Table S2

Estimated parameters under different codon substitution models for OXTR, AVPR1a, AVPR1b, and AVPR2.	Estimated parameters u	under different codon substitution	models for OXTR,	AVPR1a, AVPR1b, and AVPR2.
---	------------------------	------------------------------------	------------------	----------------------------

	Model	dN/dS	Estimated parameters	е	p value
AVPR1a	M1a: Nearly Neutral	0.2000	p _o =0.84972, (p ₁ =0.15028)	-10155.10	
			(ω ₀ =0.05852), (ω ₁ =1.00000)		>0.999
	M2a: Selection	0.2000	po=0.84972, p1=0.12155, (p2=0.02873)	-10155.10	
			(ω_0 =0.05852), (ω_1 =1.00000), ω_2 =1.00000		
AVPR1b	M1a: Nearly	0.2104	p _o =0.85767, (p ₁ =0.14233)	-11068.99	
	Neutral		PO/(P//		
			(ω ₀ =0.07939), (ω ₁ =1.00000)		0.4
	M2a: Selection	0.1247	p ₀ =0.85731, p ₁ =0.13855, (p ₂ =0.00414)	-11068.11	
			(ω ₀ =0.07985), (ω ₁ =1.00000), ω ₂ =2.65042		
AVPR2	M1a: Nearly	0.1678	p ₀ =0.86382, (p ₁ =0.13618)	-5563.60	
	Neutral		PO/(P//		
			(ω ₀ =0.03663), (ω ₁ =1.00000)		>0.999
	M2a: Selection	0.1678	p ₀ =0.86381, p ₁ =0.00588, (p ₂ =0.13030)	-5563.60	
			$(\omega_0=0.03663), (\omega_1=1.00000), \omega_2=1.00000$		
OXTR	Μ7: β	0.0617	[p=0.17515, q=2.45228]	-4316.14	>0.999
			po=0.99688,		
	Μ8: β & ω	0.0620	(p ₂ =0.00312), ω ₂ =1.00000	-4316.09	

p0 = proportion of sites where $\omega < 1$, p1 = proportion of sites where $\omega = 1$, and p2 = proportion of sites where $\omega > 1$ (selection models only); $\omega 0 < 1$ (negative selection), $\omega 1 \cong 1$ (neutral or relaxing selection), and $\omega 2 > 1$ (positive selection). $\ell = \text{Log}$ likelihood values. Likelihood ratio tests were performed between neutral models (M1a- nearly neutral, and M7 - beta) and models that identify positive selection (M2a - selection, and M8, $\beta \& \omega$ - beta +selection). The comparisons M1 vs M2 and M7 vs M8 had 2 degrees of freedom. Within parentheses: fixed parameters; within brackets: ^βparameters p and q. dN/dS = non-synonymous/synonymous rate ratio.