SUPPLEMENTARY FILE

Nailfold Videocapillaroscopic and Other Clinical Risk Factors for Digital Ulcers in Systemic Sclerosis: A Multicenter, Prospective Cohort Study

Maurizio Cutolo MD, Ariane L. Herrick MD, Oliver Distler MD, Mike Becker MD, Emma Beltran PhD, Patrick Carpentier MD, Clodoveo Ferri MD, Murat Inanç MD, Panayiotis Vlachoyiannopoulos MD, Harbajan Chadha-Boreham PhD, Emmanuelle Cottreel MSc, Thomas Pfister PhD, Daniel Rosenberg PhD, Juan V. Torres MSc, Vanessa Smith MD PhD, on behalf of the videoCAPillaroscopy (CAP) study investigators.

Contents

1. CAP study Steering Committee members	4
2. CAP study Principal Investigators	4
3. Selection of covariables potentially associated with future development of new digital ul	cers
through ULR to MLR	7
Supplementary Table S1. Bundle 1: Demographics	7
Supplementary Table S2. Bundle 2: Systemic sclerosis clinical characteristics	10
Supplementary Table S3. Bundle 3: Digital ulcer characteristics	15
Supplementary Table S4. Bundle 4: Other clinical characteristics	20
Supplementary Table S5. Bundle 5: Nailfold videocapillaroscopic characteristics: quant	titative
assessment (6 sub-bundles)	23
Supplementary Table S6. Nailfold videocapillaroscopic characteristics: qualitative asses	ssment (1
covariable)	36
4. Definitions of DUs, critical digital ischemia, and other digital lesions	37
Supplementary Table S7. Definitions of digital ulcer (DU), critical digital ischemia, and	other
(than DU) digital lesions	37
5. Chart for DU location	38
Supplementary Figure S1. Coding of the location of digital ulcers	38
6. Investigator booklet	39
7. Interactions – bundle 6	40
Supplementary Table S8. Interactions investigated and grouped into a separate bundle of	n Steering
Committee advice	40
8. Excluded variables	41
Supplementary Table S9. Overview of variables excluded because they consisted of fewer	r than 20
patients	41
Supplementary Table S10. Overview of variables excluded on clinical advice from the St	teering
Committee	42
9. New digital ulcer occurrence by Center	43
Figure S2. Frequency of Patients, Cases, and Non-Cases per Center	43

10. Within-bundle MLR models	44
Table S11. Bundle 1: Demographics within-bundle MLR model	44
Table S12.Bundle 2: Systemic sclerosis clinical characteristics within-bundle MLR model	45
Table S13. Bundle 3: Digital ulcer characteristics within-bundle MLR model	46
Table S14. Bundle 4: Other clinical characteristics within-bundle MLR model	47
Table S15. Bundle 5: Quantitative NVC characteristics within-bundle MLR model	48
Table S16. Comparison of the within-bundle MLR models of NVC sub-bundles	49
11. NVC characteristics carried forward during multivariable analyses Supplementary Table S17. Complete list of NVC variables carried forward from MLR within-	50
bundle to MLR across-bundles analysis.	50
12. Operating characteristics of the final MLR model Supplementary Figure S3. Receiver operating characteristic curve (A) and sensitivity/specificity	51
curves (B) of the final MLR model	51
13. CAP study Statisticians	52

The images on pages 1, 4–7, and 9–13 of Supplementary section 6 are from Drs. R. De Angelis, P. Del Medico, V. Riccieri, and A. Sulli and are reproduced with permission of the publisher, from M. Cutolo, editor. Atlas of Capillaroscopy in Rheumatic Diseases. Milan: Elsevier; 2010. p. 44, 47, 57, 63–64, 66–68, 72, 79–80, 86.

1. CAP study Steering Committee members

Maurizio Cutolo, Research Laboratory and Academic Division of Clinical Rheumatology, University of Genova, IRCCS AOU S. Martino, Genova, Italy; Ariane L. Herrick, Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester and NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Oliver Distler, Rheumatology, University Hospital, Zürich, Switzerland; Mike Becker, Rheumatology, University Hospital, Zürich, Switzerland, Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany; Emma Beltran, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Patrick Carpentier, Vascular Medicine, La Tronche Hospital, Grenoble, France; Clodoveo Ferri, Chair & Rheumatology Unit, University of Modena & Reggio Emilia, Modena, Italy; Murat Inanç, Division of Rheumatology, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; Panayiotis Vlachoyiannopoulos, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Vanessa Smith, Department of Rheumatology, Ghent University Hospital; Ghent University, Ghent, Belgium.

2. CAP study Principal Investigators

The CAP study Investigators are as follows:

Austria – Sozialmedizinisches Zentrum Süd-Kaiser-Franz-Josef-Spital, Vienna: L Erlacher;

Hanusch Krankenhaus der Gebietskrankenkasse, Vienna: M Hirschl; Medizinische Universität Wien,

Vienna: HP Kiener; Medizinische Universität Graz, Graz: E Pilger.

Belgium – Universitair Ziekenhuis Gent, Ghent: V Smith; Universitair Ziekenhuis Gasthuisberg, Leuven: D Blockmans; Université Libre de Bruxelles Hôpital Erasme, Brussels: J-C Wautrecht. Czech Republic – Revmatologický ústav, Prague: R Becvár. France – Centre Hospitalier Universitaire de Grenoble, La Tronche: P Carpentier; Hôpital Tenon,
Paris: C Frances; Centre Hospitalier Universitaire Amiens, Amiens: C Lok; CHU Dupuytren,
Limoges: A Sparsa; CHRU de Lille, Hôpital Claude Huriez, Lille: E Hachulla; CHU de Montpellier,
Montpellier: I Quere; Groupe Hospitalier Cochin Saint Vincent de Paul, Paris: Y Allanore; Centre
Hospitalier Universitaire de Nantes, Nantes: C Agard.

Germany – Charité Universitätsmedizin Berlin, Berlin: G Riemekasten; Universitätsklinik Köln, Cologne: N Hunzelmann; Sankt Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Bochum-Gerthe: M Stücker; Asklepios Klinik Altona, Hamburg: K Ahmadi-Simab; Universitätsklinikum Münster, Münster: C Sunderkötter; Universitätsklinikum Halle (Saale), Halle: J Wohlrab; Kerckhoff-Klinik GmbH, Bad Nauheim: U Müller-Ladner; Universitätsklinikum Düsseldorf, Düsseldorf: M Schneider.

Greece – Laiko General Hospital, Athens: P Vlachoyianopoulos; General Hospital of Athens, Hippokration, Athens: D Vassilopoulos; University General Hospital of Ioannina, Ioannina: A Drosos; Hospital Board of General University Hospital of Patras, Patra: A Antonopoulos.

Israel – Rambam Medical Center, Haifa: A Balbir-Gurman; Sheba Medical Center, Tel-Hashomer:

P Langevitz; Bnai Zion Medical Center, Haifa: I Rosner; Meir Medical Center, Kfar Saba: Y Levy.

Italy – Azienda Ospedale San Martino, Genova: M Cutolo; Azienda Ospedaliera Pisana Ospedale

Santa Chiara, Pisa: S Bombardieri; Università Cattolica Sacro Curoe, Complesso Integrato
Columbus, Rome: G Ferraccioli; Azienda Ospedaliera 'Pugliese Ciaccio' di Catanzaro, Catanzaro:
S Mazzuca; Ospedale Murri-Università Politecnica delle Marche, Jesi: W Grassi; Azienda

Ospedaliera Universitaria Integrata di Verona, Verona: C Lunardi; Azienda Ospedaliera Spedali Civili di Brescia, Brescia: P Airó; Policlinico Umberto I, Rome: V Riccieri.

The Netherlands – Vrije Universiteit Medisch Centrum, Amsterdam: AE Voskuyl; Leiden University Medical Center, Leiden: A Schuerwegh.

Portugal – Hospitais da Universidade de Coimbra, Coimbra: L Santos; Hospital Curry Cabral, Lisbon: AC Rodrigues, A Grilo; Hospital Fernando Fonseca, Lisbon: MC Amaral.

Spain – Hospital Universitario La Fe, Valencia: JA Román Ivorra; Hospital de la Santa Creu i Sant Pau, Barcelona: I Castellvi.

Switzerland – Universitäts-Spital Zürich, Zürich: O Distler; Centre Hospitalier Universitaire Vaudoise, Lausanne: F Spertini; Kantonspital Sankt Gallen, St Gallen: R Müller.

Turkey – Istanbul Üniversitesi Istanbul Tip Fakültesi, Istanbul: M Inanç; Ege Üniversitesi Tip Fakültesi, Izmir: F Oksel; Ankara Üniversitesi Tip Fakültesi Ibni Sina Hastanesi, Ankara: N Turkcapar.

United Kingdom – Hope Hospital, Salford: A Herrick; Royal Free Hospital, London: C Denton;

Bath Institute for Rheumatic Diseases, Bath: N McHugh; Wrightington Hospital, Wigan: C

Chattopadhyay; Addenbrookes Hospital Cambridge, Cambridge: F Hall; Leeds Teaching Hospitals

NHS Trust, Leeds: M Buch.

3. Selection of covariables potentially associated with future development of new digital ulcers through ULR to MLR

Supplementary Table S1. Bundle 1: Demographics

Variable	Summary	y statistics	ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
				p value		bundle	bundles
Number of variables (V = 14)						3	1
1. Sex							
Female, n (%)	79 (76.7)	293 (80.3)	1.236*	0.428*	0.518		
Male, n (%)	24 (23.3)	72 (19.7)	(0.732–2.089)	0.120	(0.472–0.564)		
2. Age at enrollment (years): mean (SD); n	51.5 (13.9); 103	54.8 (13.6); 365	0.983	0.033	0.573	X	X
			(0.967–0.999)		(0.509–0.636)		
3. Race							
White/Caucasian, n (%)	98 (95.1)	346 (94.8)	0.929	0.887	0.502		
Other, n (%)	5 (4.9)	19 (5.2)	(0.338–2.552)	0.007	(0.478–0.526)		
4. Height [†] (cm): mean (SD), n	166.4 (10.2);	164.3 (8.5);	1.026	0.035	0.559		
4. Height (Chi). Hiean (SD), ii	102	363	(1.002-1.052)	0.035	(0.493–0.625)		

Varia	ble	Summary	statistics	ULR			Variables selected	
		Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
		(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
					p value		bundle	bundles
	W. 1. (1.)	(5.0 (12.2), 102	65.5 (14.0), 264	1.002	0.700	0.516		
5.	Weight (kg), mean (SD); n	65.9 (13.2); 102	65.5 (14.2); 364	(0.987-1.018)	0.790	(0.452–0.579)		
6.	Body surface area (m ²), mean (SD); n	1.7 (0.2); 102	1.7 (0.2); 363	1.552	0.404	0.529		
0.	Body surface area (iii), inean (5D), ii	1.7 (0.2), 102	1.7 (0.2), 505	(0.553–4.357)	0.404	(0.465–0.594)		
7	/ Manual labort and mAI (0/)	13/103 (12.6)	71/365 (19.5)	0.598	0.114	0.534		
7.	Manual labor [†] , yes, n/N (%)	13/103 (12.6)	/1/365 (19.5)	9.5) 0.114 (0.316–1.131)	0.114	(0.496–0.572)		
8.	Smoking behavior,							
	Never, n/N (%)	63/103 (61.2)	234/365 (64.1)					
				0.861‡		0.544		
	Past, not current, n/N (%)	19/103 (18.4)	82/365 (22.5)	(0.486–1.524)	0.607‡	(0.489-0.600)		
				1.592 [§]				
	Current, n/N (%)	21/103 (20.4)	49/365 (13.4)	(0.889–2.849)	0.117§			
				(0.00) 2.04))				
				1.652		0.535	X	
9.	Currently smoking, n/N (%)	21/103 (20.4)	49/365 (13.4)	(0.938–2.909)	0.082	(0.492–0.578)		

Variable	Summar	y statistics	ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
				p value		bundle	bundles
10. Character and an array (CD).	0.24 (0.41), 100	0.29 (0.49), 256	0.804	0.200	0.509		
10. Cigarette packs per day, mean (SD); n	0.24 (0.41); 100	0.28 (0.48); 356	(0.490-1.322)	0.390	(0.457–0.561)		
11. Years smoking, mean (SD); n	7.8 (12.7); 99	7.3 (13.4); 353	1.003	0.755	0.512		
11. Tears smoking, mean (3D), ii	7.8 (12.7), 99	7.8 (12.7); 99 7.3 (13.4); 333 (0.9)	(0.986-1.020)	0.733	(0.457 - 0.567)		
12. Smoking Index Duration, mean (SD); n	5.4 (9.6); 99	5.7 (10.5); 353	0.997	0.783	0.490		
12. Smoking index Duration, mean (SD), ii	3.4 (9.0), 99	5.7 (10.5), 555	(0.975-1.019)	0.763	(0.437 - 0.543)		
13. Comprehensive Smoking Index: mean (SD); n	0.1 (0.2); 99	0.1 (0.3); 351	_1	0.032	0.535	X	
13. Completensive smoking mack. mean (3D), ii	0.1 (0.2), 99	0.1 (0.3), 331		0.032	(0.480 - 0.590)	Λ	
14. Hand dominancy							
Right, n/N (%)	100/103 (97.1)	348/365 (95.3)	0.614 ^l	0.444	0.509		
Left or ambidextrous, n/N (%)	3/103 (2.9)	17/365 (4.7)	(0.176–2.138)	0.444 ¹	(0.489–0.528)		

Reduction of covariables through Step 1: ULR (Retention criterion: p < 0.15 for linear term or p < 0.05 for quadratic term), Step 2: MLR within-bundle (Entry criterion: p < 0.15; Retention criterion: p < 0.10), and Step 3: MLR across-bundles (Entry criterion: p < 0.15; Retention criterion: p < 0.05).

Abbreviations: AUC, area under the curve; CI, confidence interval; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic; SD, standard deviation; ULR, univariable logistic regression

^{*}Male vs female

[†]Exclusion criterion: Not retained following Step 1 (ULR) based on Steering Committee Decision

[‡]Past, not current vs never smoker

[§]Current vs never smoker

OR is not given since the functional relationship is quadratic. Associated p value and ROC-AUC are of quadratic term

Left/ambidextrous vs right handed

Supplementary Table S2. Bundle 2: Systemic sclerosis clinical characteristics

Variabl	e	Summary	statistics		ULR		Variables selected	
		Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
		(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
					p value		bundle	bundles
Numbe	er of variables (V = 30)						6	3
1.	Age at first Raynaud's phenomenon	20.2 (16.0): 102	40.0 (14.2): 261	0.992	0.200	0.542		
	(years): mean (SD); n	39.2 (16.0); 103	40.9 (14.2); 361	(0.977–1.007)	0.299	(0.476–0.609)		
2.	Years since first Raynaud's	10.4 (12.0): 102	12.0 (11.7), 261	0.988	0.241	0.557		
	phenomenon: mean (SD); n	12.4 (12.0); 103	13.9 (11.7); 361	(0.969-1.008)	0.241	(0.494–0.619)		
3.	Age at first physician-documented non-			0.007		0.561		
	Raynaud's clinical feature* (years):	43.1 (14.8); 103	45.6 (13.6); 363	0.987	0.106	0.561	X	X
	mean (SD); n			(0.971–1.003)		(0.496–0.626)		
4.	Years since first physician-documented			0.007		0.514		
	non-Raynaud's clinical feature*: mean	8.5 (7.0); 103	9.4 (8.4); 363	0.987	0.362	0.514		
	(SD); n			(0.959–1.015)		(0.452–0.575)		
5.	Years between first Raynaud's and first			0.991		0.564		
	physician-documented non-Raynaud's	4.3 (9.5); 103	4.9 (8.8); 359	0.991	0.523	0.504		
	clinical feature*: mean (SD); n			(0.966–1.018)		(0.501–0.626)		

Variable	е	Summary	statistics		ULR		Variables selected	
		Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
		(N=103)	(N=103) (N=365)	(95% CI)	square	square (95% CI)	within-	across-
					p value		bundle	bundles
6.	SSc subtype							
	Diffuse cutaneous SSc, n/N (%)	48/103 (46.6)	140/365 (38.4)	0.713^{\dagger}	0.133 [†]	0.541	X	
	Limited cutaneous SSc, n/N (%)	55/103 (53.4)	225/365 (61.6)	(0.459–1.108)	0.133	(0.487–0.596)	Λ	
7.	Extent of skin involvement (modified	10.0 (0.0) 100		1.023	0.0=1	0.562		
	mRSS), mean (SD); n	13.0 (9.0); 100	11.3 (8.4); 354	(0.998–1.048)	0.076	(0.496–0.627)	X	
		0.4/1.02 (01.2)	210/265 (97.4)	1.505		0.519		
8.	Sclerodactyly, yes, n/N (%)	94/103 (91.3) 319/365 (87.4)		(0.711–3.188)	0.285	(0.487–0.552)		
Organ iı	nvolvement (of the below mentioned variable	oles)						
9.	Any organ involvement							
10.	Kidney involvement: proteinuria, n/N	T/102 (5.0)	24 (2 5% (2 %)	0.786	0.550	0.509		
	(%)	7/103 (6.8)	31/365 (8.5)	(0.335–1.840)	0.579	(0.480-0.537)		
11.	Kidney involvement: SSc renal crisis,	- 440- 44-0)	0.309 0.520		0.520			
	kidney failure, n/N (%)	2/103 (1.9)	22/365 (6.0)	0.116 (0.071–1.336)		(0.502–0.539)	X	X
12	Heart involvement, n/N (%)	22/103 (21.4)	55/065 (15.1)	1.531	0.130	0.532	X	X
12.	Ticali involvenicii, ii/iv (%)	22/103 (21.4)	55/365 (15.1)	(0.882-2.658)	0.130	(0.488–0.575)	Λ	Λ

Variable	Summary statistics			ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-	
				p value		bundle	bundles	
13. Lung involvement – pulmonary arterial	10/102/10 1	62/265 (15/2)	1.084	0.700	0.506			
hypertension, n/N (%)	19/103 (18.4)	63/365 (17.3)	(0.615–1.912)	0.780	(0.464–0.548)			
14. Lung interstitial disease or respiratory	46/102 (44.7)	157/265 (42.0)	1.069	0.766	0.508			
failure, n/N (%)	46/103 (44.7)	157/365 (43.0)	(0.688–1.661)		(0.454–0.563)			
15 Control intentional arrest in (NY (0)	71/102 (69.0)	241/265 (66.0)	1.142	0.581	0.515			
15. Gastrointestinal tract, n/N (%)	71/103 (68.9) 24	241/365 (66.0)	(0.713–1.827)		(0.464–0.566)			
16 M - 1 (N) (0()	12/102 (12.6)	45 (2.65 (12.2)	1.027	0.026	0.502			
16. Muscles, n/N (%)	13/103 (12.6)	45/365 (12.3)	(0.531–1.988)	0.936	(0.465–0.538)			
17 I	45 (102 (42 7)	107/265 (24.0)	1.454	0.000	0.545	37		
17. Joint involvement, n/N (%)	45/103 (43.7)	127/365 (34.8)	(0.932-2.269)	0.099	(0.491–0.599)	X		
10 Di 1 CC : (N. (0))	0/102 (7.0)	10/265 (5.2)	1.534	0.220	0.513			
18. Pleural effusion, n/N (%)	8/103 (7.8) 19/365 (5.2)		(0.651–3.613)	0.328	(0.484–0.541)			
			2.066	0.255	0.510			
19. Nervous system [‡] , n/N (%)	4/103 (3.9)	7/365 (1.9)	(0.593–7.202)	0.233	(0.490-0.530)			

Variable	Summary statistics		ULR			Variables selected		
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-	
				p value		bundle	bundles	
20. Any other organ system involvement	3/103 (2.9)	21/365 (5.8)	0.491	0.258	0.514			
other than the above, n/N (%)	3/103 (2.9)	21/303 (3.8)	(0.144–1.681)	0.238	(0.494–0.534)			
(Connective) tissue disease								
21. Systemic lupus erythematosus‡, n/N	3/103 (2.9)	13/365 (3.6)	0.812	0.749	0.503			
(%)	3/103 (2.9)	13/303 (3.0)	(0.227–2.907)	0.749	(0.484–0.522)			
22. Sjogren's syndrome, n/N (%)	7/103 (6.8)	42/365 (11.5)	0.561	0.173	0.524			
22. Sjogren s syndrome, 11/19 (70)	7/103 (0.8) 42/303 (11.3)	42/303 (11.3)	(0.244–1.289)	0.173	(0.494–0.553)			
23. Dermatomyositis [‡] , n/N (%)	2/103 (1.9)	1/365 (0.3)	7.208	0.108	0.508			
23. Definationly ositis., 11/1v (%)	2/103 (1.9)		(0.647-80.301)	0.108	(0.495–0.522)			
24. Polymyositis [‡] , n/N (%)	3/103 (2.9)	6/365 (1.6)	1.795	0.414	0.506			
24. Polymyosius*, I/N (%)	3/103 (2.9)	0/303 (1.0)	(0.441–7.305)	0.414	(0.489-0.524)			
25. Rheumatoid arthritis, n/N (%)	6/103 (5.8)	16/365 (4.4)	1.349	0.543	0.507			
25. Rneumatoid artifritis, fi/N (%)	0/103 (3.8)	10/303 (4.4)	(0.514–3.541)	0.545	(0.482-0.532)			
26. Marfan syndrome [‡] , n/N (%)	0/103 (0.0)	0/365 (0.0)	_	_	_			
			0.000		0.501			
27. Ehlers-Danlos syndrome [‡] , n/N (%)	0/103 (0.0)	1/365 (0.3)	(0.000-+Inf)	0.989	(0.499-0.504)			

Variable	Summary	Summary statistics		ULR			s selected
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
				p value		bundle	bundles
28. Osteogenesis imperfecta [‡] , n/N (%)	1/103 (1.0)	1/365 (0.3)	3.569	0.370	0.504		
26. Osteogenesis imperiecta ¹ , ii/1 (70)	1/103 (1.0)	1/303 (0.3)	(0.221–57.554)	0.570	(0.494–0.513)		
29. Stickler syndrome [‡] , n/N (%)	0/103 (0.0)	0/365 (0.0)	_	_	_		
30. Any other (connective) tissue disease	2/102 (1.0)	(/265 (1.6)	1.185	0.837	0.502		
than the above mentioned ‡ , n/N (%)	2/103 (1.9)	6/365 (1.6)	(0.236–5.960)	0.837	(0.487–0.516)		

Reduction of covariables through Step 1: ULR (Retention criterion: p < 0.15 for linear term or p < 0.05 for quadratic term), Step 2: MLR within-bundle (Entry criterion: p < 0.15; Retention criterion: p < 0.10), and Step 3: MLR across-bundles (Entry criterion: p < 0.15; Retention criterion: p < 0.15).

Abbreviations: AUC, area under the curve; CI, confidence interval; CNS, central nervous system; mRSS, Modified Rodnan Skin Score; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic; SD, standard deviation; SSc, systemic sclerosis; ULR, univariable logistic regression

^{*}Potential non-Raynaud's clinical features: swollen hands, face or feet, skin thickening, multiple digital and facial telangiectasia, digital ulcers, arthritis, calcinosis, flexion contractures, myositis, sicca syndrome, kidney involvement, heart involvement, lung involvement, gut involvement, esophagus involvement, pleura involvement, pleura involvement, pleura involvement, and other

†Limited vs diffuse SSc

[‡]Exclusion Criterion: Not retained following Step 1(ULR) due to a frequency of fewer than 20 patients

Supplementary Table S3. Bundle 3: Digital ulcer characteristics

Variable	Summar	ry statistics		ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-square	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	p value	(95% CI)	within-	across-	
						bundle	bundles	
Number of variables (V = 24)						8	3	
1. Number of DUs, n/N (%)								
0	41 /103 (39.8)	262/365 (71.8)						
1	24/103 (23.3)	57/365 (15.6)	2.691*	0.001*	0.678			
1	24/103 (23.3)	37/303 (13.0)	(1.507–4.803)	0.001*		X	X	
2	16/103 (15.5)	27/365 (7.4)	3.787 [†]	<0.001 [†]	(0.622-0.734)	Λ	Λ	
2	10/103 (13.3)	21/303 (1.4)	(1.879–7.630)	<0.001				
≥3	22/103 (21.4)	19/365 (5.2)	7.399‡	<0.001‡				
23	22/103 (21.4)	19/303 (3.2)	(3.687–14.848)	<0.001				
2. Presence of DUs [§] , n/N (%)	62/103 (60.2)	103/365 (28.2)	3.847	< 0.001	0.660			
2. Presence of Dos*, II/IV (70)	02/103 (00.2)	103/303 (28.2)	(2.439–6.067)	<0.001	(0.607–0.713)			
			2.715		0.586			
3. At least one DU in fingertips [§] , n/N (%)	33/103 (32.0)	54/365 (14.8)	(1.639–4.498)	< 0.001	(0.537–0.635)			

Variable	Summar	y statistics		ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-square	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	p value	(95% CI)	within-	across-	
						bundle	bundles	
4. At least one DU in finger joints§, n/N	17/102 (16.5)	10/065 (2.2)	5.814	0.001	0.566			
(%)	17/103 (16.5)	12/365 (3.3)	(2.677–12.628)	< 0.001	(0.529-0.603)			
Previous complications								
5. Soft tissue infection requiring	52/103 (50.5)	142/361 (39.3)	1.594	0.038	0.557	X		
antibiotics	32/103 (30.3)	142/301 (39.3)	(1.027–2.475)	0.038	(0.503-0.612)			
6. Auto-amputation, n/N (%)	13/103 (12.6)	14/365 (3.8)	3.621	0.001	0.544	X	X	
o. Plato amputation, hTV (70)	13/103 (12.0)	1 1/303 (3.0)	(1.644–7.977)	0.001	(0.510-0.578)		71	
			1.473		0.540			
7. Critical digital ischemia, n/N (%)	35/103 (34.0)	94/362 (26.0)	(0.920–2.358)	0.107	(0.489-0.592)	X		
0 G 01(01)	4.5/4.00 (4.7.7)	25 (2 45 (4 2 4)	1.630	0.120	0.527	**		
8. Gangrene, n/N (%)	16/103 (15.5)	37/365 (10.1)	(0.866–3.068)	0.130	(0.489–0.565)	X		
0. 0. 11. 01.(01)	7/102 (6.0)	16/06/14/1	1.591	0.220	0.512			
9. Osteomyelitis, n/N (%)	7/102 (6.9)	7/102 (6.9) 16/364 (4.4) 0.320 (0.636–3.979) (0.486–0.539)						
Current (at enrollment) complications								
10. Soft tissue infection requiring	22/102/22 2		4.085	0.001	0.579	**		
antibiotics, n/N (%)	23/103 (22.3)	24/365 (6.6)	(2.194–7.606)	< 0.001	(0.536–0.621)	X		

Variable	Summai	y statistics		ULR		Variable	s selected
	Cases	Non-cases	OR	Wald Chi-square	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	p value	(95% CI)	within-	across-
						bundle	bundles
		1.2 (2.12 (2.2)	5.014	0.0004	0.556		
11. Critical digital ischemia	15/103 (14.6)	12/365 (3.3)	(2.266–11.094)	<0.0001	(0.521–0.592)	X	X
Previous or current complications							
12. Soft tissue infection requiring	77/100 (77.0)	1.40 (0.47 (00.0)	1.924	0.004	0.581		
antibiotics§, n/N (%)	57/103 (55.3)	143/365 (39.2)	(1.237–2.992)	0.004	(0.526–0.635)		
12 Auto amoutation § m/N (0/)	12/102 (12.6)	15/265 (4.1)	3.370	0.002	0.543		
13. Auto-amputation [§] , n/N (%)	13/103 (12.6)	15/365 (4.1)	(1.548–7.338)	0.002	(0.509–0.576)		
14. Critical digital ischemia [§] , n/N (%)	39/103 (37.9)	98/365 (26.8)	1.661	0.031	0.555		
14. Critical digital ischemia*, n/N (%)	39/103 (37.9)	98/303 (20.8)	(1.048–2.632)	0.031	(0.503-0.607)		
15. Gangrene [§] , n/N (%)	17/103 (16.5)	38/365 (10.4)	1.701	0.093	0.531		
13. Gangrene [*] , II/N (%)	17/103 (10.3)	36/303 (10.4)	(0.916–3.160)	0.093	(0.491–0.570)		
16. Osteomyelitis, n/N (%)	7/103 (6.8)	16/365 (4.4)	1.591	0.320	0.512		
10. Osteomyenus, II/IV (%)	//103 (0.8)	10/303 (4.4)	(0.636–3.979)	0.320	(0.486-0.539)		

Variable	Summa	ry statistics		ULR		Variable	s selected
	Cases	Non-cases	OR	Wald Chi-square	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	p value	(95% CI)	within-	across-
						bundle	bundles
17. Any current or previous	71/102/(0.0)	104/265 (52.2)	1.956	0.005	0.579		
complication [§] , n/N (%)	71/103 (68.9)	194/365 (53.2)	(1.228–3.114)	0.005	(0.527–0.631)		
Previous DU-associated interventions							
10 Hamitalianian for DHam (N (0))	55/102 (52.4)	144/265 (20.5)	1.759	0.012	0.570	X	
18. Hospitalization for DUs, n/N (%)	55/103 (53.4)	144/365 (39.5)	(1.132–2.732)	0.012	(0.515–0.624)	Λ	
19. Surgical amputation, n/N (%)	6/103 (5.8)	20/364 (5.5)	1.064	0.897	0.502		
19. Surgical amputation, I/N (%)	0/103 (3.8)	20/304 (3.3)	(0.416–2.723)	0.697	(0.476–0.527)		
20. Other intervention, n/N (%)	7/103 (6.8)	23/362 (6.4)	1.075	0.872	0.502		
20. Other intervention, 1/1v (%)	7/103 (0.8)	23/302 (0.4)	(0.448–2.580)	0.872	(0.475–0.530)		
Current DU-associated interventions							
21. Wound debridement [§] , n/N (%)	14/99 (14.1)	11/311 (3.5)	4.492	< 0.001	0.553		
211 cand accidence , 121 (/c/	1 1177 (1 111)	11,611 (6.6)	(1.967–10.256) 2.347		(0.517–0.589) 0.555		
22. Antiseptics§, n/N (%)	21/99 (21.2)	32/311 (10.3)	(1.282–4.299)	0.006	(0.511–0.599)		
23. Supportive gels/creams [§] , n/N (%)	24/99 (24.2)	35/311 (11.3)	2.523 (1.415–4.501)	0.002	0.565 (0.519–0.611)		

Variable	Summar	y statistics		ULR		Variables selected	
	Cases	Non-cases	OR	Wald Chi-square	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	p value	(95% CI)	within-	across-
						bundle	bundles
24. Any current or previous	69/102 (66.0)	179/265 (49.9)	2.041	0.002	0.586		
intervention§, n/N (%)	68/103 (66.0)	178/365 (48.8)	(1.293–3.222)	0.002	(0.534–0.639)		

Reduction of covariables through Step 1: ULR (Retention criterion: p < 0.15 for linear term or p < 0.05 for quadratic term), Step 2: MLR within-bundle (Entry criterion: p < 0.15; Retention criterion: p < 0.10), and Step 3: MLR across-bundles (Entry criterion: p < 0.15; Retention criterion: p < 0.15).

Abbreviations: AUC, area under the curve; CI, confidence interval; DU, digital ulcer; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic; SD, standard deviation; ULR, univariable logistic regression

^{*1} vs 0 DUs

^{†2} vs 0 DUs

^{‡≥3} vs 0 DUs

[§]Exclusion criterion: Not retained following Step 1 (ULR) based on Steering Committee Decision

Supplementary Table S4. Bundle 4: Other clinical characteristics

	Cases	Non-cases	OR	Wald	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	Chi-	(95% CI)	within-	across-
				square		bundle	bundles
				p value			
of variables (V = 16)						3	1
Known peripheral arterial disease,	3/103 (2.0)	22/265 (6.2)	0.446	0.106	0.517		
n/N (%)	3/103 (2.9)	23/303 (0.3)	(0.131–1.516)	0.190	(0.496–0.538)		
Diabatas n/N (%)	2/103 (1.9)	10/365 (5.2)	0.361	0.175	0.516		
Diabetes, II/IV (70)	2/103 (1.9)	19/303 (3.2)	(0.083–1.575)	0.173	(0.499–0.534)		
Other relevant concomitant disease,	38/103 (36.0)	145/365 (30.7)	0.887	0.603	0.514		
n/N (%)	36/103 (30.9)	143/303 (39.1)	(0.565–1.394)	0.003	(0.461–0.567)		
et							
Number of abnormal hands*, n/N							
(%)							
0	61/95 (64.2)	226/338 (66.9)					
1	2/95 (2.1)	27/338 (8.0)	0.274†	0.083^{\dagger}	0.561		
			(0.063–1.186)		(0.508–0.615)		
2	32/95 (33.7)	85/338 (25.1)	1.395‡	0.188‡			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Known peripheral arterial disease, n/N (%) Diabetes, n/N (%) Other relevant concomitant disease, n/N (%) t Number of abnormal hands*, n/N (%) 0	Known peripheral arterial disease, n/N (%) Diabetes, n/N (%) Other relevant concomitant disease, n/N (%) t Number of abnormal hands*, n/N (%) 0 61/95 (64.2) 1 2/95 (2.1)	Known peripheral arterial disease, n/N (%) Diabetes, n/N (%) Other relevant concomitant disease, n/N (%) t Number of abnormal hands*, n/N (%) 61/95 (64.2) 226/338 (66.9) 1 2/95 (2.1) 27/338 (8.0)	Known peripheral arterial disease, n/N (%) Diabetes, n/N (%) Other relevant concomitant disease, n/N (%) Number of abnormal hands*, n/N (%) Other relevant concomitant disease, n/N (%) The state of the state	The problem of variables (V = 16) Known peripheral arterial disease, $3/103 (2.9)$ $23/365 (6.3)$ 0.446 0.196 0	of variables (V = 16) Known peripheral arterial disease, $3/103$ (2.9) $23/365$ (6.3) 0.446 0.517 0.196 $0.496 - 0.538$) Diabetes, n/N (%) $2/103$ (1.9) $19/365$ (5.2) 0.361 0.175 $0.$	The problem of variables (V = 16) Known peripheral arterial disease, and (0.446 and (0.517 and (0.496-0.538)) Diabetes, n/N (%) Diabetes, n/N (%) $2/103 (1.9)$ $19/365 (5.2)$ 0.361 0.175 $0.083-1.575)$ 0.603 0.603 $0.461-0.567)$ Number of abnormal hands*, n/N 0 0 0 0 0 0 0 0

Variable	Summar	y statistics		ULR		Variable	s selected
	Cases	Non-cases	OR	Wald	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	Chi-	(95% CI)	within-	across-
				square		bundle	bundles
				p value			
5. Both hands abnormal, n/N (%)	32/95 (33.7)	85/338 (25.1)	0.661	0.099	0.543	X	
3. Both hands abhormal, h/1 (70)	32/93 (33.1)	65/556 (25.1)	(0.405–1.081)	0.099	(0.490-0.596)	A	
6. Either hand abnormal, n/N (%)	34/95 (35.8)	112/338 (33.1)	0.889	0.629	0.513		
6. Eduler hand abhormal, h/N (%)	34/93 (33.8)	112/336 (33.1)	(0.552–1.432)	0.629	(0.459–0.568)		
7 Left hand also sound in (N) (0)	22/06 (24.4)	06/229 (20.4)	1.320	0.250	0.530		
7. Left hand abnormal, n/N (%)	33/96 (34.4)	96/338 (28.4)	(0.815–2.140)	0.259	(0.476–0.583)		
9 D' 14 hand dan mad a NI (01)	22/05 (24.7)	101/229 (20.0)	1.249	0.266	0.524		
8. Right hand abnormal, n/N (%)	33/95 (34.7)	101/338 (29.9)	(0.771–2.023)	0.366	(0.470-0.578)		
Digital lesions other than DUs							
Fissure							
0 D (N/0/)	17/102 (16.5)	54/265 (14.0)	1.258	0.422	0.516		
9. Presence, n/N (%)	17/103 (16.5)	54/365 (14.8)	(0.708–2.236)	0.433	(0.474–0.558)		
			1.022		0.508		
10. Number, mean (SD); n	3.1 (2.9); 17	3.1 (2.5); 54		0.764			
			(0.887-1.177)		(0.467 - 0.549)		

Variable	Summar	y statistics		ULR		Variable	s selected
	Cases	Non-cases	OR	Wald	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	Chi-	(95% CI)	within-	across-
				square		bundle	bundles
				p value			
Paronychia							
11. Presence, n/N (%)	20/103 (19.4)	38/365 (10.4)	2.048 (1.132–3.705)	0.018	0.545 (0.503–0.586)	X	X
12. Number, mean (SD); n	2.5 (2.9); 20	2.9 (1.9); 38	1.112 (0.948–1.304)	0.192	0.541 (0.500–0.582)		
Pitting scars							
13. Presence, n/N (%)	60/103 (58.3)	182/365 (49.9)	1.498 (0.958–2.342)	0.076	0.550 (0.496–0.604)	X	
14. Number*, mean (SD); n	4.2 (3.0); 60	3.9 (3.6); 182	1.049 (0.985–1.118)	0.133	0.564 (0.502–0.626)		
Calcinosis							
15. Presence, n/N (%)	21/103 (20.4)	67/365 (18.4)	1.090	0.753	0.507		
	21,100 (20.1)	27,000 (20.1)	(0.637-1.866)	022	(0.462-0.552)		
16. Number, mean (SD); n	2.9 (2.5); 21	3.2 (3.3); 67	0.995 (0.882–1.122)	0.930	0.491 (0.447–0.536)		

Reduction of covariables through Step 1: ULR (Retention criterion: p < 0.15 for linear term or p < 0.05 for quadratic term), Step 2: MLR within-bundle (Entry criterion: p < 0.15; Retention criterion: p < 0.10), and Step 3: MLR across-bundles (Entry criterion: p < 0.15; Retention criterion: p < 0.15)

Abbreviations: AUC, area under the curve; CI, confidence interval; DU, digital ulcer; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic; SD, standard deviation; ULR, univariable logistic regression

^{*}Exclusion criterion: Not retained following Step 1 (ULR) based on Steering Committee Decision

[†]1 vs 0 abnormal hands (Allen test)

[‡]2 vs 0 abnormal hands (Allen test)

Supplementary Table S5. Bundle 5: Nailfold videocapillaroscopic characteristics: quantitative assessment (6 sub-bundles)

Variab	le	Summary	statistics		ULR		Variable	s selected
		Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
		(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
		mean (SD); n	mean (SD); n		p value		bundle	bundles
							31	3
Patien	t level ($V = 6$): both hands, 8 fingers (Sub-bundle 5.1)						
1.	Number of capillaries/mm*	4.2 (1.6); 103	4.8 (1.8); 362	0.800	0.002	0.605	X	
1.	Number of capitalies/film	4.2 (1.0), 103	4.6 (1.6), 302	(0.696-0.920)	0.002	(0.546–0.665)	Λ	
2.	Number of giants/mm	0.6 (0.7); 103	0.5 (0.6); 362	1.055	0.753	0.506		
2.	Number of grants/fillif	0.0 (0.7), 103	0.5 (0.0), 302	(0.755–1.474)	0.733	(0.445-0.568)		
3.	Number of irregularly enlarged	1.3 (1.0); 103	1.3 (1.1); 362	0.975	0.810	0.502		
	capillaries/mm	1.3 (1.0), 103	1.5 (1.1), 302	(0.795–1.196)	0.810	(0.437–0.566)		
4	Number of migrahamamhagas/mm	0.2 (0.2), 102	0.2 (0.2), 262	0.543	0.124	0.565	X	
4.	Number of microhemorrhages/mm	0.2 (0.3); 103	0.2 (0.3); 362	(0.249–1.183)	0.124	(0.506–0.625)	Λ	
				1.529		0.572		
5.	Number of neoangiogeneses/mm*	0.7 (0.7); 103	0.5 (0.6); 362	(1.093–2.140)	0.013	(0.507–0.636)	X	
				(1.075-2.140)		(0.307-0.030)		

Variable	Summary	y statistics		ULR		Variable	s selected
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
	mean (SD); n	mean (SD); n		p value		bundle	bundles
6. Maximum capillary diameter	88.5 (29.6); 85	86.2 (27.6); 284	0.998 (0.991–1.006)	0.670	0.501 (0.440–0.562)		
Hand level $(V = 6)$: dominant hand, 4 finger	rs (Sub-bundle 5.2)						
1. Number of capillaries/mm*	4.0 (1.7); 101	4.7 (1.8); 359	0.803 (0.701–0.921)	0.002	0.606 (0.547–0.665)	X	
2. Number of giants/mm	0.5 (0.7); 101	0.5 (0.7); 359	0.991 (0.715–1.375)	0.958	0.518 (0.455–0.581)		
 Number of irregularly enlarged capillaries/mm 	1.3 (1.1); 101	1.4 (1.2); 359	0.955 (0.787–1.157)	0.637	0.508 (0.443–0.573)		
4. Number of microhemorrhages/mm	0.2 (0.4); 101	0.2 (0.4); 359	0.662 (0.348–1.258)	0.208	0.552 (0.495–0.609)		
5. Number of neoangiogeneses/mm	0.6 (0.7); 101	0.5 (0.6); 359	1.303 (0.946–1.795)	0.105	0.549 (0.484–0.613)	X	
C. Marianan and Harris	90.0 (26.7) 67	97.1 (20.5), 242	0.998	0.655	0.514		
6. Maximum capillary diameter	89.0 (26.7); 67	87.1 (29.5); 242	(0.992-1.005)	0.655	(0.452–0.577)		

Variable	Summary	y statistics		ULR		Variable	s selected
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
	mean (SD); n	mean (SD); n		p value		bundle	bundles
Hand level (V = 6): non-dominant hand, 4	fingers (Sub-bundle	2 5.3)					
1. Number of capillaries/mm*	4.2 (1.7); 101	4.9 (1.9); 359	0.819 (0.719–0.933)	0.003	0.599 (0.538–0.659)	X	
2. Number of giants/mm	0.6 (0.8); 101	0.5 (0.7); 359	1.063 (0.779–1.450)	0.699	0.524 (0.464–0.585)		
 Number of irregularly enlarged capillaries/mm 	1.3 (1.1); 101	1.3 (1.1); 359	0.995 (0.816–1.214)	0.963	0.501 (0.436–0.566)		
4. Number of microhemorrhages/mm	0.2 (0.3); 101	0.2 (0.4); 359	0.612 (0.300–1.247)	0.176	0.543 (0.485–0.600)		
5. Number of neoangiogeneses/mm*	0.7 (0.7); 101	0.5 (0.6); 359	1.501 (1.089–2.069)	0.013	0.577 (0.513–0.640)	X	
6. Maximum capillary diameter	88.6 (35.0); 75	87.3 (31.1); 244	0.998 (0.991–1.005)	0.593	0.497 (0.437–0.557)		
Finger level ($V = 24$): both hands, 4 pairs of	of fingers (Sub-bund	lle 5.4)					
Index fingers							
1. Number of capillaries/mm	4.2 (1.9); 100	4.7 (2.1); 353	0.879 (0.784–0.985)	0.026	0.577 (0.516–0.638)	X	

Variabl	e	Summary	y statistics		ULR		Variable	s selected
		Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
		(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
		mean (SD); n	mean (SD); n		p value		bundle	bundles
2.	Number of giants/mm	0.4 (0.7); 100	0.5 (0.7); 353	0.936	0.694	0.518		
2.	Number of grants/film	0.4 (0.7), 100	0.5 (0.7), 555	(0.671–1.304)	0.094	(0.459–0.578)		
3.	Number of irregularly enlarged	1.3 (1.3); 100	1.3 (1.3); 353	1.018	0.837	0.511		
	capillaries/mm	1.3 (1.3), 100	1.3 (1.3), 333	(0.858–1.207)	0.837	(0.447–0.574)		
4.	Number of	0.1 (0.3); 100	0.2 (0.4); 353	0.418	0.030	0.575	X	
	microhemorrhages/mm*	0.1 (0.3), 100	0.2 (0.4), 333	(0.190-0.917)	0.030	(0.528–0.623)	Λ	
5.	Number of neoangiogeneses/mm*	0.7 (0.8); 100	0.4 (0.6); 353	1.616	0.002	0.587	X	
5.	rumoer of neodingrogeneses/inim	0.7 (0.0), 100	0.4 (0.0), 333	(1.195–2.185)	0.002	(0.523–0.650)	Α	
6.	Maximum capillary diameter	87.2 (33.9); 47	85.7 (31.2); 176	0.997	0.382	0.520		
0.	waxiinuiii capinai y diainctei	67.2 (33.9), 47	03.7 (31.2), 170	(0.990–1.004)	0.382	(0.460-0.579)		
Middle	fingers							
7.	Number of capillaries/mm*	4.0 (1.7); 103	4.7 (2.0); 358	0.816	0.002	0.600	X	
7.	Number of capitaties/film	4.0 (1.7), 103	4.7 (2.0), 336	(0.719–0.926)	0.002	(0.541–0.659)	Λ	
				1.198		0.532		
8.	Number of giants/mm	0.6 (0.9); 103	0.5 (0.7); 358	(0.919–1.563)	0.182	(0.471–0.592)		

Variable	Summary	statistics		ULR		Variable	s selected
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
	mean (SD); n	mean (SD); n		p value		bundle	bundles
9. Number of irregularly enlarged	1.3 (1.2); 103	1.4 (1.2); 358	0.971	0.744	0.510		
capillaries/mm	1.5 (1.2), 103	1.4 (1.2), 336	(0.811–1.161)	0.744	(0.447–0.573)		
10. Number of microhemorrhages/mm	0.2 (0.5); 103	0.3 (0.5); 358	0.810	0.408	0.529		
10. Number of interollemormages/min	0.2 (0.3), 103	0.5 (0.5), 558	(0.493–1.333)	0.408	(0.477–0.581)		
11. Number of neoangiogeneses/mm	0.6 (0.8); 103	0.5 (0.7); 358	1.316	0.070	0.546	X	
11. Number of neoanglogeneses/min	0.0 (0.8), 103	0.5 (0.7), 558	(0.978–1.769)	0.070	(0.484–0.607)	Λ	
12. Maximum capillary diameter	87.9 (36.1); 63	86.5 (29.4); 198	1.002	0.472	0.521		
12. Maximum capinary drameter	67.9 (30.1), 03	60.5 (29. 4), 196	(0.997-1.008)	0.472	(0.461–0.581)		
ing fingers							
13. Number of capillaries/mm	4.2 (1.8); 102	4.8 (1.9); 360	0.846	0.009	0.591	X	
13. Number of capitalies/film	4.2 (1.8), 102	4.6 (1.9), 300	(0.746–0.959)	0.009	(0.529–0.652)	Λ	
14. Number of giants/mm	0.6 (0.9); 102	0.7 (0.9); 360	0.923	0.546	0.524		
14. Number of grants/film	0.0 (0.9), 102	0.7 (0.9), 300	(0.710–1.198)	0.340	(0.463-0.584)		
15. Number of irregularly enlarged	1.3 (1.2); 102	1.4 (1.3); 360	0.953	0.594	0.509		
capillaries/mm	1.5 (1.2), 102	1.4 (1.3), 300	(0.797-1.139)	0.374	(0.445-0.574)		

Variable	Summary	y statistics		ULR		Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
	mean (SD); n	mean (SD); n		p value		bundle	bundles
16. Number of microhemorrhages/mm	0.2 (0.4); 102	0.3 (0.5); 360	0.689	0.185	0.539		
16. Number of interonemormages/min	0.2 (0.4), 102	0.5 (0.5), 500	(0.397–1.195)	0.163	(0.485-0.593)		
17. Namban of managinary	0.7 (0.0), 102	0 6 (0 7), 260	1.309	0.049	0.537	X	
17. Number of neoangiogeneses/mm	0.7 (0.9); 102	0.6 (0.7); 360	(1.001–1.710)	0.049	(0.473-0.600)	Λ	
10 Manianan and Hamadianadan	02.0 (21.0), (2	02.4 (25.7), 220	0.996	0.196	0.526		
18. Maximum capillary diameter	92.0 (31.9); 63	92.4 (35.7); 220	(0.991–1.002)	0.196	(0.467–0.586)		
Little fingers							
10 Number of and the disc/our	4.2 (1.9), 102	5.0 (1.0), 259	0.811	0.001	0.614	X	
19. Number of capillaries/mm	4.3 (1.8); 102	5.0 (1.9); 358	(0.714–0.921)	0.001	(0.551-0.677)	Λ	
20. Number of cients/mm	0.5 (0.8), 102	0.5 (0.7), 259	1.077	0.630	0.511		
20. Number of giants/mm	0.5 (0.8); 102	0.5 (0.7); 358	(0.795–1.459)	0.030	(0.452-0.571)		
21. Number of irregularly enlarged	1.2 (1.2): 102	1.0 (1.0), 250	1.042	0.662	0.508		
capillaries/mm	1.3 (1.2); 102	1.2 (1.2); 358	(0.865–1.256)	0.662	(0.442-0.574)		
			0.772		0.525		
22. Number of microhemorrhages/mm	0.2 (0.4); 102	0.2 (0.4); 358	0.773	0.367	0.527		
			(0.441-1.353)		(0.475 - 0.580)		

Variable	Summary	Summary statistics		ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-	
	mean (SD); n	mean (SD); n		p value		bundle	bundles	
23. Number of neoangiogeneses/mm	0.7 (0.8); 102	0.6 (0.8); 358	1.226	0.140	0.549	X		
23. Trumber of heodinglogeneses/film	0.7 (0.0), 102	0.0 (0.0), 330	(0.935–1.607)	0.140	(0.487–0.612)	71		
24. Maximum capillary diameter	97.9 (26.4), 50	85.0 (30.2); 179	1.000	0.880	0.503			
24. Maximum capmary diameter	87.8 (26.4); 50 85.0 (30.	83.0 (30.2); 179	(0.993–1.006)		(0.443-0.563)			
Finger-level (V = 24): dominant hand, 4 ind	lividual fingers (Su	b-bundle 5.5)						
Index fingers								
1. Number of capillaries/mm	2.0 (2.2), 90	4.5 (2.3); 325	0.879	0.022	0.603	X		
1. Number of capillaries/mm	3.9 (2.2); 89	4.3 (2.3); 323	(0.787-0.981)	0.022	(0.538-0.668)	X		
2 Number of signer	0.0 (0.5) 00	0.5 (0.0), 225	0.785	0.170	0.547			
2. Number of giants/mm	0.3 (0.7); 89	0.5 (0.8); 325	(0.556–1.109)	0.170	(0.492–0.601)			
3. Number of irregularly enlarged	1 4 (1 5) 00	1.4 (1.4): 225	1.038	0.656	0.508			
capillaries/mm	1.4 (1.5); 89	1.4 (1.4); 325	(0.881–1.224)	0.656	(0.441–0.575)			
	0.1 (0.4) 00	0.2 (0.5) 225	0.592	0.122	0.552	V	V	
4. Number of microhemorrhages/mm	0.1 (0.4); 89	0.2 (0.5); 325	(0.305–1.150)	0.122	(0.512-0.593)	X	X	
			1.212		0.547			
5. Number of neoangiogeneses/mm	0.6 (0.8); 89	0.4 (0.8); 325		0.187				
			(0.911-1.614)		(0.486 - 0.608)			

Variable	Summary	Summary statistics		ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-	
	mean (SD); n	mean (SD); n		p value		bundle	bundles	
6. Maximum capillary diameter	93.1 (37.3); 26	85.9 (32.0); 119	0.998 (0.992–1.005)	0.568	0.529 (0.470–0.587)			
Middle fingers								
7. Number of capillaries/mm	3.8 (1.9); 97	4.7 (2.2); 339	0.801 (0.707–0.907)	0.001	0.614 (0.553–0.674)	X	X	
8. Number of giants/mm	0.5 (0.8); 97	0.5 (0.8); 339	1.018 (0.764–1.356)	0.902	0.491 (0.432–0.550)			
 Number of irregularly enlarged capillaries/mm 	1.4 (1.4); 97	1.3 (1.4); 339	1.015 (0.868–1.188)	0.849	0.510 (0.446–0.575)			
10. Number of microhemorrhages/mm	0.2 (0.8); 97	0.3 (0.6); 339	_†	0.007	0.565 (0.524–0.605)	X		
11. Number of neoangiogeneses/mm	0.6 (0.9); 97	0.4 (0.8); 339	1.326 (1.024–1.718)	0.032	0.558 (0.498–0.617)	X	X	
12. Maximum capillary diameter	92.3 (40.3); 36	87.1 (30.6); 143	0.999	0.807	0.513			
12. Maximum capinary diameter	<i>52.3</i> (40.3), 30	07.1 (30.0), 143	(0.994–1.005)	0.807	(0.454–0.571)			

Variable	Summary statistics		ULR			Variables selected		
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-	
	mean (SD); n	mean (SD); n		p value		bundle	bundles	
Ring fingers								
13. Number of capillaries/mm	4.2 (2.1); 99	4.6 (2.1); 343	0.902 (0.807–1.009)	0.070	0.564 (0.500–0.629)	X		
14. Number of giants/mm	0.6 (0.9); 99	0.7 (1.0); 343	0.895 (0.701–1.142)	0.372	0.532 (0.473–0.590)			
15. Number of irregularly enlarged capillaries/mm	1.2 (1.4); 99	1.4 (1.5); 343	0.890 (0.754–1.050)	0.166	0.555 (0.491–0.619)			
16. Number of microhemorrhages/mm	0.2 (0.4); 99	0.3 (0.6); 343	0.734 (0.451–1.195)	0.214	0.510 (0.462–0.557)			
17. Number of neoangiogeneses/mm	0.6 (0.9); 99	0.5 (0.8); 343	1.118 (0.869–1.439)	0.385	0.524 (0.465–0.582)			
18. Maximum capillary diameter	93.4 (29.4); 42	92.9 (38.8); 167	0.997 (0.991–1.002)	0.186	0.532 (0.474–0.591)			
Little fingers			, ,		(
19. Number of capillaries/mm	4.1 (1.8); 97	5.0 (2.1); 347	0.808 (0.715–0.913)	0.001	0.620 (0.558–0.681)	X		

Variable	Summary statistics		ULR			Variables selected		
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR	
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-	
	mean (SD); n	mean (SD); n		p value		bundle	bundles	
20. Number of giants/mm	0.6 (1.0); 97	0.5 (0.8); 347	1.155	0.242	0.513			
20. Ivalider of grants/film	0.0 (1.0), 77	0.5 (0.0), 547	(0.907–1.469)	0.242	(0.453–0.573)			
21. Number of irregularly enlarged	1.2 (1.3); 97	1.3 (1.4); 347	0.974	0.756	0.502			
capillaries/mm	1.2 (1.3), 91	1.5 (1.4), 547	(0.822–1.153)	0.730	(0.439–0.565)			
22. Number of microhemorrhages/mm	0.2 (0.5); 97	0.3 (0.6); 347	0.791	0.308	0.525			
22. Number of interollemormages/inin			(0.504–1.242)		(0.476–0.574)			
23. Number of neoangiogeneses/mm	0.6 (0.8); 97	0.6 (0.9); 347	1.034	0.790	0.519			
23. Number of neodinglogeneses/inim			(0.807–1.326)		(0.460-0.578)			
24. Maximum capillary diameter	89.1 (28.7); 37	86.1 (33.5); 147	1.001	0.692	0.497			
24. Maximum capmary diameter	69.1 (26.7), 37		(0.996–1.007)		(0.436–0.558)			
Finger level (V = 24): non-dominant hand,	4 individual fingers	(Sub-bundle 5.6)						
Index fingers								
1. Number of capillaries/mm	4.4.(2.0): 02	4.0 (2.4): 343	0.902	0.056	0.562	X		
1. Number of capillaries/mm	4.4 (2.0); 92	4.9 (2.4); 343	(0.811–1.003)	0.030	(0.499–0.624)	Λ		
	0.5 (0.0) 0.3	0.4 (0.2) 2.12	1.103	0.404	0.497			
2. Number of giants/mm	0.5 (0.9); 92	0.4 (0.8); 343	(0.839–1.449)	0.484	(0.439–0.555)			

Variable		Summary statistics		ULR			Variables selected	
		Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
		(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
		mean (SD); n	mean (SD); n		p value		bundle	bundles
3.	Number of irregularly enlarged	1.2 (1.3); 92	1 2 (1 5): 2/2	0.959	0.619	0.503		
	capillaries/mm	1.2 (1.3), 92	1.3 (1.5); 343	(0.815–1.129)	0.619	(0.440-0.567)		
4.	Number of	0.1 (0.3); 92	0.2 (0.5); 343	0.460	0.033	0.550	X	
	microhemorrhages/mm*	0.1 (0.3), 92	0.2 (0.3), 343	(0.225–0.941)	0.033	(0.507-0.593)		
5.	Number of neoangiogeneses/mm*	0.7 0.9); 92	0.5 (0.8); 343	1.472	0.002	0.579 0.003	X	
3.	5. Number of neoanglogeneses/min	0.7 0.9), 92	0.5 (0.6), 545	(1.137–1.904)	0.003	(0.516-0.643)	Α	
6.		86.2 (35.8); 30	88.6 (34.9); 128	0.997	0.341	0.526		
0.	Maximum capillary diameter			(0.991–1.003)		(0.470-0.523)		
Middle	fingers							
7.	Number of capillaries/mm	4.1 (2.0); 97	4.8 (2.3); 341	0.864	0.010	0.582	X	
7.	Number of capitalies/fillif	4.1 (2.0), 97	4.6 (2.3), 341	(0.773–0.965)	0.010	(0.518-0.646)	Λ	
Q	Number of giants/mm	0.7 (1.0): 07	0.6 (0.0): 341	1.129	0.312	0.537		
0.	8. Number of giants/mm	0.7 (1.0); 97	0.6 (0.9); 341	(0.892–1.428)	0.312	(0.478–0.597)		
9.	Number of irregularly enlarged	1 2 (1 4): 07	4.44.0.25	0.942	0.400	0.528		
	capillaries/mm	1.2 (1.4); 97	1.4 (1.4); 341	(0.798–1.112)	0.480	(0.464-0.592)		

Variable	Summary statistics		ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
	mean (SD); n	mean (SD); n		p value		bundle	bundles
10. Number of microhemorrhages/mm	0.2 (0.4); 97	0.2 (0.5); 341	0.829	0.435	0.509		
10. Number of micronemorrnages/mm	0.2 (0.4); 97	0.2 (0.5); 341	(0.517–1.328)	0.433	(0.461–0.557)		
	0.5 (0.9), 07	0.5 (0.9), 241	1.088	0.550	0.523		
11. Number of neoangiogeneses/mm	0.5 (0.8); 97	0.5 (0.8); 341	(0.820–1.443)	0.558	(0.464–0.581)		
12. Maximum capillary diameter	88.3 (39.9); 49	89.3 (34.6); 152	1.002	0.532	0.524		
12. Maximum capmary diameter			(0.997–1.007)		(0.464–0.584)		
Ring fingers							
13. Number of capillaries/mm*	4.2 (2.0); 94	4.9 (2.2); 352	0.831	0.002	0.607	X	
14. Number of giants/mm	0.6 (1.0); 94	0.7 (1.0); 352	(0.739–0.934) 0.951	0.687	(0.545–0.670) 0.526		
-	0.0 (1.0), 74	0.7 (1.0), 332	(0.747–1.212)	0.007	(0.466–0.587)		
 Number of irregularly enlarged capillaries/mm 	1.4 (1.5); 94	1.3 (1.4); 352	1.049 (0.899–1.223)	0.545	0.517 (0.450–0.584)		
16. Number of microhemorrhages/mm	0.2 (0.5); 94	0.3 (0.6); 352	0.816	0.368	0.533		
			(0.524–1.270)		(0.484–0.581)		
17. Number of neoangiogeneses/mm	0.8 (1.1); 94	0.6 (0.9); 352	1.276 (1.017–1.601)	0.035	0.548 (0.484–0.612)	X	
			(1.01/ 1.001)		(0.101 0.012)		

Variable	Summary statistics		ULR			Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
	mean (SD); n	mean (SD); n		p value		bundle	bundles
18. Maximum capillary diameter	93.0 (38.3); 42	96.3 (41.6); 172	0.998 (0.993–1.003)	0.354	0.529 (0.469–0.590)		
Little fingers							
19. Number of capillaries/mm	4.3 (2.1); 100	4.9 (2.2); 348	0.871 (0.783–0.971)	0.012	0.592 (0.528–0.656)	X	
20. Number of giants/mm	0.4 (0.7); 100	0.4 (0.8); 348	0.954 (0.710–1.282)	0.755	0.497 (0.444–0.550)		
21. Number of irregularly enlarged capillaries/mm	1.3 (1.5); 100	1.2 (1.3) 348	1.074 (0.913–1.263)	0.386	0.506 (0.440–0.571)		
22. Number of microhemorrhages/mm	0.2 (0.5); 100	0.2 (0.5); 348	0.928 (0.596–1.443)	0.739	0.505 (0.459–0.551)		
23. Number of neoangiogeneses/mm	0.8 (0.9); 100	0.6 (0.9); 348	1.216 (0.969–1.525)	0.091	0.560 (0.499–0.621)	X	
24. Maximum capillary diameter	88.0 (37.6); 35	88.1 (39.1) 119	0.999 (0.993–1.004)	0.631	0.504 (0.449–0.558)		

Reduction of covariables through Step 1: ULR (Retention criterion: p < 0.15 for linear term or p < 0.05 for quadratic term), Step 2: MLR within-bundle (Entry criterion: p < 0.15; Retention criterion: p < 0.10), and Step 3: MLR across-bundles (Entry criterion: p < 0.15; Retention criterion: p < 0.05).

Abbreviations: AUC, area under the curve; CI, confidence interval; MLR, multivariable logistic regression; NVC, nailfold videocapillaroscopy; OR, odds ratio; ROC, receiver operating characteristic; SD, standard deviation; ULR, univariable logistic regression

^{*}For the NVC bundle, several types of assessments, sub-bundles met the statistical criteria mentioned above to be retained after Step 2. However, in order to retain only one type of NVC assessment in the final model (for practicability), the Steering Committee decided on only retaining the sub-bundle with the highest AUC (i.e. sub-bundle 5.5). The other NVC covariables were subsequently not retained (*)

[†]OR is not given since the functional relationship is quadratic. Associated p value and ROC-AUC are of quadratic term

Supplementary Table S6. Nailfold videocapillaroscopic characteristics: qualitative assessment (1 covariable)

Variable	Summary	mmary statistics		ULR		Variables selected	
	Cases	Non-cases	OR	Wald Chi-	ROC-AUC	MLR	MLR
	(N=103)	(N=365)	(95% CI)	square	(95% CI)	within-	across-
	n/N (%)	n/N (%)		p value		bundle	bundles
Number of variables (V = 1)						1	0
NVC qualitative assessment							
1. NVC pattern*							
Normal/early	4/103 (3.9)	44/363 (12.1)					
Active	25/103 (24.3)	123/363 (33.9)	2.234 [†] (0.736–6.779)	0.156^{\dagger}	0.597 (0.548–0.647)	X	
Late	74/103 (71.8)	196/363 (54.0)	4.150 [‡] (1.441–11.950)	0.008^{\ddagger}			

Reduction of covariables through Step 1: ULR (Retention criterion: p < 0.15 for linear term or p < 0.05 for quadratic term), Step 2: MLR within-bundle (Entry criterion: p < 0.15; Retention criterion: p < 0.10), and Step 3: MLR across-bundles (Entry criterion: p < 0.15; Retention criterion: p < 0.05).

Abbreviations: AUC, area under the curve; CI, confidence interval; MLR, multivariable logistic regression; NVC, nailfold videocapillaroscopy; OR, odds ratio; ROC, receiver operating characteristic; SD, standard deviation; ULR, univariable logistic regression

^{*}For the NVC bundle, several types of assessments, sub-bundles met the statistical criteria mentioned above to be retained after Step 2. However, in order to retain only one type of NVC assessment in the final model (for practicability), the Steering Committee decided on only retaining the sub-bundle with the highest AUC (i.e., sub-bundle 5.5). The other NVC covariables were subsequently not retained (*).

[†]Active vs Normal/early

[‡]Late vs Normal/early

4. Definitions of DUs, critical digital ischemia, and other digital lesions

Supplementary Table S7. Definitions of digital ulcer (DU), critical digital ischemia, and other $(than\ DU)$ digital lesions

Digital lesion	Definition used
Digital ulcer	A DU was defined as a denuded area located on the fingers of the
	hands and with defined border and loss of epithelization, loss of
	epidermis and dermis. It did not include fissures, paronychia,
	pitting scars, or ulcers located over the metacarpo-phalangeal
	joints or elbows.
Digital critical ischemia	This is not Raynaud's phenomenon.
	It is a prolonged, severe, persistent reduction in digital tissue
	perfusion without re-warming.
Fissures	Linear cleavage of skin that extends into the dermis.
Paronychia	Skin infection that occurs around the nails.
Pitting scars	Small-sized hyperkeratosis.
Calcinosis	Deposits of calcium-containing salts in soft tissues, visible to the
	naked eye and/or confirmed by X-ray.

5. Chart for DU location

Supplementary Figure S1. Coding of the location of digital ulcers

R or L	1, 2, 3, 4 or 5	1, 2, 3, a or b	D, P or L
Hand:	Digit number:	Phalange:	Side:
R = right	1 = thumb	1 = proximal phalange	D = dorsal
L = left	2 = index finger	2 = intermediate phalange	P = palmar
	3 = middle finger	3 = distal phalange	L = lateral
	4 = ring finger	a = proximal	
	5 = little finger	interphalangeal joint	
		b = distal interphalangeal	
		joint	

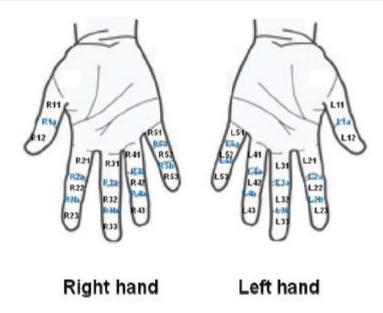
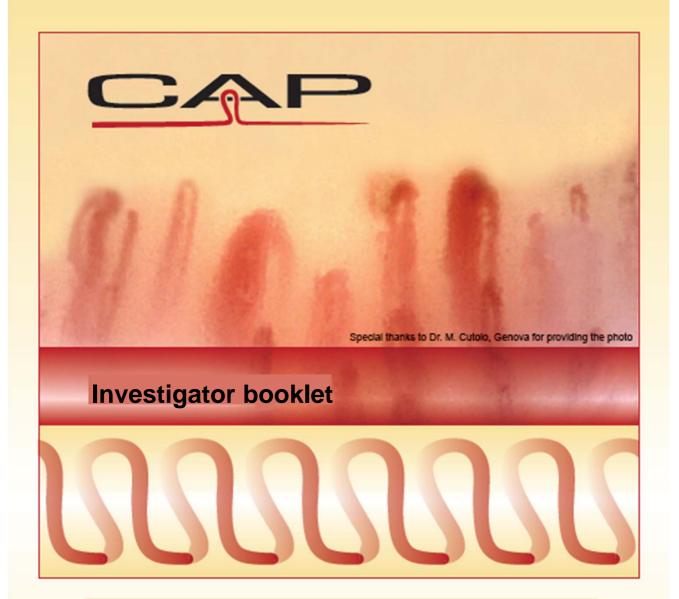



Table and sketch illustrating how the location of DU is coded.

6. Investigator booklet

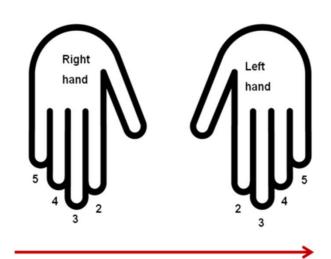
Images on page 1, 4–7 and 9–13 by Dr R. De Angelis, Dr Del Medico, Dr Riccieri and Dr Sulli from M. Cutolo "Atlas of capillaroscopy in rheumatic diseases" Elsevier Srl Milano 2010

Table of contents

•	General guidelines	3
•	Normal (healthy) morphology	4
	Hairpin shape, afferent, efferent, apical limb	4
	Tortuosity	4
	Crossing	4
•	Abnormal morphology	5
	Irregularly enlarged capillary	5
	Giant capillary	5
	Microhemorrhage	6
	Meandering capillary	7
	Ramified, branching, bushy capillary	7
	Bizarre capillary	7
•	NVC variables assessed in CAP	8
	SSc pattern: early, active, late	8
	Number of capillaries; distal row	10
	Number of irregularly enlarged capillaries	11
	Number of giant capillaries	11
	Number of microhemorrhages	12
	Number of neoangiogeneses	13
	Maximum capillary diameter	14
	Frequently asked questions	15

General guidelines

Prior to examination the patient must have been for 15 minutes in a room at 22-23°C prior to NVC assessment. He/she must refrain from smoking and drinking caffeinated drinks for 4 hours prior to NVC assessment.

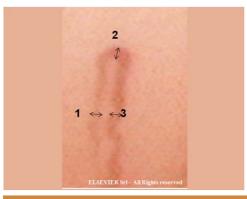

Do not analyze fingers which underwent recent trauma since this could entail microvascular abnormalities.

NVC assessment can be hampered by recent manicure, chemical substances, radiations, vibrating tools, gardening, and intensive guitar playing. In such cases, the NVC assessment must be rescheduled.

For the evaluation of the NVC parameters, a 200x lens is used.

Two adjacent non overlapping fields located in the center of the nailbed for each of fingers 2 to 5 of each hand are evaluated (16 fields in total). Working on adjacent fields is essential to avoid bias in the image selection.

We recommend that you always take capillaroscopic images from left to right (like when you read): starting with the patient's right hand, 5th (little) finger, moving on to the right hand, 4th (ring) finger, ending with the left hand, 5th (little) finger as shown below.



Normal (healthy) morphology

In a healthy person, hairpin-shaped capillaries can be observed. The average density is 9-12 capillaries per mm.

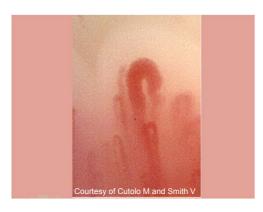
Normal capillaries can also have tortuosities and crossings.

Normal hairpin-shaped capillary

- 1 afferent (arterial) limb
- 2 apical (transitional) limb
- 3 efferent (venous) limb (diameter <20μm)

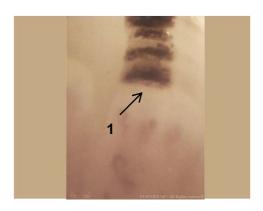
Tortuosity: Bending of afferent and efferent limb but not apical limb.

Crossing capillary: Capillary whose limbs cross once or twice.

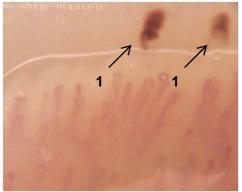

Abnormal morphology

Abnormal capillaries are not pathologic if they occur isolated.

In SSc patients, irregularly enlarged capillaries, giant capillaries, microhemorrhages and neoangiogeneses (meandering, ramified, branching, bushy and bizarre capillaries) may be observed.

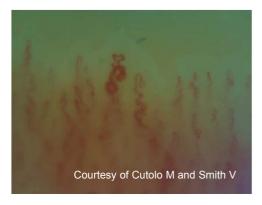


Irregularly enlarged capillary: Capillary with a diameter >20 μ m. Morphology can be hairpin-shaped, tortuous or crossing once.



Giant capillary: Hairpin-shaped or horseshoe-shaped homogeneously large capillary with diameter >50 μ m. (Horseshoe shape: diameter of apical limb is larger than that of afferent and efferent limb.)

Microhemorrhage (1): Dark mass due to hemosiderin deposit which can be linked to a disappearing capillary. One microhemorrhage refers to one capillary that bled. Large confluent bleedings that cannot be linked to a disappearing capillary are not counted.



Large, confluent bleeding (not counted in CAP)

Meandering, ramified, branching, bushy, and bizarre capillaries are the result of neoangiogenesis.

Meandering: Capillary in which all three limbs (afferent, apical and efferent) cross upon themselves or with each other several times.

Meandering should not be confused with tortuosities, in which only afferent and efferent limbs are bended.

Ramified, branching, bushy capillary

Bizarre capillary (no picture): Abnormal capillary not matching any of the definitions provided above.

NVC variables assessed in CAP

This guide explains how to fill in the section "Nailfold Videocapillaroscopy" of the eCRF.

" indicates an assessment as listed in the eCRF.

according to NVC (if several patterns coexist, please select most severe manifestation pattern.

SSc pattern

Among the 16 fields (8 fingers, 2 fields per finger), please choose the most severe manifestation pattern: early, active, or late. For example, if a patient has some fields with an active pattern and others with a late pattern, please select the late pattern.

In case of doubt and in borderline cases, the following rules may be applied:

Early SSc pattern: Presence of giant capillaries and microhemorrhages. The worst field has at least 6 capillaries.

Active SSc pattern: There are always giant capillaries and sometimes ramifications. The worst field has 4-6 capillaries.

Late SSc pattern: The worst field has 3 capillaries or less, or more than two-thirds neoangiogeneses.

Normal may be selected if no abnormal morphology is observed.

Illustrations on next page

SSc pattern according to NVC (if several patterns coexist, please select most severe manifestation pattern.

Early SSc pattern: Few giant capillaries, few capillary microhemorrhages, relatively well-preserved capillary distribution, no evident loss of capillaries.

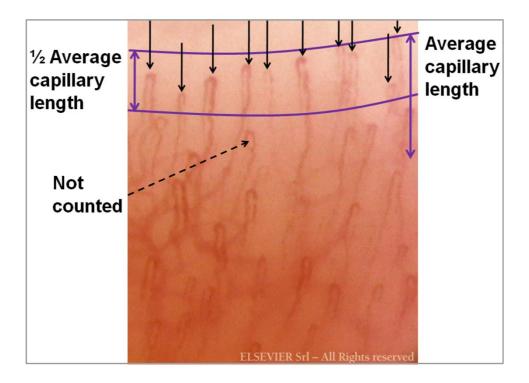
Active SSc pattern: Frequent giant capillaries, frequent capillary microhemorrhages, moderate loss of capillaries, mild disorganization of the capillary architecture, absent or mild ramified capillaries. Usually this pattern is associated with 4-6 capillaries / mm.

Late SSc pattern: Irregular enlargement of the capillaries, few or absent giant capillaries and microhemorrhages, severe loss of capillaries with avascular areas, disorganization of the normal capillary array, and ramified/bushy capillaries. Usually this pattern is associated with < 4 capillaries / mm.

Irregularly enlarged capillaries

Giant capillaries

Microhemorrhages


neoangiogeneses

Max capillary diameter (μm)

Number of capillaries

Please count the number of normal and abnormal capillaries which refers to the number of capillaries counted along one linear millimeter within the distal row of the nailfold.

Distal row: The distal row is the row of capillaries closest to the nail side corresponding to the entire front line. All capillaries which are longer than half of the average capillary length are counted.

Irregularly enlarged capillaries

Giant capillaries

Microhemorrhages

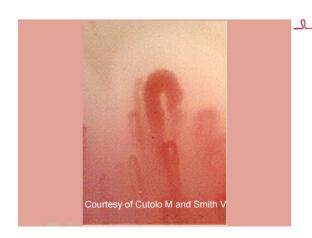
Neoangiogeneses

Max capillary diameter (μm)

Number of irregularly enlarged capillaries

Please count all capillaries within the distal row and with a diameter >20 μm in a linear millimeter. Morphology can be normal, tortuous or crossing once.

Capillaries


Irregularly enlarged capillaries

Giant capillaries

Microhemorrhages

neoangiogeneses

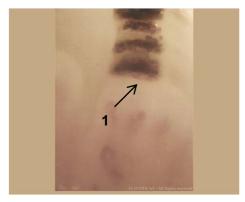
Max capillary diameter (μm)

Number of giant capillaries

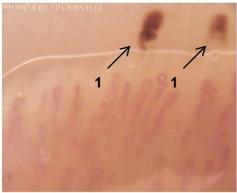
Please count all hairpin-shaped or horseshoeshaped homogeneously large capillaries within the distal row and with a diameter $>50\mu m$ in a linear millimeter. (Horseshoe shape: diameter of apical limb is larger than that of afferent and efferent limb.)

Irregularly enlarged capillaries

Giant capillaries



neoangiogeneses


Max capillary diameter (μm)

Number of microhemorrhages

Please count all dark masses due to hemosiderin deposit and which can be linked to a disappearing capillary in a linear millimeter. One microhemorrhage refers to one capillary that bled. Large confluent bleedings that cannot be linked to a disappearing capillary are not counted.

One microhemorrhage.

Two microhemorrhages.

Large, confluent bleeding (not counted in CAP)

Irregularly enlarged capillaries

Giant capillaries

Number of neoangiogeneses

Please count all meandering, ramified, branching, bushy, bizarre capillaries, and capillaries with more than two crossings. Count within the distal row in one linear millimeter.

Meandering: Capillary in which all three limbs (afferent, apical and efferent) cross upon themselves or with each other several times.

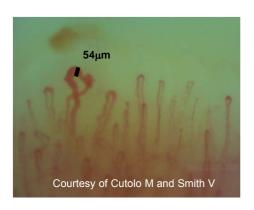
Ramified, branching, bushy capillary

Capillaries with more than two crossings (no picture).

Bizarre capillary (no picture): Abnormal capillary not matching any of the definitions provided above.

Irregularly enlarged capillaries

Giant capillaries


Microhemorrhages

neoangiogeneses

Max capillary diameter (μm)

Maximum capillary diameter

Please choose among all homogeneously large (diameter ≥50μm) capillaries in the 1-mm field, (if any) maximum diameter, irrespective of morphology.

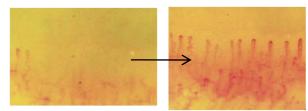
Frequently asked questions

What does a normal NVC pattern look like?

It has thin, parallel capillaries. 9-12 capillaries / mm in the distal row.

Why do I see bubbles on the image?

It is probable that the operator used too much immersion oil. Reducing the amount of oil could improve the image quality.


Why are there reflections on the image?

It is probable that the operator used too little immersion oil. Increasing the amount of oil could improve the image quality

Why can't I clearly see capillaries?

It is probable that the operator pressed too hard on the nailfold, therefore preventing blood cells from flowing in the capillaries. Releasing the pressure could improve the image visibility.

7. Interactions – bundle 6

Supplementary Table S8. Interactions investigated and grouped into a separate bundle on Steering Committee advice

Interactions grouped into a separate bundle on Steering Committee advice

Sex and age at enrollment

Sex and age at first physician-documented non-Raynaud's clinical feature

Age at enrollment and years since first physician-documented non-Raynaud's clinical

feature

Age at enrollment and years since first Raynaud's phenomenon

Age at enrollment and age at first physician-documented non-Raynaud's clinical feature

Age at enrollment and age at first Raynaud's clinical phenomenon

SSc subtype and age at first physician-documented non-Raynaud's clinical feature

SSc subtype and mRSS

Following the advice from the Steering Committee, pre-specified interactions were investigated in Step 2, within a separate bundle, using a stepwise forward selection procedure with specific selection criteria (Entry criterion: p < 0.15; Retention criterion: p < 0.10). For all pairs of covariables the p value was p < 0.10, so none of them were retained.

Abbreviations: mRSS, Modified Rodnan Skin Score; SSc, systemic sclerosis

8. Excluded variables

Supplementary Table S9. Overview of variables excluded because they consisted of fewer than 20 patients

Binary variables with a frequency of few	Binary variables with a frequency of fewer than 20 patients				
Bundle 1: Demographics	None				
Bundle 2: SSc clinical characteristics	Organ involvement:				
	- Nervous system				
	(Connective) Tissue disease:				
	- Systemic Lupus Erythematosus				
	- Dermatomyositis				
	- Polymyositis				
	- Marfan syndrome				
	- Ehlers-Danlos syndrome				
	- Osteogenesis imperfecta				
	- Stickler syndrome				
	- Any other (connective) tissue disease				
Bundle 3: Digital ulcer characteristics	None				
Bundle 4: Other clinical characteristics	None				
Bundle 5: Nailfold videocapillaroscopic	None				
characteristics					

Abbreviations: SSc, systemic sclerosis

Supplementary Table S10. Overview of variables excluded on clinical advice from the Steering Committee

Variables excluded on clinical advice from the Steering Committee

Bundle 1: Demographics

- Height (cm)

- Conduct manual labor

Bundle 2: SSc clinical characteristics

None

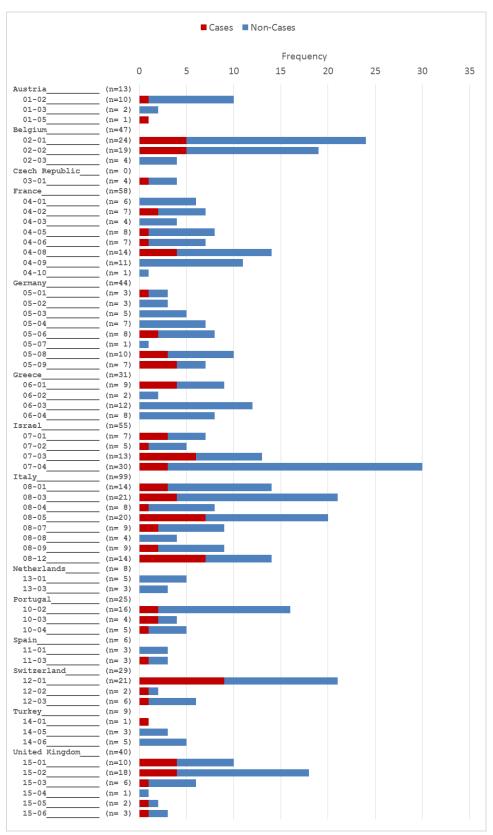
Bundle 3: DU characteristics

- Presence of DU
- At least one DU in fingertips
- At least one DU in finger joints
- Previous or current (= at enrollment) complications:
 - Soft tissue infection requiring antibiotics
 - Auto-amputation
 - Critical digital ischemia
 - Gangrene
 - Any previous or current complication
- Current DU-associated interventions:
 - Current wound debridement
 - Current antiseptics
 - Current wound supportive gels/creams
- Any previous or current intervention
- Allen test: number of abnormal hands
- Number of pitting scars
 - None

Bundle 4: Other clinical

Bundle 5: Nailfold

videocapillaroscopic


characteristics

characteristics

Abbreviations: DU, digital ulcer; SSc, systemic sclerosis

9. New digital ulcer occurrence by Center

Figure S2. Frequency of Patients, Cases, and Non-Cases per Center

The median (minimum, maximum) number of patients/center was 1 (0, 31) and Cases/center was 1 (0,9).

10. Within-bundle MLR models

Table S11. Bundle 1: Demographics within-bundle MLR model

				M	ILR	
				(within	n-bundle)	
Variable	Category	Coefficient	Standard	OR	Wald	P
		estimate	error	(95% CI)	Chi-	value
					square	
Intercept		-0.3249	0.4515	0.723	0.5178	0.4718
				(0.298–1.751)	0.3176	0.4716
Age at		0.0155	0.0004	0.982	4 4002	0.0242
enrollment		-0.0177	0.0084	(0.966–0.999)	4.4803	0.0343

ROC-AUC (95% CI): 0.574 (0.508-0.639)

Multivariable logistic regression equation

Probability (new DU within 6 months) = \exp (linear predictor)/(1 + \exp (linear predictor)), where

linear predictor = -0.325

-0.018*age at enrollment

Hosmer-Lemeshow goodness-of-fit test: Chi-Square = 4.3621, df = 8, p value = 0.823

Abbreviations: AUC, area under the curve; CI, confidence interval; DU, digital ulcer; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic

Table S12.Bundle 2: Systemic sclerosis clinical characteristics within-bundle MLR model

				N	ILR	
				(withi	n-bundle))
Variable	Category	Coefficient	Standard	OR	Wald	P
		estimate	error	(95% CI)	Chi-	value
					square	
Intercept		-0.5921	0.3824	0.553	2.3975	0.1015
				(0.261–1.170)		0.1215
Age at first		-0.0163	0.0084			
physician-				0.004		
documented				0.984	3.7777	0.0519
non-Raynaud				(0.968–1.000)		
clinical feature						
Kidney	Yes	-1.3314	0.7540			
involvement:				0.264		
SSc renal crisis,				(0.060–1.158)	3.1180	0.0774
kidney failure						
Heart	Yes	0.5874	0.2904	1.799	4.0000	0.0421
involvement				(1.018–3.179)	4.0908	0.0431

ROC-AUC (95% CI): 0.601 (0.537-0.664)

Multivariable logistic regression equation

Probability (new DU within 6 months) = \exp (linear predictor)/(1 + \exp (linear predictor)), where

linear predictor =
$$-0.592$$

- 0.016*age at first physician-documented non-Raynaud

clinical feature

+ (-1.331 if Kidney involvement = YES)

+ (0.587 if Heart involvement = YES)

Hosmer-Lemeshow goodness-of-fit test: Chi-Square = 20.0667, df = 8, p value = 0.010

Abbreviations: AUC, area under the curve; CI, confidence interval; df, degrees of freedom; DU, digital ulcer; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic; SSc, systemic sclerosis

Table S13. Bundle 3: Digital ulcer characteristics within-bundle MLR model

Table 813. Bund	ie 3: Digitai t	ncer character	ristics within-	bundle MLR model	MLR	
				(wi	ithin-bundle)	
Variable	Category	Coefficient	Standard	OR	Wald	P value
		estimate	error	(95% CI)	Chi-	
					square	
Intercept		-1.8948	0.1705	0.150	100 7 170	0.0004
				(0.108-0.210)	123.5659	<0.0001
Number of DUs	1	0.8362	0.3169	2 200		
at enrollment				2.308	6.9624	0.0083
categorized				(1.240–4.295)		
	2	1.0603	0.3808	2.887		
				(1.369–6.090)	7.7538	0.0054
	≥3	1.9168	0.3659	6.799	27.4262	<0.0001
				(3.319–13.930)	27.4362	<0.0001
Previous	Yes	0.8375	0.4470	2.310		
complication:					3.5095	0.0610
auto-amputation				(0.962–5.549)		
Presence of CDI	Yes	0.8440	0.4510	2.326	3.5026	0.0613
at enrollment				(0.961–5.629)	3.3020	0.0013

ROC-AUC (95% CI): 0.694 (0.637, 0.751)

Multivariable logistic regression equation

Probability (new DU within 6 months) = \exp (linear predictor)/(1 + \exp (linear predictor)), where

linear predictor
$$= -1.895$$

 $+ (0.836 \text{ if } 1 \text{ DU or } 1.060 \text{ in } 2 \text{ DU or } 1.917 \text{ if } \ge 3 \text{ DU})$

+ (0.838 if previous auto-amputation = YES)

+ (0.844 if CDI = YES)

Hosmer-Lemeshow goodness-of-fit test: Chi-Square = 0.7316, df = 2, p value = 0.694

Abbreviations: AUC, area under the curve; CDI, critical digital ischemia; CI, confidence interval; df, degrees of freedom; DU, digital ulcer; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic; SSc, systemic sclerosis

Table S14. Bundle 4: Other clinical characteristics within-bundle MLR model

					MLR	
				(witl	nin-bundle)	
Variable	Category	Coefficient	Standard	OR	Wald Chi-	P value
		estimate	error	(95% CI)	square	
Intercept		-1.3730	0.1284	0.253	114 2102	<0.0001
				(0.197–0.326)	114.3192	< 0.0001
Presence of	Yes	0.7066	0.3101	2.027	5 1022	0.0007
paronychia				(1.104–3.722)	5.1923	0.0227

ROC-AUC (95% CI): 0.545 (0.501, 0.589)

Multivariable logistic regression equation

Probability (new DU within 6 months) = \exp (linear predictor)/(1 + \exp (linear predictor)), where

linear predictor = -1.373

+ (0.707 if presence of paronychia = YES)

Hosmer-Lemeshow goodness-of-fit test: Chi-Square = 0.000, df = 0

Abbreviations: AUC, area under the curve; CI, confidence interval; df, degrees of freedom; DU, digital ulcer; MLR, multivariable logistic regression; OR, odds ratio; ROC, receiver operating characteristic

Table S15. Bundle 5: Quantitative NVC characteristics* within-bundle MLR model

				N	MLR	
				(withi	in-bundle)	
Variable	Category	Coefficient	Standard	OR	Wald	P value
		estimate	error	(95% CI)	Chi-	
					square	
				0.702		
Intercept		-0.3538	0.3108	(0.382–1.291)	1.2961	0.2549
	IF: Number of			0.350		
	microhemorrhages	-1.0510	0.4956	(0.132–0.923)	4.4974	0.0339
Finger level:						
dominant hand, 4	MF: Number of			0.788		
individual fingers	capillaries	-0.2384	0.0700	(0.687 - 0.904)	11.5852	0.0007
(Sub-bundle 5.5)				1.349		
	MF: Number of	0.2993	0.1441		4.3126	0.0378
	neoangiogeneses	0.2773	0.1111	(1.017–1.789)	1.5120	3.0370

ROC-AUC (95% CI): 0.677 (0.614-0.740)

Multivariable logistic regression equation

Probability (new DUs within 6 months) = \exp (linear predictor)/(1 + \exp (linear predictor)), where

linear predictor =
$$-0.354$$

−1.051*nb IF microhemorrhages

-0.238 *nb MF capillaries

+0.299 *nb MF neoangiogeneses

Hosmer-Lemeshow goodness-of-fit test: Chi-Square = 7.9131, df = 8, p value = 0.442

Abbreviations: AUC, area under the curve; CI, confidence interval; df, degrees of freedom; DU, digital ulcer; IF, index finger; MF, middle finger; MLR, multivariable logistic regression; NVC, nailfold videocapillaroscopy; OR, odds ratio; ROC, receiver operating characteristic

Table S16. Comparison of the within-bundle MLR models of NVC sub-bundles

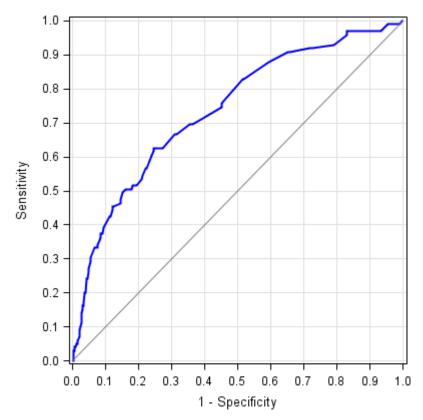
Sub-bundle	5.1	5.2	5.3	5.4	5.5	5.6
	Both hands	Dominant hand	Non-dominant hand	Finger pairs	Individual fingers dominant hand	Individual fingers non-dominant hand
N* (of 468)	465	460	460	447	382	399
ROC-AUC	0.617	0.606	0.613	0.655	0.677	0.638
ROC-AUC 95% CI	0.555-0.678	0.547-0.665	0.551-0.676	0.593-0.716	0.614-0.740	0.570-0.705
Selected variables						
# Capillaries	X	X	X	X	X	X
# Neoangiogeneses	X		X	X	X	X
# Microhemorrhages				X	X	X

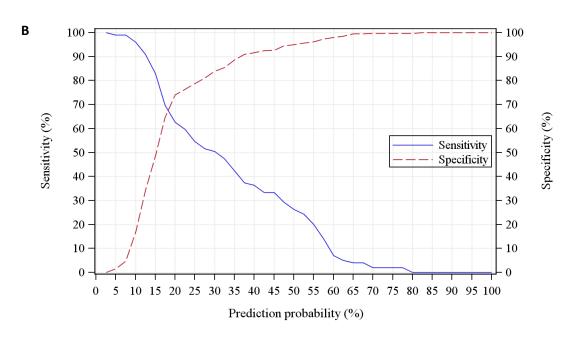
^{*}Number of patients for whom data on all variables used in MLR are available

Abbreviations: AUC, area under the curve; CI, confidence interval; MLR, multivariable logistic regression; NVC, nailfold videocapillaroscopy; ROC, receiver operating characteristic

11. NVC characteristics carried forward during multivariable analyses

Supplementary Table S17. Complete list of NVC variables carried forward from MLR within-bundle to MLR across-bundles analysis $\frac{1}{2}$


NVC Sub-bundle	Variables retained to enter MLR across-bundles	ROC-AUC (95% CI)
Qualitative NVC characteristics		
NVC pattern	NVC pattern	0.597 (0.548–0.647)
Quantitative NVC characteristics		
Patient level: both hands, 8 fingers (=sub-bundle 5.1)	Number of capillaries Number of neoangiogeneses	0.617 (0.555–0.678)
Hand level: dominant hand, 4 fingers (=sub-bundle 5.2)	Number of capillaries	0.606 (0.547–0.665)
Hand level: non-dominant hand, 4 fingers (=sub-bundle 5.3)	Number of capillaries Number of neoangiogeneses	0.613 (0.551–0.676)
Finger level: both hands, 4 pairs of fingers (=sub-bundle 5.4)	IF: Number of microhemorrhagesIF: Number of neoangiogenesesMF: Number of capillaries	0.655 (0.593–0.716)
Finger level: dominant hand, 4 individual fingers (=sub-bundle 5.5)	IF: Number of microhemorrhagesMF: Number of capillariesMF: Number of neoangiogenesesIF: Number of	0.677 (0.614–0.740)
Finger level: non-dominant hand, 4 individual fingers (=sub-bundle 5.6)	microhemorrhages IF: Number of neoangiogeneses RF: Number of capillaries	0.638 (0.570–0.705)


Abbreviations: AUC, area under the curve; CI, confidence interval; IF, index finger; MF, middle finger; MLR, multivariable logistic regression; NVC, nailfold videocapillaroscopy; RF, ring finger; ROC, receiver operating characteristic

12. Operating characteristics of the final MLR model

Supplementary Figure S3. Receiver operating characteristic curve (A) and sensitivity/specificity* curves (B) of the final MLR model

^{*}vs 2.5% cut-offs

13. CAP study Statisticians

In addition to the acknowledged and author statisticians, the following statisticians were involved in the statistical analysis plan and/or performing analyses:

Sophie Collingborn, PRA International GmbH, Mannheim, Germany; **Hans-Peter Duerr** & **Martin Scott**, Numerus Ltd, Tübingen, Germany.