
S2 Text. Murray’s law and optimal branching angle solutions 

Previous work on the branching angles [1-4] presumes Murray’s law holds for vessel 
radii. Murray’s Law relates the parent vessel radius ( 𝑟𝑝) to its daughter vessel radii ( 𝑟𝑑) 

via the formula 𝑟𝑝
3 = ∑ 𝑟𝑑

3 [5]. Murray’s law is derived based on two assumptions: (i) 

local conservation of fluid at a branching junction and (ii) joint minimization of the sum of 
the power loss of blood flow and the power cost of the blood volume for a single vessel. 

Based on analysis of some vascular data [4, 6, 7], the scaling exponent, 𝑑, 
relating the radii of vessels at a single branching junction is assumed to be within the 
range 2 to 3. For a bifurcation the generalized version of the Murray’s law is given by 

 𝑟0
𝑑 =  𝑟1

𝑑 +  𝑟2
𝑑 

where the subscripts 0,1 and 2 denote the parent and the two daughter vessels 
respectively (Fig 1c). Here, we show that when Murray’s law holds, the branching angle 
solution for material-cost (MC) optimizations (see Main Text) yields non-degenerate 
branching geometries. That is, the branching junction is not located at one of the 
endpoints of the vessels, meaning that a branching actually does occur. 

Recall that we represent the material cost optimizations in the generic form of a 
cost function as 𝐻 = ∑  ℎ𝑖 𝑙𝑖, where the cost per length for a given vessel is denoted 

by ℎ𝑖 ≔  𝑟𝑖
𝑘. Here, 𝑘 is defined based on the specific optimization constraint such that 

𝑘 = 1 or 2 for the surface-area and the volume optimization, respectively. Recall also 
that the branching solution is degenerate (i.e., the junction collapse to one of the vessel 
endpoints, implying no branching) if one of the inequalities  ℎ𝑖 ≥ ℎ𝑗 + ℎ𝑘 for any 

combination of (𝑖, 𝑗, 𝑘) is satisfied.  

To illustrate the regions where the cost parameters lead to degenerate branching 

solutions, we first numerically analyze the space of 
 𝑟1

 𝑟0
 and 

 𝑟2

 𝑟0
 (S2a, b Fig). In doing so, 

we color the regions based on their outcomes (non-degenerate versus degenerate 
optimal solutions). We also specify the region where the Generalized Murray’s law is 
satisfied. We find the Generalized Murray’s Law region is a subset of the non-
degenerate solution region. This means that if we focus on the radii satisfying the 
Generalized Murray’s law, we will not observe any degenerate solutions. This explains 
why degeneracies are not observed or discussed in previous work on the optimal 
branching angles [1].  

We now prove analytically that if Generalized Murray’s law holds, ℎ𝑖 ≤ ℎ𝑗 + ℎ𝑘 for 

any combination of (𝑖, 𝑗, 𝑘) or equivalently, the optimal branching solution leads to non-
degenerate branching geometry. By the Generalized Murray’s law, 𝑑 is greater than 1, 
so the parent radius is greater than the daughter radius, i.e.  𝑟0 ≥  𝑟1,  𝑟2. Combining this 

inequality with the fact that cost increases with radius (since  ℎ𝑖 =  𝑟𝑖
𝑘 and 𝑘 > 0) for 

material cost optimizations, it follows that  ℎ1 ≤ ℎ0 + ℎ2 and  ℎ2 ≤ ℎ0 + ℎ1. Hence, it 

suffices to prove that  ℎ0 ≤ ℎ1 + ℎ2. Dividing both sides of this inequality by  ℎ1 and 

substituting ℎ𝑖 =  𝑟𝑖
𝑘, we want to show 



(
 𝑟0

 𝑟1
)

𝑘

≤ 1 + (
 𝑟2

 𝑟1
)

𝑘

 S1.  

We note that the ratio of the exponents k and d (𝑖. 𝑒. , 𝑅 ≔
𝑘

𝑑
) is bounded between 0 and 

1 (1/3 ≤ 𝑅 ≤ 1). This is because 1 ≤ 𝑘 ≤ 2 for the area or volume constraints in 
material cost optimization and 3 ≥ 𝑑 ≥ 2 for Generalized Murray’s Law. Moreover, 

dividing both sides of Generalized Murray’s Law by 𝑟1
𝑑 and defining 𝛼 ≔ (

 𝑟2

 𝑟1
)

𝑑
, we have 

(
 𝑟0

 𝑟1
)

𝑑

= 1 + (
 𝑟2

 𝑟1
)

𝑑

= 1 + 𝛼 S2.  

 

Substituting S2 into S1, the inequality S1 becomes 

(1 + 𝛼)𝑅 ≤ 1 + 𝛼𝑅 

Now, we define the continuous function 𝑓(𝛼) = (1 + 𝛼)𝑅 − 1 − 𝛼𝑅 and observe 

that 𝑓(0) = 0. Taking the derivative of 𝑓, we get 𝑓′(𝛼)/𝑅 = (1 + 𝛼)𝑅−1 − 𝛼𝑅−1. Since 

−2/3 ≤ 𝑅 − 1 ≤ 2/3, (1 + 𝛼)𝑅−1 < 𝛼𝑅−1 , so 𝑓′(𝛼)<0. Because 𝑓(0) = 0, this 

means 𝑓(𝛼) = (1 + 𝛼)𝑡 − 1 − 𝛼𝑡 < 0 when 𝛼 > 0, which is always the case for physically 
meaningful values for radius, which must be positive. Therefore, the inequality S1 and 
the equivalent version above, (1 + 𝛼)𝑡 ≤ 1 + 𝛼𝑡, both hold, proving our result. ∎  

Because of this result, previous studies such as Zamir [1-4] always found non-
degenerate solutions and did not consider the possibility of degeneracies. We have real 
empirical data for the radii, lengths, and branching angles for many branching junctions 
in human head and torso and mouse lung.  In light of the above results, we input the 
vessel radius values for each junction and numerically solved the scaling exponent (𝑑) 
to determine how often the Generalized Murray’s Law holds (S2c, d Fig). For both 
datasets, we show that the majority of branching junctions lead to scaling exponents 
that do not satisfy Generalized Murray’s law. 
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