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GREEDY TREE BREAKING AND REFINEMENT BY INSERTION

Optimally breaking a forest into small components can be solved in polynomial time [1]. Empirically a greedy
tree-breaking procedure works very well. In such a greedy dynamics we iteratively find and remove the node which
leads to the largest drop in the size of the largest connected component.

In more details, the largest component caused by removal of each node in a tree can be computed iteratively (see,
e.g. [2, 3]). Starting from a leaf, each node sends a message to each of its neighbors, reporting the largest component
caused by removing the edge between them. After the messages arrive at the root of the tree, we can then easily
identify the node such that its removal decreases maximally the component size.

For the refinement, we also use a simple greedy strategy to insert back some of the removed nodes [2, 3]. In each
step of re-insertion, we calculate the increase of the component size after the insertion of a node, and then identify
the node which gives the smallest increase.

DANGLING-TREE PROBLEM OF THE CI INDEX

The collective influence index was proposed in [4] as a measure of node’s importance in influence spreading. At a
given level ` the CI index of a node i is defined as

CI`(i) = (di − 1)
∑
j∈∂`

i

(dj − 1) , (1)

where di is the degree of node i in the remaining network, and ∂`i denotes the set of nodes that are at distance ` from
node i. In the CI algorithm, a small fraction f (e.g., f = 0.001) of nodes with the highest CI values are removed from
the network and then the CI indices of the remaining nodes are updated. The authors of [4] claimed that the CI`(i)
approximates the eigenvector of the non-backtracking operator [5].

However we can see immediately that CI has a drawback which does not reflect the functioning of the non-
bactracking operator. We illustrate this in an example network shown in Fig. ??. Without loss of generality let
us consider ` = 2, then it is easy to see that the node i of this figure has CI2(i) > 0 and in some cases can be larger
than the CI indices of the other nodes. So the CI algorithm may say node i is more important to remove first, as its
removal decreases mostly the eigenvalue of the non-backtracking matrix. After a moment of thought we see that this
conclusion is not correct, as removing node i does not change the eigenvalue of the non-backtracking matrix at all,
because the eigenvalue of the non-backtracking matrix is the same as the 2-core of the network, while node i does not
belong to the 2-core of the network.

COMPARING CORE-HD AND CORE-CI

Since performing node deletion on the network 2-core is the key of CoreHD’s good performance, it is natural to
expect that the CI algorithm can also be improved by adding the 2-core reduction process. To confirm this, we
implement an extended CI algorithm (named as CoreCI) as follows. At each elementary node removal step, (1) the
2-core of the remaining network is obtained by cutting leaves recursively as in CoreHD, and then (2) the CI index of
each node in the 2-core is computed by considering only nodes and links within this 2-core, and finally (3) a node with
the highest CI index is deleted from the 2-core. Similar to CoreHD and BPD, after a forest is produced by CoreCI,
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TABLE I. Comparing the dismantling performance of CoreHD and CoreCI on ER, RR, and SF random networks. Each data
point is the mean and standard deviation of ρ (the fraction of deleted nodes) over 96 dismantling solutions obtained by CoreHD
or CoreCI on 96 independent network instances of size N = 105 and mean degree c (ER and SF) or degree K (RR). The ball
radius of CoreCI is fixed to ` = 4. The SF network instances are generated by the static method [6].

ER RR SF (γ = 3.0)
c CoreHD CoreCI K CoreHD CoreCI c CoreHD CoreCI

3.0 0.1413(3) 0.1427(3) 3 0.25043(3) 0.2539(2) 3.0 0.0886(3) 0.0893(3)
4.0 0.2226(4) 0.2249(4) 4 0.3464(2) 0.3564(3) 4.0 0.1373(4) 0.1383(4)
5.0 0.2908(4) 0.2937(4) 5 0.4110(2) 0.4239(3) 5.0 0.1820(5) 0.1833(5)
6.0 0.3476(4) 0.3509(4) 6 0.4605(3) 0.4733(3) 6.0 0.2222(5) 0.2237(5)
7.0 0.3954(4) 0.3990(4) 7 0.5004(3) 0.5128(3) 7.0 0.2582(5) 0.2560(5)
8.0 0.4361(4) 0.4400(5) 8 0.5335(3) 0.5455(3) 8.0 0.2906(6) 0.2925(6)
9.0 0.4712(4) 0.4752(5) 9 0.5617(3) 0.5733(3) 9.0 0.3196(5) 0.3217(5)

10.0 0.5018(4) 0.5060(4) 10 0.5861(3) 0.5974(4) 10.0 0.3460(6) 0.3481(6)
11.0 0.5288(4) 0.5330(4) 11 0.6075(3) 0.6182(4) 11.0 0.3699(6) 0.3723(6)
12.0 0.5527(4) 0.5571(4) 12 0.6264(3) 0.6367(3) 12.0 0.3918(6) 0.3943(6)

we then perform a greedy tree-breaking process if necessary and then re-insert some nodes back to the network as
long as the size of the largest connected component is still below the threshold value of (say) 0.01N .

We indeed observe that CoreCI performs considerably better than the original CI algorithm. However it does not
outperform CoreHD. We list in Table I the comparative results of CoreHD versus CoreCI on ER, RR, and SF random
networks. Notice that the fractions ρ of deleted nodes by CoreHD and CoreCI are very close to each other, with
CoreHD performs slightly better. These results clearly demonstrate that the CI index is not a better indicator of
node importance than the degree in the 2-core. Because repeatedly computing the CI indices within the 2-core is still
very time-consuming, we recommend CoreHD rather than CoreCI as an efficient heuristic for practical applications.
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