

Supplemental Figure S1. Structural features of AtDIR6.

A, AtDIR6 dimer of the asymmetric unit showing the joint β -sheet between both monomers. B, Representation of the electron density around C-terminal Thr33 of monomer B. C, Structure of the Asn59 paucimannose moieties. D, Structure of the paucimannose sugars connected to Asn123. E, Structure of the paucimannose moiety at Asn59 of monomer B. NAG: *N*-acetyl-glucosamine, FUC: α -Fucose, XYP: β -*D*-Xylopyranose, α MA, α -*D*-Mannose, β MA, β -*D*-Mannose. Density, refined without the moiety atoms, is shown in blue at 1 σ . F, Overlay of monomer A (gray) and monomer B (green) showing differences in the active sites. Important monomer B residues that differ from those in monomer A are shown in purple. Red arrows indicate movement of residues.

Supplemental Figure S2. Sequence of AtDIR6 aligned with those of other (-)- and (+)-DIRs.

Only full-length sequences are shown. The alignment was generated with $Clustal\Omega$ and illustrated using the ESPript webserver (espript.ibcp.fr/). Strictly conserved residues are boxed in red. Those that are conserved in (+)- and (-)-DIRs are highlighted by purple and blue dots, respectively. Red dots indicate residues that are differentially conserved in (+)- and (-)-DIRs. Secondary structure elements of AtDIR6 are shown above the alignment.

Supplemental Figure S3. Stereo view of Fig. 3 panels C and D.

A, Stereo view of the active site showing important residues of pocket A in green, pocket B in blue, and Tyr106 and Phe175 separating the two pockets in red. D, Stereo view of the potential binding mode of two CA• substrate radicals supported by energy minimization of the manually placed ligands; color code as in (A).

Supplemental Figure S4. Surface representations of AtDIR6 and DRR206 binding cavities.

A, Surface representation of AtDIR6 showing the two manually modelled substrate molecules in the twolobed binding cavity. B, Surface representation of PsDRR206 with view onto the opening of the active site. Red: negative surface charge, blue: positive.

Regioselectivity was analyzed by RP-HPLC as relative increase in pinoresinol formation in presence of AtDIR6 as compared to the undirected control (blue diamonds). Enantioselectivity was analyzed by chiral HPLC and is expressed as enantiomeric excess of (-)- over (+)-pinoresinol (red triangles). Regio- and enantioselectivity show the same increase with increasing amounts of AtDIR6 in the assay. AtDIR6 was quantified by western blot analysis as detailed in the Materials and Methods section.

Table S1. Primers for site-directed mutagenesis. Primer sequences are given in 5' to 3' orientation. Mutated codons are highlighted in bold face and underlined. All primers were obtained from Eurofins Genomics (Ebersberg, Germany).

mutant	target sequence	forward primer	reverse primer
F47A	CACTTCTCGTTCTAT <u>TTC</u> CAT	CACTTCTCGTTCTAT <u>GCC</u> CATG	CCATCGTAGAGGATGTCATG <u>GG</u>
	GACATCCTCTACGATGG	ACATCCTCTACGATGG	<u>C</u> ATAGAACGAGAAGTG
D49A	CTCGTTCTATTTCCAT <u>GAC</u> AT	CTCGTTCTATTTCCAT <u>GCC</u> ATCC	CCATCGTAGAGGAT <u>GGC</u> ATGGA
	CCTCTACGATGG	TCTACGATGG	AATAGAACGAG
D49N	CTCGTTCTATTTCCAT <u>GAC</u> AT	CTCGTTCTATTTCCAT <u>AAC</u> ATC	CCATCGTAGAGGAT GTT ATGGA
	CCTCTACGATGG	CTCTACGATGG	AATAGAACGAG
K75N	GGACTAGGAAACTTC <u>AAG</u> TT	GGACTAGGAAACTTC AAT TTC	CAAACTTACCGA <u>AAT</u> TGAAGTT
	CGGTAAGTTTG	GGTAAGTTTG	TCCTAGTCC
F82A	GGTAAGTTTGTGATC <u>TTT</u> GAT	GGTAAGTTTGTGATC <u>GCT</u> GAT	CCATTGTTATGGGCCCATC <u>AGC</u>
	GGGCCCATAACAATGG	GGGCCCATAACAATGG	GATCACAAACTTACC
Y104F	CGCACAAGGCTTC <u>TAT</u> TTCTA	CGCACAAGGCTTC <u>TTT</u> TTCTAT	GTCATAGAA <u>AAA</u> GAAGCCTTGT
	TGAC	GAC	GCG
Y106F	GGCTTCTATTTC <u>TAT</u> GACATG	GGCTTCTATTTC <u>TTT</u> GACATGA	CCATCTTCATGTC AAA GAAATA
	AAGATGG	AGATGG	GAAGC
S114A	GAAGATGGACTTCAAT <u>TCG</u> T	GAAGATGGACTTCAAT <u>GCG</u> TG	GGAAAACCA <u>CGC</u> ATTGAAGTCC
	GGTTTTCC	GTTTTCC	ATCTTC
F116A	GACTTCAATTCGTGG <u>TTT</u> TCC	GACTTCAATTCGTGG <u>GCT</u> TCCT	CCAACGTGTAGGA <u>AGC</u> CCACGA
	TACACGTTGG	ACACGTTGG	ATTGAAGTC
Y118A	GGACTTCAATTCGTGGTTTTC	GGACTTCAATTCGTGGTTTTCC	GAGTTAAACACCAACGT <u>GGC</u> GG
	C <u>TAC</u> ACGTTGGTGTTTAACTC	GCCACGTTGGTGTTTAACTC	AAAACCACGAATTGAAGTCC
D137A	CATAATGGGTGCT <u>GAT</u> TTGA	CATAATGGGTGCT <u>GCT</u> TTGAT	GGCTCCATCATCAA <u>AGC</u> AGCAC
	TGATGGAGCC	GATGGAGCC	CCATTATG
D137N	CATAATGGGTGCT <u>GAT</u> TTGA	CATAATGGGTGCT <u>AAT</u> TTGAT	GGCTCCATCATCAA <u>ATT</u> AGCAC
	TGATGGAGCC	GATGGAGCC	CCATTATG
M139A	GGGTGCTGATTTG <u>ATG</u> ATGG	GGGTGCTGATTTG <u>GCG</u> ATGGA	CTTGTTGGCTCCAT <u>CGC</u> CAAATC
	AGCCAACAAG	GCCAACAAG	AGCACCC

M140A	GGGTGCTGATTTGATG <u>ATG</u> G	GGGTGCTGATTTGATG <u>GCG</u> GA	CTTGTTGGCTC CGC CATCAAATC
	AGCCAACAAG	GCCAACAAG	AGCACCC
R144M	GGAGCCAACA <u>AGA</u> GATCTAT	GGAGCCAACA <u>ATG</u> GATCTATC	CCGATAGATC <u>CAT</u> TGTTGGCTC
	CGG	GG	C
F164L	GGCTCGTGGGATCGCTACC <u>T</u>	GGCTCGTGGGATCGCTACC <u>TT</u>	GAAATAAATCAGTCAC <u>CAA</u> GGT
	<u>TC</u> GTGACTGATTTATTTC	<u>G</u> GTGACTGATTTATTTC	AGCGATCCCACGAGCC
T166V	CGCTACCTTCGTG <u>ACT</u> GATTT	CGCTACCTTCGTG <u>GTT</u> GATTTA	CCTTGAAATAAATC <u>AAC</u> CACGA
	ATTTCAAGG	TTTCAAGG	AGGTAGCG
F169A	CGTGACTGATTTA <u>TTT</u> CAAGG	CGTGACTGATTTA <mark>GCT</mark> CAAGG	CTTAGCCCCTTG <u>AGC</u> TAAATCA
	GGCTAAG	GGCTAAG	GTCACG
A172D	GACTGATTTATTTCAAGGG <u>G</u>	GACTGATTTATTTCAAGGG <u>GA</u>	CTCGGAAATACTT <u>ATC</u> CCCTTGA
	<u>CT</u> AAGTATTTCCGAG	<u>T</u> AAGTATTTCCGAG	AATAAATCAGTC
F175W	GGGGCTAAGTAT <u>TTC</u> CGAGT	GGGGCTAAGTAT <u>TGG</u> CGAGTT	CCATCTTAACTCG CCA ATACTTA
	TAAGATGG	AAGATGG	GCCCC
V177W	GTATTTCCGA <u>GTT</u> AAGATGG	GTATTTCCGA TGG AAGATGGA	GCTTAATATCCATCTT <u>CCA</u> TCGG
	ATATTAAG	TATTAAGC	AAATAC
M179A	GTATTTCCGAGTTAAG <u>ATG</u> G	GTATTTCCGAGTTAAG <u>GCG</u> GA	CATAGAGCTTAATATC CGC CTTA
	ATATTAAGCTCTATG	TATTAAGCTCTATG	ACTCGGAAATAC
PLL-	GGGTGCTGAT <u>TTGATGATG</u> G	GGGTGCTGAT <u>CCGTTGTTG</u> GA	CTTGTTGGCTC CAACAACGG AT
motiv	AGCCAACAAG	GCCAACAAG	CAGCACCC