Supplementary Information

Fabrication of WS₂/GaN p-n Junction by Wafer-Scale WS₂ Thin Film Transfer

Yang Yu¹, Patrick W. K. Fong¹, Shifeng Wang¹, and Charles Surya^{*1} ¹Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong, China E-mail: charles.surya@polyu.edu.hk

Figure S1 shows the Raman spectrum of that the A_{1g} mode located at 421.8 cm⁻¹ represents an out-of-plane vibration for the S atoms whereas the E_{2g}^1 mode located at 356.9 cm⁻¹ comprises the in-plane displacement of W and S atoms, and the second-order phonon mode is labeled as the 2LA.¹⁻² The FWHM of A_{1g} mode for type A film is 4.03 cm⁻¹, which is 52% wider than the FWHM of A_{1g} mode for type B film which is 2.65 cm⁻¹. The Raman intensity ratio of $I(E_{2g}^1)/I(A_{1g})$ for type B film is 0.617, which is reduced to 0.454 for type C film, as shown in Figure S2, implying the in-plane vibration is decreased compared to the out-of-plane vibration, which should be due to the sub-grain disorientation or smaller-sized crystallites of the WS₂ film grown on GaN substrate.

Figure S1. Raman spectrum of WS_2 grown without (black dash line) and with (red solid line) Ni promoter on sapphire substrate

.

Figure S2. Raman spectrum of WS₂ grown on sapphire substrate (red solid line) and on GaN/sapphire substrate (blue dash line) with Ni promoter.

Figure S3. Schematic diagram of the experimental setup used for the growth of WS_2 thin films.

Figure S4. Temperature profile of the CVD process.

Figure S5 is the schematic diagram showing the etching-free wafer-scale transfer process for type II WS₂. It is noted that type II WS₂, with the vdW planes parallel to the substrate, is a key factor in the success of wafer-scale transfer. Type I WS₂, with its vdW planes perpendicular to substrate, prevents the water molecules to penetrate evenly into the film-substrate interface.

Figure S5. Schematic diagram of the etching-free transfer of type II WS₂.

Figure S6. EDX analysis on a 500nm NiS_x residue.

Table S1. Summary of the EDX analysis on a 500nm NiS_x residue.

Element	Weight%	Atomic%
СК	11.79	38.69
Al K	12.25	17.90
S K	19.97	24.55
Ni K	15.85	10.64
W M	13.32	2.86
Au M	26.82	5.37
Totals	100.00	

Reproducibility of turn-on voltage of the p-n junctions can be well controlled by our transfer fabrication method, and the oscillations the carrier mobility of WS_2 thin film were at an acceptable level. 3 group data of carrier mobility of WS_2 thin film at the same growth condition and turn-on voltage of 3 different kind of p-n junctions are listed in the Table S2 and Table S3.

Table S2. The carrier mobility of three groups of WS_2 thin films at the same growth condition.

WS ₂ thin film	Carrier mobility	
with Ni promoter	[cm ² /Vs]	
1	63.3	
2	58.7	
3	60.1	

-	0 1 5	
Back-transferred	Leakage current	Turn-on voltage
p-n junction	[mA/cm ²]	[V]
1	1.15	0.50V
2	2.88	0.45V
3	3.75	0.51V
Top-transferred	Leakage current	Turn-on voltage
p-n junction	[mA/cm ²]	[V]
1	0.0296	1.20V
2	0.0971	1.07V
3	0.0187	1.22V
As-grown	Leakage current	Turn-on voltage
p-n junction	[mA/cm ²]	[V]
1	92.4	0.17V
2	80.6	0.16V
3	73.8	0.17V

Table S3. The leakage current and turn-on voltage of three groups of back-transferred, top-transferred and as-grown p-n junctions.

References

- Zhao, W. J. *et al.* Lattice dynamics in mono- and few-layer sheets of WS₂ and WSe₂. *Nanoscale* 5, 9677-9683 (2013).
- Sourisseau, C., Cruege, F., Fouassier, M. & Alba, M. Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS₂. *Chem. Phys.* 150, 281-293 (1991).