# Reduced CD146 expression promotes tumorigenesis and cancer stemness in colorectal cancer through activating Wnt/ $\beta$ -catenin signaling

## SUPPLEMENTARY FIGURES AND TABLES



**Supplementary Figure S1: Phenotypic identification of primary CRC cell line P6C.** FACS analysis of CD44 and CD133 expression on P6C cells.



Supplementary Figure S2: FACS sorting of SW480 fraction based on the expression of CD44 and CD133. SW480 fraction denotes the CD44<sup>+</sup>CD133<sup>+</sup> subset in established CRC cell line SW480.



**Supplementary Figure S3: Knockdown efficiency of CD146 in P6C and SW480 fraction with shRNAs transfection. A.** The mRNA expression levels of CD146 in P6C cells and SW480 fraction, as assessed by qRT-PCR analysis. GFP shRNA was used as a negative control. The relative mRNA level of CD146 was normalized to human GAPDH mRNA expression. Error bars, mean  $\pm$  s.d. **B.** The protein levels of CD146 in P6C cells (left) and SW480 fraction (right) were analyzed by FACS. Histograms of one representative experiment are shown.

| A |            |                        |            |          |
|---|------------|------------------------|------------|----------|
|   |            | Cell subset            | Incidence  | Latency  |
|   | 1 <b>°</b> | GFP shRNA<br>shCD146 2 | 2/5<br>4/5 | 32<br>19 |
|   | 2 <b>°</b> | GFP shRNA<br>shCD146 2 | 1/5<br>2/5 | 45<br>23 |

Notes: 1 000 single cells were injected .



**Supplementary Figure S4: Reduced CD146 expression promotes colorectal tumorigenesis** *in vivo.* **A.** Reduced expression of CD146 facilitates tumor formation in serial transplantations. 1000 SW480 fraction cells were used for each injection (n=5). **B.** Tumor volumes and growth curves were monitored in serial recipients. Significance of differences at indicate time point were determined by two-way ANOVA analysis, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001. Error bars, mean  $\pm$  s.d.



Supplementary Figure S5: Knockdown of CD146 in SW480 fraction restores a stem cell phenotype. A. The mRNA expression levels of stemness-related transcription factors in SW480 fraction, as determined by qRT-PCR. Data were expressed as mean value  $\pm$  s.d. of three independent experiments. B. The mRNA expression levels of colorectal CSC markers in SW480 fraction. C. FACS analysis of CSC surface markers. D. CD146 knockdown promotes sphere formation. 1000 SW480 fraction cells were cultured in ultra low adherent plates in triplicates under SFM condition. E. CD146 knockdown increases clone formation efficiency. \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001. Error bars, mean  $\pm$  s.d.



Supplementary Figure S6: Tumorigenicity of five established human CRC cell lines *in vivo*. A. Tumor incidence and latency in xenotransplantation. 1000 cells were used for each subcutaneous injection to NOD/SCID mice (n=5). B. Tumor volumes and growth curves were monitored and measured weekly. \*P < 0.05, \*P < 0.01, \*\*\*P < 0.001. Error bars, mean ± s.d.

#### www.impactjournals.com/oncotarget/

#### **Oncotarget, Supplementary Materials 2016**



Supplementary Figure S7: Knockdown of CD146 activates canonical Wnt signaling in SW480 fraction cells. A. The mRNA expression levels of Wnt target genes upon CD146 knockdown. Data were expressed as mean value  $\pm$  s.d. of three independent experiments. B. Knockdown of CD146 represses  $\beta$ -catenin phosphorylation and GSK-3 $\beta$  expression. GAPDH were used as a loading control. C. Rescued CD146 expression up-regulates the protein level of GSK-3 $\beta$ . D. Knockdown of CD146 inhibits NF- $\kappa$ B/p65 signaling pathway. E. Binding of NF- $\kappa$ B/p65 to the predicted site in GSK-3 $\beta$  gene promoter was validated by ChIP assays. NF- $\kappa$ B/p65 enrichment was normalized to input control. F-G. GSK-3 $\beta$  expression was inhibited by both transfection of p65-specific siRNA and treatment with NF- $\kappa$ B inhibitor BAY11-7082 (200 ng/ml). \*P<0.05, \*\*\*P<0.001. Error bars, mean  $\pm$  s.d.



Supplementary Figure S8: Knockdown of CD146 inactivates non-canonical Wnt/ PCP pathway. JNK kinase activity was determined by western blotting in P6C cells and SW480 fraction.



**Supplementary Figure S9: CD146 is downregulated in spheres compared to the monolayer counterparts.** P6C cells were cultured as adherent monolayer in medium containing 10% FBS. Spheroid cultures of P6C were maintained in ultra low adherent plates under SFM condition. Histograms of one representative experiment are shown.



**Supplementary Figure S10: CD146 is downregulated under hypoxic condition.** P6C cells maintained in normoxic condition (21% O<sub>2</sub>) were sub-cultured in hypoxia (1% O<sub>2</sub>) for 24h and were then switched back to the normal condition.



Supplementary Figure S11: Knockdown of CD146 induces the upregulation of E-cadherin in P6C cells. Relative mRNA level of E-cadherin was determined by qRT-PCR. \*P < 0.05, \*\*P < 0.01. Error bars, mean  $\pm$  s.d.

#### www.impactjournals.com/oncotarget/

#### **Oncotarget, Supplementary Materials 2016**



**Supplementary Figure S12: Quantitative analysis of Western blot.** Relative protein expression was determined by measuring the intensities of the bands and then normalizing to the internal control (GAPDH). \*P < 0.05, \*P < 0.01, \*\*\*P < 0.001. Error bars, mean  $\pm$  s.d.

| Pathway          | Hits | Total | Percent | Enrichment test<br>p-value | q-value |
|------------------|------|-------|---------|----------------------------|---------|
| Wnt              | 20   | 151   | 13.25%  | 0.1627                     | 0.7036  |
| Notch            | 8    | 47    | 17.02%  | 0.1315                     | 0.7036  |
| Hedgehog         | 7    | 56    | 12.50%  | 0.3631                     | 0.7055  |
| ABC transporters | 6    | 44    | 13.64%  | 0.314                      | 0.7055  |

### Supplementary Table S1: Pathway analysis based on the KEGG database

Hit threshold: fold change of gene expression≥2

|             |                  |             | Fold Change               |                           |  |  |
|-------------|------------------|-------------|---------------------------|---------------------------|--|--|
| Gene Symbol | Accession Number | Probe ID    | shCD146 2 vs GFP<br>shRNA | shCD146 4 vs GFP<br>shRNA |  |  |
| LEF1        | NM_001130714     | 221558_s_at | 1.31                      | 1.43                      |  |  |
| HNF1A       | NM_002127        | 210515_at   | 1.63                      | 1.51                      |  |  |
| CCND1       | NM_053056        | 208712_at   | 1.35                      | 0.81                      |  |  |
| AXIN2       | NM_004655        | 222696_at   | 2.52                      | 2.2                       |  |  |
| CD44        | NM_000610        | 212063_at   | 1.14                      | 1.36                      |  |  |
| BIRC5       | NM_001012270     | 202094_at   | 0.93                      | 0.66                      |  |  |
| ASCL2       | NM_005170        | 207607_at   | 0.72                      | 0.79                      |  |  |
| MSI1        | NM_002442        | 206333_at   | 7.81                      | 5.41                      |  |  |
| SOX9        | NM_000346        | 202935_s_at | 0.74                      | 3.25                      |  |  |
| SOX2        | NM_003106        | 213722_at   | 2.3                       | 3.24                      |  |  |
| NANOG       | NM_024865        | 220184_at   | 19.84                     | 3.24                      |  |  |
| POU5F1      | NM_002701        | 208286_x_at | 1.7                       | 0.78                      |  |  |
| WNT9A       | NM_003395        | 230643_at   | 2.3                       | 2.36                      |  |  |
| TWIST1      | NM_000474        | 213943_at   | 5.66                      | 1.35                      |  |  |
| EGFR        | NM_005228        | 224999_at   | 0.97                      | 0.89                      |  |  |
| FZD7        | NM_003507        | 203705_s_at | 3.01                      | 1                         |  |  |
| EPCAM       | NM_002354        | 201839_s_at | 2.07                      | 2.54                      |  |  |
| МҮС         | NM_002467        | 244089_at   | 1.05                      | 1.98                      |  |  |
| NMYC        | NM_005378        | 209757_s_at | 23.09                     | 47.22                     |  |  |
| JUN         | NM_002228        | 201464_x_at | 0.66                      | 0.65                      |  |  |
| FGF9        | NM_002010        | 206404_at   | 2.89                      | 0.7                       |  |  |
| JAG1        | NM_000214        | 209097_s_at | 0.74                      | 2.28                      |  |  |
| CDH1        | NM_004360        | 201130_s_at | 1.69                      | 0.42                      |  |  |
| ABCB1       | NM_000927        | 243951_at   | 2.63                      | 1.77                      |  |  |
| RUNX2       | NM_001015051     | 232231_at   | 1.32                      | 4.78                      |  |  |
| CTNNB1      | NM_001098209     | 201533_at   | 1.39                      | 1.05                      |  |  |
| GSK3B       | NM_001146156     | 209945_s_at | 0.45                      | 0.89                      |  |  |
| GSK3A       | NM_019884        | 632_at      | 0.97                      | 1.06                      |  |  |
| CREBBP      | NM_001079846     | 228177_at   | 3.4                       | 1.45                      |  |  |
| FZD1        | NM_003505        | 204451_at   | 6.02                      | 1.9                       |  |  |
| FZD3        | NM_017412        | 227524_at   | 2.62                      | 6.56                      |  |  |
| FZD8        | NM_031866        | 224325_at   | 1.14                      | 2.26                      |  |  |
| LRP5        | NM_002335        | 209468_at   | 1.86                      | 2.39                      |  |  |
| SFRP1       | NM_003012        | 202035_s_at | 0.48                      | 0.32                      |  |  |
| DKK1        | NM_012242        | 204602_at   | 0.45                      | 0.98                      |  |  |
| MCAM        | NM 006500        | 209087 x at | 0.14                      | 0.23                      |  |  |

## Supplementary Table S2: Differentially expressed genes in P6C cells upon CD146 knockdown

## Supplementary Table S3: shRNA used in CD146 knockdown

| Name      | Sequences           | <b>Respective cDNA locations</b> |
|-----------|---------------------|----------------------------------|
| GFP shRNA | non-effective shRNA | nonsense sequence                |
| shCD146 1 | ATTCCTCAAGTCATCTGGT | 506~524bp (190~196aa)            |
| shCD146 2 | GTTGAATCTGTCTTGTGAA | 1299~1318bp (454~460aa)          |
| shCD146 3 | TGGCATTCAAGGAGAGGAA | 1342~1360bp (468~474aa)          |
| shCD146 4 | GCTGGTTAAAGAAGACAAA | 634~652bp(231~237aa)             |

| Gene                   | Sequences(5'-3')                                            |  |  |
|------------------------|-------------------------------------------------------------|--|--|
| MCAM<br>(CD146)        | Forward: TCAACGGCACGGCAAGTG<br>Reverse: AGGCCGTGCATTCAACACC |  |  |
| CD44s                  | TCATAGAAGGGCACGTGGTG<br>TGGGAGGTGTTGGATGTGAG                |  |  |
| CD133                  | CTATTCAGGATATACTCTCAGCATT<br>TTTCTGTGGATGTAACTTTCAGTG       |  |  |
| CD166                  | CGT CTG CTC TTC TGC CTC TT<br>TAG GTG CCT CAA ACA CGT TG    |  |  |
| EpCAM                  | CGCAGCTCAGGAAGAATGTG<br>TGAAGTACACTGGCATTGACG               |  |  |
| ITGB1<br>(Integrin β1) | TTCAGTGAATGGCAACAATG<br>AGCAACCACGCCTGCTAC                  |  |  |
| POU5F1<br>(Oct-4)      | TTTAATCCCACATCATGTATCACT<br>CTATCTACTGTGTCCCAGG             |  |  |
| SOX2                   | GTATCAGGAGTTGTCAAGGCAGAG<br>TCCTAGTCTTAAAGAGGCAGCAAAC       |  |  |
| NANOG                  | CGATCTCCTGACCTTGT<br>CACGCCTGTAAATCCCA                      |  |  |
| MYC<br>(c-Myc)         | CGGAACTCTTGTGCGTAAGG<br>CTCAGCCAAGGTTGTGAGGT                |  |  |
| BMI1                   | TTCGACCTTTGCAGATACCCATAAC<br>TGCCAATTGCTTCTAATGGAACAG       |  |  |
| AXIN2                  | AGTGTGAGGTCCACGGAAAC<br>CTGGTGCAAAGACATAGCCA                |  |  |
| MSII                   | GGTTTCCAAGCCACAACCTA<br>TCGGGGAACTGGTAGGTGTA                |  |  |
| CCND1<br>(Cyclin D1)   | CTGGAGGTCTGCGAGGAACA<br>CCTTCATCTTAGAGGCCACGAA              |  |  |
| HNF1A<br>(TCF1)        | AGGAGTGCAATAGGGCGGAATG<br>CCGGTTGGCAAACCAGTTGTAG            |  |  |
| LEF1                   | CGAAGAGGAAGGCGATTTAG<br>CTGAGAGGTTTGTGCTTGTC                |  |  |
| TWIST1                 | TGCCAATCAGCCACTGAAAG<br>TTTGCAGGCCAGTTTGATCCC               |  |  |
| SOX9                   | TGGGCAAGCTCTGGAGACTTC<br>ATCCGGGTGGTCCTTCTTGTG              |  |  |
| BIRC5<br>(Survivin)    | AGAACTGGCCCTTCTTGGAGG<br>CTTTTTATGTTCCTCTATGGGGTC           |  |  |
| WNT9A                  | GCAAGATGCTGGATGGGTC<br>GAGGATGGTCAGGGGCTC                   |  |  |
| E-cadherin             | TGCCCAGAAAATGAAAAAGG<br>GTGTATGTGGCAATGCGTTC                |  |  |
| GAPDH                  | CAGCCTCAAGATCATCAGCA<br>GTCTTCTGGTGGCAGTGAT                 |  |  |

Supplementary Table S4: Primers used in qRT-PCR

| S | up | plementary | Table S5: | Primers | used in | ChIP | assays |
|---|----|------------|-----------|---------|---------|------|--------|
|   | _  |            |           |         |         |      | •/     |

| primers | Sequences(5'-3')                             |
|---------|----------------------------------------------|
| Pair 1  | TTCGCTTTCTTCTCCCCACC<br>GATTGGCTGGAAAACTCCGC |
| Pair 2  | CGCTTTCTTCTCCCCACCTT<br>ATTGGCTGGAAAACTCCGCT |
| Pair 3  | TCGCTTTCTTCTCCCCACCT<br>TTGGCTGGAAAACTCCGCT  |