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MediBoost: a Patient Stratification Tool for
Interpretable Decision Making in the Era of Precision

Medicine

Supplemental Material

In this Supplemental Material, we first describe the representation of Ad-
aBoost with decision stumps as a decision tree, and then derive the MediBoost
framework based on this representation in combination with gradient boost-
ing and fuzzy logic. We provide details on two MediBoost algorithms: MediAd-
aBoost (MAB), which is based on AdaBoost, and LikelihoodMediBoost (LMB),
which is based on boosting with the log-binomial likelihood loss function. We
also show how the MediBoost framework can easily incorporate regulariza-
tion and shrinkage. Finally, we describe our experimental methodology and
present additional results comparing MediBoost to standard decision tree in-
duction and boosted ensembles.

S1 Introduction
In this supplement, we derive the MediBoost framework for growing interpretable decision
trees via boosting. The resulting MediBoost trees obtain comparable accuracy to current en-
semble methods, such as AdaBoost and Random Forests, while maintaining the interpretability
so necessary for their application to fields like clinical medicine.

We focus on a classification setting, in which we are given a set of training data X =
{x1, . . . ,xN} with corresponding binary labels y = {y1, . . . , yN} such that yi ∈ {−1,+1}.
Each instance xi ∈X lies in some d-dimensional feature space X , which may include a mix of
real-valued, discrete, and categorical attributes. We assume that the labels are given according
to some “true” function F ∗ : X 7→ {−1,+1}, and our goal is to obtain an approximation F of
that true function from the labeled training data under some loss function L(y, F (x)).

In addition, we use a notion of interpretability that is common in the medical community,
considering a classifier to be interpretable if we can explain its classification by a conjunction
of a few simple questions about the data. Under this definition, standard decision trees (such
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as those learned by ID3 or CART) are considered interpretable. In contrast, typical boost-
ing methods and Random Forests produce an unstructured set of weighted hypotheses that can
obfuscate correlations among the features, sacrificing interpretability for improved predictive
performance. We show that MediBoost trees are interpretable, while obtaining predictive per-
formance comparable to ensemble methods.

S2 Representation of AdaBoost as a Decision Tree
As a precursor to the MediBoost framework, we first consider a method for representing an
AdaBoost ensemble classifier with decision stumps as an interpretable decision tree. However,
this naive representation has substantial computational and space complexities that are reduced
in the MediBoost algorithms described in later sections.

AdaBoost (9) iteratively trains a set of T weak learners {h1, . . . , hT} to yield an ensemble
classifier F (x) that predicts the class label for an observed instance x as:

F (x) = sign

(
T∑
t=1

βtht(x, at)

)
, (1)

where predicate at represents a threshold or equivalence test on a particular feature of the vector
x (e.g., at ≡ “xj > 3.4′′), and each ensemble member contributes a prediction ht(x, at) ∈
{−1,+1} with a weight of βt ∈ R that depends upon its training error. Since each ht outputs a
binary prediction, we can rewrite the model learned by AdaBoost as a complete binary tree with
height T by assigning ht to all internal nodes at depth t− 1 with a corresponding weight of βt.
The decision at each internal node is given by ht(x, at), and the prediction at each terminal node
is given by F (x) — the characteristic equation of AdaBoost (9). Essentially, each path from
the root to a terminal node represents the same ensemble, but tracking the unique combination
of predictions made by each ht. The resulting tree is illustrated in Fig. S1.

The MediBoost framework is based upon this decision tree representation of a boosted en-
semble of decision stumps, and enables us to adapt different boosting algorithms to create dif-
ferent MediBoost algorithms. The trivial representation of AdaBoost as a tree, however, likely
results in trees that are accurate but too large to be interpretable. MediBoost remedies this issue
by 1.) introducing diversity into the ensemble represented by each path through the tree via a
membership function that accelerates convergence to a decision, and 2.) pruning the tree in a
manner that does not affect the tree’s predictions, as explained below.

S3 MediAdaBoost (MAB)
The MediBoost framework merges the concepts of decision trees, boosting, and fuzzy logic

by growing decision trees using boosting with the addition of an acceleration term based on
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Algorithm 1 MediAdaBoost(X,y,wt,D, t, T, Ft)
Inputs:
• training data X = {x1, . . . ,xn} with corresponding labels y = {y1, . . . , yn},

where xi ∈ X for some d-dimensional feature space X , and yi ∈ {−1,+1}
• instance weights wt ∈ Rn, which defaults to a uniform distribution initially
• valid domain of each attribute D = {D1, . . . ,Dd} (for continuous attributes, Di is

a valid interval; for discrete or categorical attributes, Di is a set of valid values)
• node index t, which defaults to 1
• total number of boosting iterations T
• accumulated weighted sum of predictions Ft, which defaults to 0 initially

Outputs: the root node of a decision tree
1: Create a root node Nt for the subtree
2: If t > T , Return the single-node subtree Nt with label sign(Ft)
3: Fit weak classifier ht(x, at) : X 7→ {−1,+1} by finding the stump with decision rule at on

attribute attr that minimizes the weighted least square error on (X,y) with weights wt

4: Calculate the error of the node as err t ←
∑

iwt(i)1(yi 6= ht(xi, at))

5: Set βt ← 1
2
log
(

1−err t
err t

)
6: Update the instance weights for the left (-) and right (+) subtrees:

a. w−t+1(i)← 1
Z−
t

wt(i) exp (−βtyiht(xi, at)− A1(ht(xi, at) = +1)) ∀xi ∈X

b. w+
t+1(i)← 1

Z+
t

wt(i) exp (−βtyiht(xi, at)− A1(ht(xi, at) = −1)) ∀xi ∈X ,

where Z−t and Z+
t normalize w−t+1 and w+

t+1 respectively to be distributions, and the accel-
eration constant A penalizes instances where ht(x, at) disagrees with the branch.

7: Let D(at) represent the domain of attribute attr when at is true, and Dc(at) its complement
8: Compute valid domains for all attributes for the left (-) and right (+) subtrees:

a. Let D−attr ← Dattr

⋂
Dc(at) and D− ←

{
D1, . . . ,Dattr−1,D

−
attr,Dattr+1, . . . ,Dd

}
b. Let D+

attr ← Dattr

⋂
D(at) and D+ ←

{
D1, . . . ,Dattr−1,D

+
attr,Dattr+1, . . . ,Dd

}
9: If D−attr 6= ∅, compute the left subtree recursively:
Nt.left ← MediAdaBoost

(
X,y,w−t+1,D

−, t+ 1, T, Ft − βt
)

10: If D+
attr 6= ∅, compute the right subtree recursively:

Nt.right ← MediAdaBoost
(
X,y,w+

t+1,D
+, t+ 1, T, Ft + βt

)
11: If D−attr = ∅, prune impossible left branch by returning Nt.right

Else If D+
attr = ∅, prune impossible right branch by returning Nt.left

Else Return the subtree Nt
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Figure S1: The model learned by AdaBoost represented as a decision tree.

membership to a branch. This acceleration term diversifies the ensembles represented by the
tree and accelerates each path’s convergence to a prediction at a terminal node.

First, we introduce the MediAdaBoost (MAB) algorithm as Algorithm 1, which grows a
decision tree via a modified version of AdaBoost (9). At each node of the tree, MAB trains
a weak learner to focus on the data instances that previous nodes have misclassified, as in
AdaBoost (Algorithm 1, lines 3-6). In addition, MAB incorporates an acceleration term (second
terms in lines 6a and 6b) to penalize instances whose labels disagree with the tree branch,
focusing each branch more on instances that seem to have higher probability of following the
corresponding path, as in fuzzy logic (15). While growing the tree, it also prunes (line 11)
impossible paths based on previous decisions on the path to the root (lines 7-8).

Now we show that this algorithm is obtained if the expected value of the exponential loss
function L(F ) = E

(
e−yF (x)

)
is minimized with respect to the ensemble classification rule

F (x) using an additive logistic regression model via Newton-like updates (10). Our argument
is similar to that presented by Friedman et al. (10), but includes the acceleration term based on
a membership function to diversify the ensembles and speed their convergence.

Let L(F ) = E
(
e−yF (x)

)
be the loss function of the MediBoost tree at an arbitrary terminal

node NT . Now, let us assume that we have a current estimate of the function FT−1(x) corre-
sponding to a tree of depth T −1 and seek to improve this estimate by adding an additional split
at one of the terminal nodes NT−1 that will define two more terminal nodes, children of NT−1,
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using an additive step:
FT (x) = FT−1(x) + βThT (x, aT ) , (2)

where βT is a constant, and hT (x, aT ) ∈ {−1,+1} represents the classification of each obser-
vation with decision predicate aT to split the observations at NT . The new loss function will
be:

L(FT−1(x) + βThT (x, aT )) = E
(
exp(−yFT−1(x)− yβThT (x, aT ))

)
. (3)

Taking into account that FT−1(x) is fixed and expanding exp (−yFT−1(x)− yβThT (x, aT ))
around hT = hT (x, aT ) = 0 (for some predicate aT ) as a second-order polynomial (for a fixed
βT and x) we obtain:

L(FT−1(x) + βThT ) ≈ E
(
e−yFT−1(x)

(
1− yβThT + β2

Ty
2h2T/2

))
. (4)

Since y ∈ {−1,+1} and hT ∈ {−1,+1}, we have y2 = 1 and h2T = 1, so:

L(FT−1(x) + βThT ) ≈ E
(
e−yFT−1(x)

(
1− yβThT + c2/2

))
, (5)

where c is a constant. Minimizing Equation 5 with respect to hT for a fixed x yields:

aT = argmin
a

Ew

(
1− yβThT (x, a) + c2/2 | x

)
, (6)

where Ew (· | x) refers to the weighted conditional expectation in which the weight of each
instance (xi, yi) is given by

w(i) = e−yFT−1(xi)M(xi, T − 1) ,

with a membership function or acceleration term, M(x, T − 1), that emphasizes instances with
predicted labels that agree with the corresponding branch of the tree. The introduction of this
function is the key step that leads to MediAdaBoost, differentiates our algorithm from Discrete
AdaBoost (10), and makes each path through the tree converge to a different ensemble of nodes.

Following similar steps taken by Friedman et al (10), we have that if βT > 0, Equation 6 is
equivalent to

aT = argmax
a

Ew(yhT (x, a) | x)

= argmin
a
−Ew(yhT (x, a) | x) = argmin

a
Ew(y − hT (x, a))2 /2− 1 , (7)

where we have again taken into consideration that y2 = 1 and (hT (x, a))
2 = 1.

Equation 7 indicates that in order to minimize the expected loss, hT (x, aT ) can be obtained
using a weighted least square minimization over the training data. Given hT (x, aT ), we can
obtain βT as:

βT = argmin
β

Ew

(
exp (−βyhT (x, aT ))

)
, (8)
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which can be shown to be:

βT =
1

2
log

(
1− errT
errT

)
, (9)

where errT = Ew

(
1(yi 6= hT (xi, aT ))

)
with 1(p) =

{
1 if predicate p is true
0 otherwise .

Therefore, the new function atNT is given by FT (x) = FT−1(x)+
1
2
log
(
1−errT
errT

)
hT (x, aT ),

where hT (x, aT ) is the decision stump that results from solving Equation 7. Let {N1, . . . , NT}
denote the path from the root node to NT . To yield MAB, we set the acceleration term to be:

M(x, T − 1) = exp

(
−A

T−1∑
t=1

1
(
ht(x, at) = −child(Nt, Nt+1)

))
, (10)

whereA is an acceleration constant and child(Nt, Nt+1) =

{
−1 if Nt.left = Nt+1

+1 if Nt.right = Nt+1
, thereby

penalizing the weight of x by e−A each time the instance is predicted to belong to a different
path. If A is set to 0, then every path through the resulting tree is identical to the AdaBoost
ensemble for the given problem. As the constant A increases, the resulting MAB tree con-
verges faster and the paths through the tree represent increasingly diverse ensembles. MAB
also prunes branches that are impossible to reach by tracking the valid domain for every at-
tribute and eliminating impossible-to-follow paths during the training process. As a final step,
we can post-prune the tree bottom-up by recursively eliminating the parent nodes of leaves with
identical predictions, further compacting the MediBoost tree.

S4 Generalization of MediBoost’s Loss Function
via Gradient Boosting

In this section, we generalize the MediBoost framework to any loss function using the gradient
boosting framework. As in the case of MAB, we assume that we have a current estimate of the
function FT−1(x) corresponding to a tree of depth T − 1 and seek to improve this estimate by
adding an additional split at one of the terminal nodes NT−1 that will define two more terminal
nodes, children of NT−1, using an additive step. The function at depth T is then given by
FT (x) = FT−1(x) + ρTh

′
T (x, aT , bT ), where ρT ∈ R and the weak learner h′T is given by:

h′T (x, aT , bT ) = b−T 1(x ∈ R−) + b+T 1(x ∈ R+)

=
∑

j∈{−,+}

b jT1(x ∈ Rj) , (11)

where bT = [b−T , b
+
T ] ∈ R2, and R− and R+ are disjoint partitions of X defined by the predicate

aT . We can define a loss function over one observation (xi, yi) as:

`(yi, FT (xi)) = `
(
yi, FT−1(xi) + ρTh

′
T (xi, aT , bT )

)
, (12)
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and a loss function over all observations as

L =
N∑
i=1

`
(
yi, FT−1(xi) + ρTh

′
T (xi, aT , bT )

)
M(xi, T − 1) , (13)

where M(xi, T − 1) is a membership function of the observation xi at node NT−1, as defined
in the previous section. We are interested in finding {ρT , aT , bT} that minimize Equation 13,
which can be interpreted as the expected value of the loss function over a discrete number of
observations.

Now, using a greedy stage-wise approach to minimize Equation 13 and following Fried-
man’s gradient boosting formulation (11), ρTh′T (xi, aT , bT ) can be interpreted as the best greedy
step to minimize Equation 13. The step direction is the decision stump h′T (xi, aT , bT ), param-
eterized by {aT , bT}, and ρT is the coefficient. We, therefore, seek to find ρTh′T (xi, aT , bT )
that is closest to the gradient ∂`(yi,FT−1(xi))

∂FT−1(xi)
. According to Friedman (11), one solution is to

find {ρT , aT , bT} that minimizes the quadratic loss to approximating the “pseudo-responses”{
ỹi = −∂`(yi,FT−1(xi))

∂FT−1(xi)

}N
i=1

; in our case, this can be accomplished by solving

{ρT , aT , bT} = argmin
ρ,a,b

N∑
i=1

[
−∂`(yi, FT−1(xi))

∂FT−1(xi)
− ρh′T (xi, a, b)

]2
M(xi, T − 1) . (14)

To approximate the solution of Equation 14 efficiently (11), we first find the predicate aT
by fitting the decision stump to the training data using the pseudo-responses as the labels:
{xi, ỹi}Ni=1. Once aT has been found, we can use the quadratic Taylor expansion of Equation 12:

`(yi, FT (xi)) = `(yi, FT−1(xi)) +
∂`(yi, FT−1(xi))

∂FT−1(xi)
ρTh

′
T (xi, aT , bT )

+
1

2

∂2`(yi, FT−1(xi))

∂2FT−1(xi)
(ρTh

′
T (xi, aT , bT ))

2

(15)

in combination with Equation 13 to obtain the values of ρT and bT . For notational convenience,
let the first and second derivatives of the loss function be denoted by gi =

∂`(yi,FT−1(xi))

∂FT−1(xi)
and

ki =
∂2`(yi,FT−1(xi))

∂2FT−1(xi)
. Equation 13 can then be rewritten as:

L =
N∑
i=1

[
`(yi, FT−1(xi)) + giρTh

′
T (xi, aT , bT ) +

ki
2
(ρTh

′
T (xi, aT , bT ))

2

]
M(xi, T−1) . (16)

Finally, let us realize that:

ρTh
′
T (xi, aT , bT ) =

∑
j∈{−,+}

c jT1(xi ∈ Rj) , (17)

7



where c−T = ρT b
−
T and c+T = ρT b

+
T . Substituting Equation 17 into Equation 16, we have:

L =
N∑
i=1

[
`(yi, FT−1(xi)) + gi

∑
j∈{−,+}

c jT1(xi ∈ Rj)

+
1

2
ki

(∑
j∈{−,+}

c jT1(xi ∈ Rj)

)2 ]
M(xi, T − 1) .

(18)

We are interested in finding the c−T and c+T that minimize Equation 18 given the predicate aT
we fit to the data labeled with the pseudo-responses. We can, therefore, drop out terms from the
objective function that do not depend on c−T and c+T , and rearrange to obtain:

L =
∑

j∈{−,+}

c jT ∑
xi∈Xj

giM(xi, T − 1) +
1

2

(
c jT
)2∑

xi∈Xj

kiM(xi, T − 1)

 , (19)

where Xj = X
⋂
Rj represents the observations that belong to Rj . Finally, we can find c−T and

c+T by solving:

{c−T , c
+
T } = arg min

c−T ,c
+
T

∑
j∈{−,+}

[
G j
T c

j
T +

1

2
K j
T

(
c jT
)2]

, (20)

where we have defined

G j
T =

∑
xi∈Xj

giM(xi, T − 1) K j
T =

∑
xi∈Xj

kiM(xi, T − 1) .

The solution to Equation 20 is then given by:

c−T = −G
−
T

K−T
c+T = −G

+
T

K+
T

, (21)

finishing the derivation. The complete general MediBoost framework is given as Algorithm 2.

S5 Regularization and Shrinkage in MediBoost
The formulation of the MediBoost framework for general loss functions also makes MediBoost
suitable for regularization—a task that is more difficult on CART or ID3. In fact in those cases,
regularization is usually limited to controlling the depth of the tree.

To incorporate regularization into the MediBoost framework as presented in Section S4, we
can simply add an L2-norm penalization on c−T and c+T to Equation 20:

{c−T , c
+
T } = arg min

c−T ,c
+
T

∑
j∈{−,+}

[
G j
T c

j
T +

1

2
K j
T

(
c jT
)2

+ λ
(
c jT
)2]

, (22)
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Algorithm 2 MediBoost(X,y,wt, LR, λ,D, t, T, Ft−1, Ct)
Inputs:
• training data X = {x1, . . . ,xn} with corresponding labels y = {y1, . . . , yn},

where xi ∈ X for some d-dimensional feature space X , and yi ∈ {−1,+1}
• instance weights wt ∈ Rn, which defaults to a uniform distribution initially
• learning rate LR ∈ (0, 1], and regularization constant λ ∈ [0,+∞]
• valid domain of each attribute D = {D1, . . . ,Dd} (for continuous attributes, Di is

a valid interval; for discrete or categorical attributes, Di is a set of valid values)
• node index t, which defaults to 1, and the total number of boosting iterations T
• prediction function Ft−1(x) ∈ RN , which defaults initially to F0(x) =

1
2
log 1+mean(y)

1−mean(y)

• accumulated sum of coefficients Ct, which defaults to 0
Outputs: the root node of a decision tree

1: Create a root node Nt for the subtree
2: If t > T , Return the single-node subtree Nt with label sign(Ct)
3: Fit weak classifier h′t(x, at, bt) : X 7→ R by finding the stump with decision rule at on

attribute attr that minimizes the weighted least square error on approximating the pseudo-
responses −∂`(y,Ft−1(x))

∂Ft−1(x)
over X with observation weights wt by solving

at ← argmin
a

N∑
i=1

wt(i)

[
−∂` (yi, Ft−1(xi))

∂Ft−1(xi)
− h′t(xi, a))

]2
4: Update the node weights for the left (-) and right (+) subtrees. For j ∈ {−,+}, do:

c jt ← −
LR×

∑
xi∈Xj

∂`(yi,Ft−1(xi))
∂Ft−1(xi)

M(xi, t− 1)

λ+
∑

xi∈Xj

∂2`(yi,Ft−1(xi))
∂2Ft−1(xi)

M(xi, t− 1)

5: Let D(at) represent the domain of attribute attr when at is true, and Dc(at) its complement
6: Compute valid domains for all attributes for the left (-) and right (+) subtrees:

a. Let D−attr ← Dattr

⋂
Dc(at) and D− ←

{
D1, . . . ,Dattr−1,D

−
attr,Dattr+1, . . . ,Dd

}
b. Let D+

attr ← Dattr

⋂
D(at) and D+ ←

{
D1, . . . ,Dattr−1,D

+
attr,Dattr+1, . . . ,Dd

}
7: Update the instance weights for the left (-) and right(+) subtrees:
∀xi ∈X, do: w−t+1(i)←M(xi, t) ∈ R and w+

t+1(i)←M(xi, t) ∈ R
8: Ft(xi)← Ft−1(xi) + c−t 1(¬at(xi)) + c+t 1(at(xi)) ∀xi ∈X
9: If D−attr 6= ∅, compute the left subtree recursively:
Nt.left ← MediBoost

(
X,y, LR, λ,w−t+1,D

−, t+ 1, T, Ft, Ct + c−t
)

10: If D+
attr 6= ∅, compute the right subtree recursively:

Nt.right ← MediBoost
(
X,y, LR, λ,w+

t+1,D
+, t+ 1, T, Ft, Ct + c+t

)
11: If D−attr = ∅, prune impossible left branch by returning Nt.right

Else If D+
attr = ∅, prune impossible right branch by returning Nt.left

Else Return the subtree Nt
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with the subsequent coefficients given by:

c−T = − G−T
K−T + λ

c+T = − G+
T

K+
T + λ

,

where the regularization parameter λ ∈ [0,∞]. Setting λ = 0 eliminates regularization.
The concept of shrinkage or a learning rate, which is regularly used in gradient boosting,

can also be applied to MediBoost. In this case, the solutions to Equation 22 will be given by:

c−T = −LR×G
−
T

K−T + λ
c+T = −LR×G

+
T

K+
T + λ

, (23)

where 0 < LR ≤ 1 is the shrinkage or learning rate constant, typically assumed to be 0.1
(11,14). Each of these regularization methods can be used independently of each other. In
the gradient boosting community, the use of shrinkage is the most popular and it has been
interpreted as equivalent to L1-norm penalization on the weights (14).

Algorithm 2 states the general form of the MediBoost framework, incorporating the general
loss function formulation from Section S4, and the regularization and shrinkage techniques dis-
cussed above. The general MediBoost framework also eliminates impossible paths through the
tree during the learning process by tracking the valid domain of each attribute, and support post-
pruning to eliminate unnecessary subtrees that always yield the same prediction, as described
in Section S3. Using this general framework, we can create various MediBoost algorithms by
choosing specific loss functions for the boosting process, as shown in the next section.

S6 LikelihoodMediBoost (LMB)
In this section, we explore a concrete instantiation of the general MediBoost framework,

using negative binomial log-likelihood as the loss function and a similar membership function
as the one used in MAB. Gradient boosting with binomial log-likelihood typically outperforms
AdaBoost (11), and results in a more accurate algorithm with fewer ensemble members. The
negative binomial log-likelihood loss function is given by.

`(yi, F (xi)) = log (1 + exp(−2yiF (xi))) .

Using the log-likelihood loss, F (xi) can also be interpreted as one-half of the log odds ratio:

F (xi) =
1

2
log

(
Pr(y = 1 | xi)

Pr(y = −1 | xi)

)
, (24)

which justifies classifying xi as sign(F (xi)).
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Algorithm 3 LikelihoodMediBoost(X,y,wt, LR, λ,D, t, T, Ft−1, Ct,Mt−1)
Inputs:
• training data X = {x1, . . . ,xn} with corresponding labels y = {y1, . . . , yn},

where xi ∈ X for some d-dimensional feature space X , and yi ∈ {−1,+1}
• instance weights wt ∈ Rn, which defaults to a uniform distribution initially
• learning rate LR ∈ (0, 1], and regularization constant λ ∈ (0,+∞)
• valid domain of each attribute D = {D1, . . . ,Dd} (for continuous attributes, Di is

a valid interval; for discrete or categorical attributes, Di is a set of valid values)
• node index t, which defaults to 1, and the total number of boosting iterations T
• prediction function Ft−1(x) ∈ RN , which defaults initially to F0(x) =

1
2
log 1+mean(y)

1−mean(y)

• accumulated sum of coefficients Ct, which defaults to 0
• cumulative acceleration term Mt−1(x) ∈ RN , which defaults initially to M0(x) = 1

Output: the root node of a decision tree
1: Create a root node Nt for the subtree
2: If t > T , Return the single-node subtree Nt with label sign(Ct)
3: Fit weak classifier h′t(x, at) : X 7→ {−1,+1} by finding the stump with decision rule
at on attribute attr that minimizes the weighted least square error on approximating the
pseudo-responses −∂`(y,Ft−1(x))

∂Ft−1(x)
over X with observation weights wt by solving

at ← argmin
a

N∑
i=1

wt(i)

[
−2yi

(1 + e2yiFt−1(xi))
− h′t(xi, a)

]2
4: Update the node weights for the left (-) and right (+) subtrees. For j ∈ {−,+}, do:

c jt ← −
LR×

∑
xi∈Xj

giMt−1(xi)

λ+
∑

xi∈Xj
‖gi‖ (2− ‖gi‖)Mt−1(xi)

where gi = −2yi
(1+exp(2yiFt−1(xi)))

5: Let D(at) represent the domain of attribute attr when at is true, and Dc(at) its complement
6: Compute valid domains for all attributes for the left (-) and right (+) subtrees:

a. Let D−attr ← Dattr

⋂
Dc(at) and D− ←

{
D1, . . . ,Dattr−1,D

−
attr,Dattr+1, . . . ,Dd

}
b. Let D+

attr ← Dattr

⋂
D(at) and D+ ←

{
D1, . . . ,Dattr−1,D

+
attr,Dattr+1, . . . ,Dd

}
7: Update the instance weights for the left (-) and right (+) subtrees:

a. w−t+1(i)←
wt(i)

Z−
t

exp(−A1(at(xi)))
exp(−A1(¬at(xi)))+exp(−A1(at(xi)))

∀xi ∈X

b. w+
t+1(i)←

wt(i)

Z+
t

exp(−A1(¬at(xi)))
exp(−A1(¬at(xi)))+exp(−A1(at(xi)))

∀xi ∈X

where Z−t and Z+
t are normalization factors to make w−t+1 and w+

t+1 distributions.
8: Ft(xi)← Ft−1(xi) + c−t 1(¬at(xi)) + c+t 1(at(xi)) ∀xi ∈X
9: M−

t (xi)←Mt−1 exp(−A1(at(xi))) and M+
t (xi)←Mt−1 exp(−A1(¬at(xi))) ∀xi ∈X

10: If D−attr 6= ∅, compute the left subtree recursively:
Nt.left ← LikelihoodMediBoost

(
X,y, LR, λ,w−t+1,D

−, t+ 1, T, Ft, Ct + c−t ,M
−
t

)
11: If D+

attr 6= ∅, compute the right subtree recursively:
Nt.right ← LikelihoodMediBoost

(
X,y, LR, λ,w+

t+1,D
+, t+ 1, T, Ft, Ct + c+t ,M

+
t

)
12: If D−attr = ∅, prune impossible left branch by returning Nt.right

Else If D+
attr = ∅, prune impossible right branch by returning Nt.left

Else Return the subtree Nt
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To incorporate this loss function into the MediBoost framework, we first take the first and
second derivative of the loss function:

gi =
∂`(yi, F (xi))

∂F (xi)
=

−2yi
(1 + exp(2yiF (xi)))

(25)

ki =
∂2`(yi, F (xi))

∂2F (xi)
= ‖gi‖ (2− ‖gi‖) . (26)

Using these derivatives, we can compute G−T , G+
T , K−T , and K−T , and then combine these with

Equation 23 to compute the coefficients at each split as:

c−T = −LR×G
−
T

K−T + λ
c+T = −LR×G

+
T

K+
T + λ

.

Incorporating these derivatives and coefficients into the general MediBoost framework (Algo-
rithm 2) yields the LikelihoodMediBoost (LMB) algorithm (Algorithm 3).

S7 Evaluation Methodology
Our evaluation compared the MAB and LMB MediBoost algorithms to standard decision tree
induction (ID3, CART) and ensemble methods (LogitBoost and Random Forests) on 13 data
sets, corresponding to all binary classification problems in the field of Life Sciences within the
UCI Repository (Table S1). For each data set, any missing values were imputed with either
the mean or the mode of the corresponding feature, depending on whether the features were
continuous or categorical. We added additional binary features (one per each original feature)
to encode whether or not the corresponding value was missing.

Results were averaged over 5 trials of 5-fold cross-validation on each data set, recording
the error on the held-out test fold. Each algorithm has a number of hyperparameters, which
were tuned via an additional 5-fold cross-validation on the training data in each case; then, the
model was constructed using all available training folds and evaluated on the test fold. The
hyperparameters adjusted for each algorithm are:

MediBoost (MAD and LMB): tree depth and acceleration parameter
ID3: tree depth
CART: tree depth
LogitBoost: Number of stump trees on the ensemble
Random Forests: Number of variables selected in each random sub-sampling.

In addition, LogitBoost used decision stumps as the weak learners with a learning rate of 0.1,
and Random Forests used 300 decision trees in the ensemble. The MediBoost algorithms were
run with learning rates of LR ∈ {0.1, 1.0} and λ = 0.

12



Table S1: Life science data sets used in the evaluation.

Data Set Name Link

Acute Inflamation
(Bladder)

https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations
Instances = 120 ; Attributes = 6 ; Missing Values = No

Acute Inflamation
(Nephritis)

https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations
Instances = 120 ; Attributes = 6 ; Missing Values = No

Arrhythmia
https://archive.ics.uci.edu/ml/datasets/Arrhythmia

Instances = 472 ; Attributes = 279 ; Missing Values = Yes

Breast Cancer
Wisconsin (Original)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
Instances = 699 ; Attributes = 10 ; Missing Values = Yes

Diabetic Retinopathy
Debrecen

https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set
Instances = 1151 ; Attributes = 20 ; Missing Values = No

Fertility
https://archive.ics.uci.edu/ml/datasets/Fertility

Instances = 100 ; Attributes = 10 ; Missing Values = No

Hepatitis
https://archive.ics.uci.edu/ml/datasets/Hepatitis

Instances = 155 ; Attributes = 19 ; Missing Values = Yes

Mammographic Mass
https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass

Instances = 961 ; Attributes = 6 ; Missing Values = Yes

Parkinson
https://archive.ics.uci.edu/ml/datasets/Parkinsons

Instances = 197 ; Attributes = 23 ; Missing Values = No

Pima Indians diabetes
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

Instances = 768 ; Attributes = 8 ; Missing Values = Yes

Heart Disease
(Cleveland)

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
Instances = 303 ; Attributes = 75 ; Missing Values = Yes

SPECT Heart
https://archive.ics.uci.edu/ml/datasets/SPECT+Heart

Instances = 267 ; Attributes = 22 ; Missing Values = No

Thoracic Surgery
https://archive.ics.uci.edu/ml/datasets/Thoracic+Surgery+Data

Instances = 470 ; Attributes = 17 ; Missing Values = No

S8 Additional Results
This section presents additional results beyond those in the main paper.

Table S2 presents a detailed comparison of LMB with two learning rates against ID3, CART,
LogitBoost, and Random Forests on the different medical problems. We report the mean and
standard deviation of the test error on held-out data, reweighting the error to emphasize all
classes equally and averaging it over 5 trials of 5-fold cross-validation. This comparison is also
represented visually in Fig. S2. Table S3 summarizes these results for LMB with LR = 0.1,
showing the total numbers of wins and losses against the other algorithms. (A similar table is
presented in the main article for LMB with LR = 1.0; both cases show comparable results.)

We also conducted a similar comparison of MAB with the decision tree algorithms (ID3 and

13



Table S2: LMB vs different algorithms. This table compares the equal-class-weighted error
(averaged over 5 trials of 5-fold cross-validation) for different medical problems and algorithms.
For each problem, mean ± standard deviation are shown.

Data Sets LMB LMB ID3 CART LogitBoost Random
(LR = 0.01) (LR = 1.0) Forests

Acute Inflamation
(Bladder)

0 ±0 0 ±0 0.005 ±0.011 0.012 ±0.010 0 ±0 0 ±0

Acute Inflamation
(Nephritis)

0.004 ±0.009 0.004 ±0.009 0.008 ±0.011 0.004 ±0.009 0.004 ±0.009 0.005 ±0.009

Arrhythmia 0.219 ±0.009 0.216 ±0.023 0.261 ±0.006 0.272 ±0.017 0.187 ±0.009 0.205 ±0.011
Breast Cancer
Wisconsin
(Original)

0.038 ±0.004 0.045 ±0.005 0.048 ±0.005 0.048 ±0.002 0.046 ±0.002 0.025 ±0.003

Diabetic
Retinopathy
Debrecen

0.343 ±0.005 0.330 ±0.006 0.363 ±0.011 0.358 ±0.005 0.337 ±0.008 0.297 ±0.005

Fertility 0.378 ±0.033 0.412 ±0.060 0.338 ±0.040 0.366 ±0.037 0.405 ±0.035 0.444 ±0.031
Hepatitis 0.398 ±0.047 0.419 ±0.022 0.514 ±0.013 0.400 ±0.039 0.374 ±0.025 0.215 ±0.038
Mammographic
Mass

0.177 ±0.004 0.174 ±0.005 0.190 ±0.001 0.178 ±0.006 0.174 ±0.003 0.176 ±0.005

Parkinson 0.194 ±0.014 0.160 ±0.029 0.211 ±0.042 0.196 ±0.024 0.194 ±0.027 0.124 ±0.019
Pima Indians
diabetes

0.248 ±0.017 0.268 ±0.004 0.292 ±0.014 0.275 ±0.011 0.294 ±0.011 0.253 ±0.008

Heart Disease
(Cleveland)

0.184 ±0.018 0.193 ±0.019 0.389 ±0.033 0.251 ±0.020 0.170 ±0.007 0.179 ±0.009

SPECT Heart 0.278 ±0.029 0.251 ±0.022 0.299 ±0.012 0.298 ±0.025 0.301 ±0.021 0.233 ±0.027
Thoracic Surgery 0.439 ±0.030 0.416 ±0.024 0.538 ±0.063 0.465 ±0.021 0.497 ±0.009 0.440 ±0.029

CART) and ensemble methods (LogitBoost and Random Forests) on the 13 medical problems.
Table S6 provides details on the average test error over all algorithms and medical problems,
with the comparison shown graphically in Fig. S3.

Over most problems, these results show that LMB significantly outperforms standard de-
cision tree algorithms (ID3 and CART) while attaining statistically indishtinguishable perfor-
mance from the ensemble methods (LogitBoost and Random Forests), according to a two-tailed
sign test (19). In the Fertility dataset, where LMB was outperformed by ID3 and CART, these
standard decision trees also outperformed the ensemble methods.
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Table S3: LMB (Learning Rate = 0.1) vs different algorithms. LMB is significantly better
than ID3 and CART (p < 0.05), and undistinguishable from LogitBoost and Random Forests,
according to a two-tailed sign test (19).

LMB vs ID3 CART LogitBoost Random Forests
wins 12 11 6 4
losses 1 1 5 8
ties 0 1 2 1

Table S4: MAB vs different algorithms: comparison of equal-class-weighted error (averaged
over 5 trials of 5-fold cross-validation) for different medical problems and algorithms. For each
problem, mean ± standard deviation are shown.

Data Sets MAB ID3 CART LogitBoost Random
Forests

Acute Inflamation
(Bladder)

0 ±0 0.003 ±0.007 0.009 ±0.000 0 ±0 0 ±0

Acute Inflamation
(Nephritis)

0 ±0 0 ±0 0 ±0 0 ±0 0.001 ±0.003

Arrhythmia 0.202 ±0.014 0.247 ±0.022 0.246 ±0.018 0.173 ±0.013 0.189 ±0.006
Breast Cancer
Wisconsin (Original)

0.039 ±0.007 0.057 ±0.002 0.053 ±0.009 0.046 ±0.005 0.022 ±0.002

Diabetic Retinopathy
Debrecen

0.342 ±0.012 0.365 ±0.009 0.365 ±0.007 0.334 ±0.004 0.307 ±0.007

Fertility 0.441 ±0.036 0.407 ±0.063 0.403 ±0.033 0.408 ±0.079 0.463 ±0.066
Hepatitis 0.405 ±0.031 0.524 ±0.007 0.375 ±0.019 0.374 ±0.028 0.211 ±0.012
Mammographic
Mass

0.176 ±0.002 0.189 ±0.001 0.184 ±0.006 0.171 ±0.004 0.182 ±0.002

Parkinson 0.149 ±0.019 0.192 ±0.016 0.213 ±0.005 0.173 ±0.010 0.113 ±0.006
Pima Indians
diabetes

0.261 ±0.010 0.292 ±0.010 0.273 ±0.014 0.296 ±0.009 0.250 ±0.010

Heart Disease
(Cleveland)

0.190 ±0.012 0.389 ±0.019 0.253 ±0.024 0.168 ±0.005 0.187 ±0.009

SPECT Heart 0.250 ±0.005 0.284 ±0.014 0.293 ±0.028 0.291 ±0.019 0.235 ±0.023
Thoracic Surgery 0.431 ±0.032 0.513 ±0.022 0.482 ±0.015 0.508 ±0.010 0.445 ±0.011
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Figure S2: Comparison of LMB (LR = 0.1) vs (a) ID3 and CART decision tree algorithms and
(b) LogitBoost and Random Forests ensemble methods on 13 medical datasets. Points above
the diagonal black line indicate results where LMB was better. LMB is significantly better than
the decision tree algorithms and statistically indistinguishable from the ensemble methods.
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Figure S3: Comparison of MAB vs (a) ID3 and CART decision tree algorithms and (b) Logit-
Boost and Random Forests ensemble methods on 13 medical datasets. Points above the diagonal
black lines indicate experiments where MAB performed better. MAB is significantly better than
the standard decision tree algorithms and indistinguishable from the ensemble methods.
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Table S5: MLB vs different algorithms: comparison of AUC (averaged over 5 trials of 5-fold
cross-validation) for different medical problems and algorithms. For each problem, mean ±
standard deviation of AUC

Data Sets MAB ID3 CART LogitBoost Random
Forests

Acute Inflamation
(Bladder)

1 ±0 0.9882 ±0.0141 0.9932 ±0.0038 1 ±0.0015 0.9993 ±0

Acute Inflamation
(Nephritis)

1 ±0 0.9960 ±0.0089 1±0 1±0 1 ±0

Arrhythmia 0.8547 ±0.0178 0.7247 ±0.0095 0.7463 ±0.0149 0.8913 ±0.0050 0.8788 ±0.0089
Breast Cancer
Wisconsin (Original)

0.8128 ±0.0141 0.6963 ±0.0229 0.7391±0.0211 0.7221±0.0099 0.8200 ±0.0357

Diabetic Retinopathy
Debrecen

0.7184 ±0.0088 0.6417 ±0.0116 0.6755 ±0.0155 0.7262 ±0.0038 0.7622 ±0.0060

Fertility 0.6070 ±0.0636 0.6242 ±0.0758 0.6094 ±0.0901 0.5747 ±0.0394 0.6120 ±0.0718
Hepatitis 0.6842 ±0.0488 0.54878 ±0.0256 0.6481 ±0.0392 0.6359±0.0125 0.8499 ±0.0339
Mammographic
Mass

0.8960 ±0.0038 0.8112 ±0.0026 0.8652 ±0.0073 0.8977 ±0.0018 0.8881 ±0.0044

Parkinson 0.8962 ±0.0291 0.7718 ±0.0426 0.8113 ±0.0292 0.9231±0.0068 0.9585±0.0190
Pima Indians
diabetes

0.8107 ±0.0066 0.7089 ±0.0062 0.7860 ±0.0100 0.8322 ±0.0041 0.8300 ±0.0046

Heart Disease
(Cleveland)

0.8797 ±0.0133 0.6482 ±0.0092 0.8152 ±0.0223 0.8929 ±0.0072 0.8954 ±0.0056

SPECT Heart 0.8128 ±0.0141 0.6963 ±0.0229 0.7391±0.0211 0.7221±0.0099 0.8200±0.0357
Thoracic Surgery 0.6071 ±0.0157 0.5034 ±0.0108 0.5212 ±0.0209 0.5296 ±0.0165 0.6115±0.0303
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Table S6: Comparison of AUC (averaged over 5 trials of 5-fold cross-validation) for randomlly
permuted labels. Each For each problem, mean ± standard deviation of 100 iterations are
shown.

Data Sets MAB ID3 CART LogitBoost Random
Forests

Acute Inflamation
(Bladder)

0.4897±0.0846 0.4950±0.0896 0.5020±0.0777 0.5065 ±0.0977 0.4986±0.0852

Acute Inflamation
(Nephritis)

0.5046 ±0.1159 0.4851 ±0.1033 0.4963±0.1316 0.5033±0.1570 0.4870±0.1358

Arrhythmia 0.4939 ±0.0332 0.4970 ±0.0300 0.5047 ±0.0329 0.5020 ±0.0445 0.5058 ±0.0329
Breast Cancer
Wisconsin (Original)

0.4484±0.0517 0.5048±0.0893 0.5089±0.0712 0.5767±0.0442 0.5103±0.0893

Diabetic Retinopathy
Debrecen

0.5005 ±0.0203 0.4989±0.0208 0.5020±0.0270 0.4960±0.0195 0.4997±0.0270

Fertility 0.5030 ±0.0862 0.4965±0.0537 0.4959±0.0797 0.4909±0.0958 0.5002±0.0819
Hepatitis 0.3813 ±0.0485 0.5029 ±0.0115 0.5312±0.0689 0.4566±0.0845 0.5491±0.0659
Mammographic
Mass

0.5000 ±0.0504 0.5017 ±0.0346 0.5043 ±0.0546 0.4982 ±0.0350 0.4993±0.0682

Parkinson 0.4753±0.0591 0.4862±0.0595 0.5202±0.0658 0.5167±0.0720 0.5195±0.0681
Pima Indians
diabetes

0.4969 ±0.0326 0.5006 ±0.0326 0.5084±0.0372 0.5019 ±0.0348 0.5053 ±0.0442

Heart Disease
(Cleveland)

0.4992 ±0.0490 0.4961±0.0414 0.5013±0.0569 0.5002 ±0.0524 0.5018±0.0569

SPECT Heart 0.552 ±0.0664 0.5109 ±0.0633 0.4601±0.0511 0.4877±0.06787 0.4165±0.0757
Thoracic Surgery 0.4950 ±0.0431 0.5034 ±0.0195 0.5085 ±0.0364 0.5132 ±0.00441 0.5031±0.0401
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