNAse activity (in Osteoblasts) 
1 OMIM. Role in disease evidence of the gene the associated SNP lies in (available at http://omim.org/) 
2 GWAS Catalog. Presence in the "reported gene" field in the GWAS Catalog (http://www.genome.gov/gwastudies/) 
3 eQTL activity. Evidence about the activity as eQTL in blood of the associated SNP (gathered from the "Blood eQTL browser"; 

http://genenetwork.nl/bloodeqtlbrowser/) 
4 RegulomeDB. Summary of DNA regulatory evidence (in http://regulomedb.org/)  
5 Haploreg. Noncoding regulatory evidence of the haplotype block (www.broadinstitute.org/mammals/haploreg/haploreg.php) 

 

3.6. Comparison to Fast-LMM models 

We compared COMBI against another state-of-the-art method by Lippert et al.21 who devised 

a novel univariate analysis method to improve WTCCC findings and implemented a linear 

mixed model (LMM) to uncover new epistatic associations by means of brute force comparison 

of pairwise interactions. They applied both methods to the seven WTCCC diseases, searching 

for new univariate signals and for epistatic associations.  

For the univariate analysis, they reported a total of 573 novel SNP-disease associations21 with 

p-values less than 5x10-7), covering all WTCCC diseases but CAD, for which no novelty was 

reported. Most novel SNPs were mapped in the same loci, so we selected representative markers 

for each locus through the LD pruning option in PLINK. We computed pairwise LD with a 

sliding window of two SNPs (with steps of 1 SNP at a time). We discarded one SNP out each 

pair if they were in high LD (R² ≥ 0.8). The final SNP lists, consisting in 1 for BD, 0 for CAD, 

19 for CD, 1 for HT, 3 for RA, 39 for T1D and 9 for T2D, was run through our validation 
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pipeline using the same parameters that we use for COMBI in the present work (physical 

distance to tag-SNP: < 200 kb. Linkage disequilibrium with tag-SNP: R² ≥ 0.8). The number of 

“true positive” hits (that is, of discoveries that have been validated in the literature) was limited, 

with only five of them featured in GWAS published after the WTCCC hits (CD: 3 hits, RA: 1 

and T2D 1 hit each). This figure is much smaller than for COMBI (See Supplementary Table 

S3). 

Supplementary Table S3 Not only does COMBI give rise to more validated discoveries, but these 

discoveries cover the whole range of WTCCC diseases. 

Supplementary Table S3 

Comparison of COMBI against LMM univariate method. Only the three diseases indicated in 

table were considered, as these were the only ones which reported hits by LMM validated in 

further independent studies. 

DISEASE 
COMBI set 

of SNPs 

COMBI 

hits 

LMM univariate 

set of SNPs 

LMM 

univariate 

hits 

Binomial p-

value 

Crohn's 

Disease 
11 8 19 3 4.07x10-5 

Rheumatoid 

Arthritis 
3 1 3 1 NS 

Type 2 

Diabetes 
8 3 9 1 0.049 

 

The epistasis analyses by Lippert et al.,21 consisted of brute force computing of all possible 

pairwise SNP associations for 6 diseases (~63 billion pairs; no hits reported for Crohn´s 

disease), and testing their epistatic interaction in disease risk. The authors reported a final list 

consisting in 707 pairs of SNPs with p-values lower than 7.9 x 10-13 for each phenotype 

analyzed in WTCCC data. All individual SNPs taking part in the reported significant 

interactions were checked against our validation pipeline. We are aware that this is only a partial 

validation, since epistasis is not the simple addition of separated SNP effects, which are those 

that are registered in the GWAS catalog, but some associations still could emerge. 
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Applying the same LD pruning method than for the univariate method, we ended up with the 

following number of SNPs per each disease: 2 for BD, 32 for CAD, 0 for CD, 2 for HT, 7 for 

RA, 13 for T1D and 2 for T2D. By running these markers through our validation pipeline, we 

found a single association for T1D, while for the other diseases no markers were found. A 

comparison against COMBI hits for type 1 diabetes can be seen in Supplementary Table S4. 

Supplementary Table S4 

Comparison of COMBI against LMM epistatic method. Only T1D was subject to comparison. 

DISEASE 
COMBI set of 

SNPs 

COMBI 

hits 

LMM epistatic set 

of SNPs 

LMM epistatic 

hits 

Binomial p-

value 

Type 1 

Diabetes 
9 6 9 1 1.1x10-4 
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3.7. Runtime analysis and implementation details 

The COMBI method is implemented in R, Matlab/Octave and Java as a part of the GWASpi 

toolbox 2.0 (https://bitbucket.org/gwas_combi/gwaspi/, login user name: 

gwas_combi_guest, password: combi123.). The complete method is available in all languages 

and there are no substantial differences in implementation. See Supplementary Table S5 for 

implementation details 

Supplementary Table S5: Specialities and details about used packages for all 

implementations of the COMBI method. 

 

The runtime of the method depends on a variety of factors such as available cluster memory, 

hardware resources and operating system. For this analysis we have run the method with the 

implementation on the following technical platform: 40 * Intel(R) Xeon(R) CPU E5-2650 v3 

@ 2.30GHz 64bit, 128GB RAM, Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-79-generic x86_64). 

The analysis of WTCCC’s data on Crohn’s disease chromosome 18 (assuming calculations on 

more chromosomes can be computed in parallel if necessary) took 9h 15min 24s using the 

Matlab/Ovtave implemenation. See Supplementary Table S6 for information on how the 

computation time spread across the various steps of the COMBI method and how it varied for 

the different implementations in Java, Matlab/Octave and R. 

 

 

Language Speciality Used packages 

Java  COMBI method fully implemented 

 supports other algorithms within the 

GWASpi software 

 desktop computer oriented 

libLinear22, libSVM23, apache 

commons math24 

 

Matlab/Octave  COMBI method fully implemented 

 cluster oriented 

libLinear22 

R  COMBI method fully implemented LiblineaR25, qqman26, 

data.table27, gtools28, snpStats29 
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Supplementary Table S6: Runtime analysis of the COMBI method. The complete method 

was applied to WTCCC data from chromosome 18 investigating Crohn’s Disease. 1000 

replications were run in both permutation procedures. Please note, that the permutation 

procedures are still being improved for both Java and R implementations and running times 

are provisional. 

 

 Matlab/Octave  

(Here GNU 

Octave version 

3.8.1) 

Java  

(Here SUN JDK 

version 1.8.0_77 

64bit, Maven 

version 3.3.9) 

R  

(Here R version 

3.0.2 (2013-09-

25), Frisbee 

Sailing) 

Training of SVM (first 

step of COMBI) 

21s 8min 30s 41min 55s 

Calculation of raw p-

values (second step of 

COMBI) 

3s 25s 1min 46s 

Permutation procedures 

for the calculation of 

significance thresholds 

9h15min 8d 3h 30min >1month 

Overall 9h15min24s 8d 3h 38min 55s >1month 

 

 

 

We should point out that with respect to running time, COMBI cannot compete with 

traditional GWAS methods like raw p-value thresholding. However, as we stress in the paper, 

we believe that the contribution of the present work lies in providing a new method that 

considerably improves power and precision rather than in improving running time. 
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