Colony-morphology screening uncovers a role for the *Pseudomonas aeruginosa* nitrogen-related phosphotransferase system in biofilm formation

Matthew T. Cabeen, Sara A. Leiman and Richard Losick

Supplementary Figure Legends

Figure S1. The *adcA* **gene is not required for colony wrinkling and shows induced expression in biofilm mutants.** A. Colony morphologies (4 d) of cells with the *amrZ* deletion alone or in combination with an *adcA* deletion.

B. Expression of a P_{adcA} -lux reporter in the listed strains. Luciferase activity was calculated by normalizing luminescence to culture optical density. Results represent the average of 3 biological replicates (each having 4 technical replicates) using cultures grown on M6301-1% agar for 24 or 48 hours. Error bars show the standard deviation. * p < 0.05; ** p < 0.005; *** p < 0.0005 compared to the *amrZ* mutant. Luciferase activity was also assessed at day 3 and 4; the results were comparable to the results shown for day 2.

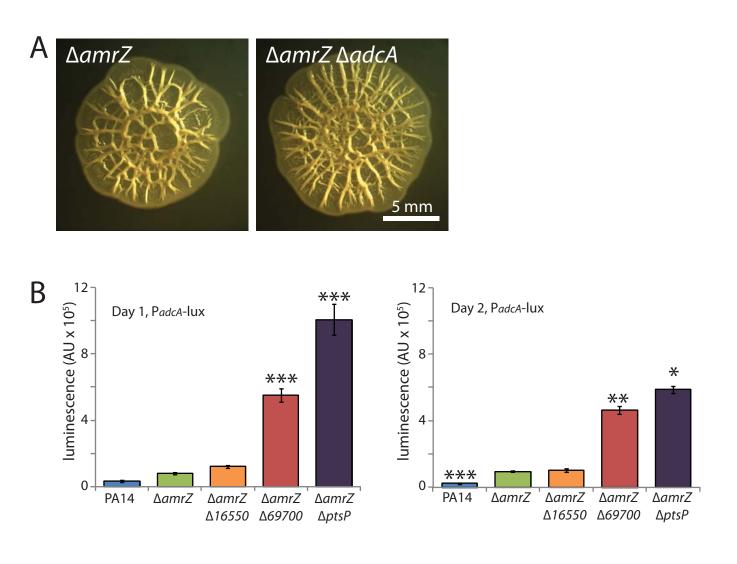


Figure S1

Gene	Colony Wrinkling Phenotype ^a	PA14 gene number	# of independent hits	Comments ^b
Mutants with rea	luced colony wrin	kling compared	l to parental	
DA 14 02270	reduced	03370	1	In operon downstream of a newly annotated open
PA14_03370		06640	1	reading frame.
PA14_06640	reduced	06640 07780		First gene in a 3-gene operon; hit in sense orientation, may read into
PA14_07780	smooth		1	<i>PA14_07790</i> and <i>djlA</i> .
PA14_16550	smooth	16550	1	
PA14_20520	smooth	20520	1	Second gene in 2-gene operon with <i>PA14_20510</i> .
PA14_21850	reduced	21850	2	Second gene in 2-gene operon with <i>PA14_21860</i> .
PA14_24620	reduced	24620	1	
 PA14_49880	reduced	49880	1	First gene in 2-gene operon with <i>PA14_49890</i> .
PA14_57170	smooth	57170	1	with 1111 _ 19090.
acpD	reduced	22490	1	
aldG	reduced	33890	1	First gene in 2-gene operon with <i>PA14_33900</i> .
algK	smooth	18520	1	Fourth gene in an 8-gene alginate-related operon spanning from <i>PA14_18580</i> to <i>PA14_18470</i> .
aprA	reduced	48060	1	
argC	smooth	08480	1	First gene in 3-gene operon with <i>PA14_08490</i> and <i>PA14_08500</i> .
argG	smooth	18740	1	
		30210		First gene in 2-gene operon
<u>clpS</u>	reduced	41020	1	with PA14_30230.
<u>clpX</u>	flatter/shiny	41230 37060	2	First gene in 6-gene <i>cupA</i> operon; last gene, <i>PA14_36990</i> , encodes an EAL-containing protein that degrades cyclic-di- GMP (Kulasakara <i>et al.</i> ,
cupA1	smooth		1	2006).

Table S1. Summary of recovered transposon mutants

		37010		Fourth gene in 6-gene
cupA4	smooth		4	<i>cupA</i> operon.
		37000		Fifth gene in 6-gene <i>cupA</i>
cupA5	smooth		2	operon.
cyaB	reduced	22620	1	
0)022	translucent,	57720		First gene in 2-gene operon
	small	01120		with <i>PA14_57710</i> .
cysD	wrinkles		1	
		41840		First gene in 2-gene operon
cysH	reduced		1	with <i>PA14_41860</i> .
		25080		First gene in 2-gene operon
fadB	reduced		1	with <i>PA14_25090</i> .
Juan	Teddeed	21370		Hit in sense orientation at
		21070		3' end of gene; may read
fadD1	smooth		1	into <i>PA14_21380</i> .
fimV	reduced	23830	1	
glnE	reduced	66270	1	
		67890		Between third and fourth
		01090		gene in 5-gene operon
				spanning from
				<i>PA14_67930</i> to
hisA/67900 ^c	reduced		1	PA14_67880.
hpd	smooth	53070	2	
kdpD	reduced	43350	1	
мары	Teddeed	52260	1	First gene in 2-gene operon
lemA (gacS)	smooth	52200	2	with <i>PA14_52270</i> .
lemai (gues)	Shiooth	23760		Second gene in 2-gene
leuD	reduced	23700	1	operon with <i>PA14_23750</i> .
	Teduced	14990		Might overexpress <i>mocA</i>
		11770		and/or knock out
mocA/15000 ^c	smooth		1	PA14_15000.
	Sillootti	34440		First gene in 7-gene operon
mtlR	flatter/shiny	51110	1	spanning to PA14_34350.
mutS	reduced	17500	1	
nadB	reduced	54450	3	
	Teddeed	29990		Second gene in 4-gene
				operon between
				operon between PA14 30010 and
nuoD	reduced		1	PA14_30010 and
nuoD	reduced	24480	1	<i>PA14_30010</i> and <i>PA14_29970</i> .
		24480		PA14_30010 and PA14_29970. First gene in 7-gene pel
nuoD pelA	reduced smooth		1 5	PA14_30010 andPA14_29970.First gene in 7-gene peloperon.
pelA	smooth	24480 24490	5	PA14_30010 and PA14_29970.First gene in 7-gene pel operon.Second gene in 7-gene pel
		24490		PA14_30010 and PA14_29970.First gene in 7-gene pel operon.Second gene in 7-gene pel operon.
pelA	smooth		5	PA14_30010 and PA14_29970.First gene in 7-gene pel operon.Second gene in 7-gene pel

				operon.
phhR	smooth	52980	2	
		49170		Hit in the last gene of the
phoQ	smooth		1	2-gene operon.
_		09480/39970		Sequencing unable to
				discriminate between the
				homologous <i>phzA1</i> and
phzA1/A2	reduced		1	phzA2 genes.
p.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		14850	1	Third gene in 8-gene
		11050		operon between
				<i>PA14_14820</i> and
milE	raduaad		1	_
pilF	reduced	05220/05220	1	PA14_14910.
		05320/05330		Between first 2 genes in 3-
				gene operon with
pilG/H°	reduced		1	PA14_05340.
		05340		Last gene in 3-gene
pilI	reduced		1	operon.
		60250		Second gene in 3-gene
				operon between
				PA14 60240 and
pilS	reduced		2	PA14_60260.
r ···~		60290		Second gene in 4-gene
		00290		operon between
				<i>PA14_60280</i> and
pilW	reduced		3	PA14_60310.
puw	Icuuccu	60300	5	Third gene in 4-gene
		00300		
				operon between
•137	.1		1	<i>PA14_60280</i> and
pilX	smooth		1	PA14_60310.
		60310		Fourth gene in 4-gene
				operon between
				<i>PA14_60280</i> and
pilY1	reduced		12	PA14_60310.
	smaller and	30570		Hit in sense orientation
	tighter			near 3' end of gene; may
potF	wrinkles		2	read into PA14_30560.
1		51420		Second gene in 5-gene
				operon between
				<i>PA14_51430</i> and
pqsB	reduced		1	PA14_51380.
	reduced	09700	1	<u>11117_51500.</u>
pqsL			-	
pqsR	smooth	51340	1	
-	reduced	70810		
pstB	/shiny		1	
		04410		Second gene in 2-gene
<i>ptsP</i>	reduced		2	operon, after <i>PA14_04390</i>

				(<i>nudH</i>).
		59790		Second gene in 2-gene
<i>pvrR</i>	smooth		2	operon, after PA14_59800.
1		59800		First gene in 2-gene
				operon, before
pvrS	reduced		2	PA14_59790.
1		33280		Second gene in 2-gene
pvdL	smooth		1	operon, after PA14_33270.
F ····		68200		First gene in 2-gene
				operon, before
rfbA	reduced		1	PA14_68210.
secB	reduced	67720	1	
serB	reduced	65560	1	
SCID		16090	1	Second gene in 2-gene
thrC	smooth/shiny	10070	1	operon, after PA14_16070.
	Sillootii/ silliiy	23070		First gene in 3-gene operor
zwf	reduced	23070	1	extending to PA14_23090.
	hanced colony write	ntling some	ared to parent	
		56790	1 1	
bifA	hyper		1	Einst some in 2 some
		28130		First gene in 2-gene
1 D	1		1	operon, before
bswR	hyper	(2520)	1	PA14_28120.
1 4	1	62530	1	Second gene in 2-gene
<u>cbrA</u>	hyper		1	operon, after PA14_62520.
<i>cbrB</i>	hyper/shiny	62540	1	
hslV	hyper	66770	1	
orfH	hyper	23380	1	
PA14_21290	slight hyper	21290	1	
		28430		Hit in sense orientation
				near 3' end of gene; may
				read into <i>PA14_28420</i> ,
				which encodes a LysR-
				family transcriptional
PA14_28430	hyper		1	regulator.
		28810		Both hits in sense
				orientation near 3' end of
				gene; may read into
PA14_28810	hyper		2	PA14_28820.
		41450		May interrupt promoter of
				operon; <i>acnB</i> is
PA14_41450	hyper		1	downstream gene.
		64320		First gene in 2-gene
			1	e e
		0.020		operon, before
PA14 64320	hyper		1	operon, before <i>PA14</i> 64335.
PA14_64320	hyper	66100	1	operon, before <u>PA14_64335</u> . Second gene in 2-gene

		69700		Fourth gene in a 6-gene
				operon between
				<i>PA14_69660</i> and
PA14_69700	hyper		2	PA14_69720.
		17460		Second gene in 2-gene
рст	hyper		1	operon, after <i>PA14_17450</i> .
	hyper-	05380/05390		Between second and third
	wrinkled,			genes of a 7-gene operon
	hyper			between PA14_05360 and
pilK/chpA ^c	spreader		1	PA14_05430.
		60260		Last gene in 3-gene operon
				beginning with
pilR	hyper		1	PA14_60240.
		70570		Second gene in 2-gene
				operon, after PA14_70560.
				Hit in sense orientation
				near 3' end of gene; may
				read into <i>PA14_70580</i> ,
				which is also known as
				sadB and has a known role
				in biofilm formation
recG	hyper		1	(Caiazza & O'Toole, 2004).

Notes:

^aColony morphology phenotypes are not discrete but rather form a continuum from perfectly smooth and flat to highly wrinkled, while occasionally displaying other morphological features. Here, we use "smooth" to designate a morphology with no distinguishable wrinkles, "reduced" to designate a morphology with distinguishable wrinkles but with noticeably less wrinkling than the parental strain, and "hyper" to designate a morphology with noticeably more wrinkling than the parental strain. We use other descriptors (e.g., "shiny" and "translucent") to denote additional prominent morphological features.

^bTranscriptional unit data was taken from (Wurtzel *et al.*, 2012). Genes with no comments are transcribed singly.

^cThe transposon inserted in the intergenic region between the 2 listed genes.

Strain	Relevant genotype or description	Source or reference	
MTC27	SM10 (F- endA1 hsdR17 supE44 thi-1 λ - recA1 gyrA96 relA1); E. coli mating strain for conjugation with P. aeruginosa	(Simon, 1983)	
MTC33	SM10 pBT24 (mating strain for Tn mutagenesis), Gent ^R	(Kulasekara <i>et al.</i> , 2005)	
MTC570	SM10 pEXG2- $\Delta amrZ$, Gent ^R	This study	
MTC1315	SM10 pEXG2- $\Delta bifA$, Gent ^R	This study	
MTC1336	SM10 pEXG2- $\Delta 16550$, Gent ^R	This study	
MTC1346	SM10 pEXG2- $\Delta 69700$, Gent ^R	This study	
MTC1348	SM10 pEXG2- $\Delta ptsP$, Gent ^R	This study	
MTC1408	SM10 CTX-1- <i>16550</i> , Tet ^R	This study	
MTC1529	SM10 CTX-1-P _{adcA} -lux, Tet ^R	This study	
MTC1551	SM10 CTX-1- <i>ptsP</i> , Tet ^R	This study	
MTC1552	SM10 pEXG2- $\Delta adcA$, Gent ^R	This study	
MTC1595	SM10 pEXG2- <i>ptsP</i> $_{\Delta GAF}$, Gent ^R	This study	
MTC1597	SM10 pEXG2- $\Delta ptsO$, Gent ^R	This study	
MTC1632	SM10 pEXG2- $\Delta ptsN$, Gent ^R	This study	
MTC1699	SM10 pEXG2- $\Delta wspF$, Gent ^R	This study	

 Table S2. Escherichia coli strains used in this study.

Table S3. Plasmids used in this study.

Plasmid	Description	Source or reference
pCTX-1	mini-CTX-1, integrative tet ^R plasmid for <i>P. aeruginosa</i>	(Hoang <i>et al.</i> , 2000)
pCTX-1-lux	CTX-1 reporter construct containing <i>luxA-E</i>	(Becher & Schweizer, 2000)
pCTX-1-16550	CTX-1 containing the PA14_16550 gene	This study

pCTX-1-ptsP	CTX-1 containing the <i>ptsP</i> gene	This study
pCTX-1-P _{adcA} -lux	CTX-1 lux reporter driven from <i>adcA</i> promoter	This study
pEXG2	Integrating suicide plasmid for <i>P. aeruginosa</i> , gent ^R ,	(Rietsch <i>et al.</i> , 2005)
	with sucrose counterselection	
pEXG2-∆amrZ	EXG2 containing flanking sequences of amrZ	This study
pEXG2-∆ <i>bifA</i>	EXG2 containing flanking sequences of <i>bifA</i>	This study
pEXG2-∆16550	EXG2 containing flanking sequences of	This study
	PA14_16550	
pEXG2-∆69700	EXG2 containing flanking sequences of	This study
	PA14_69700	
pEXG2- $\Delta ptsP$	EXG2 containing flanking sequences of <i>ptsP</i>	This study
pEXG2-∆adcA	EXG2 containing flanking sequences of <i>adcA</i>	This study
$pEXG2-ptsP_{\Delta GAF}$	EXG2 containing flanking sequences of the GAF-	This study
	encoding domain of <i>ptsP</i>	
pEXG2- $\Delta ptsO$	EXG2 containing flanking sequences of <i>ptsO</i>	This study
pEXG2- $\Delta ptsN$	EXG2 containing flanking sequences of <i>ptsN</i>	This study
pEXG2-∆wspF	EXG2 containing flanking sequences of <i>wspF</i>	This study

Table S4. Primers used in this study.

Primer Name or No.	Sequence (5'-3')
Rnd1-ARB1	GGCCACGCGTCGACTAGTACNNNNNNNNAGAG
Rnd1-ARB2	GGCCACGCGTCGACTAGTACNNNNNNNNNACGCC
Rnd1-ARB3	GGCCACGCGTCGACTAGTACNNNNNNNNNGATAT
Rnd1-TnM20	TATAATGTGTGGAATTGTGAGCGG
Rnd2-ARB	GGCCACGCGTCGACTAGTAC
Rnd2-TnM20	ACAGGAAACAGGACTCTAGAGG
BT20TnMseq	CACCCAGCTTTCTTGTACAC
259	GGGCTTCGGC GGTGCCGAGGAAGCGTTCATTG
260	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC CGCTGAGGCGGTTGACCAG
261	CCTCGGCACC GCCGAAGCCCACGCGTAG
262	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT GGCATCCGTGGCTCAGCG

547	TGCGCACCCGTGGAAATTAATTAAGGTACCGAATTC CGTGGTGAACCTGAACAACCTG
548	GGGGCCTTCCTTGTTCGTC GTCGCGCCTGCTTGAGG
549	GACGAACAAGGAAGGCCCC CCTCAAGCAGGCGCGAC
550	TTATACGAGCCGGAAGCATAAATGTAAAGCAAGCTT GATGCCTGCCTGGTCGAC
573	GACGCTCAGG GGTGTTTCCTCCGCTCGC
574	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC CTGGAGCAGCCGCACTTC
575	AGGAAACACC CCTGAGCGTCAACCCCG
576	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT GGCCTCGACGAACACGTC
593	CGAGGAGAAG AAGCGTCTCGGTTCTCGCG
594	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC CTTCGTTCAGGACAAGCGCC
595	CGAGACGCTT CTTCTCCTCGCCGCTGC
596	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT CTTGTTGCCCTTGCCGCG
597	CCGGGTTGAT GCTCGGGGGCCTTGTCTCC
598	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC TTGCCGGCCCTGTATCCTC
599	GGCCCCGAGC ATCAACCCGGCGGCTACC
600	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT GCGCTGCTGCAACTCCAG
607	TCTAGAACTAGTGGATCCCCCGGGCTGCAG GAATTC CGCCGCAACAGTCCATGG
608	CCCCCTCGAGGTCGACGGTATCGAT AAGCTT CGGGGTTGACGCTCAGG

(00)	
609	ATGTCCCAGC GGAGACAAGGCCCCGAGC
610	CCCCCTCGAGGTCGACGGTATCGAT AAGCTT
	AAGCGCCGCACGACGAAG
611	CCTTGTCTCC GCTGGGACATCCTCGAAATCGC
612	TCTAGAACTAGTGGATCCCCCGGGCTGCAG GAATTC
	GGGGTGACTCCATCGGTTGG
641	GACGGTATCGATAAGCTTGATATC GAATTC
	CTGGGCGTCCTGCTGCAC
642	TTTACCGGCAGATTTCTAAAGAAGAATTGG GGATCC
	GACGCGCTTCTTTCGTGGTC
645	CAAAGAGCCA GACGCGCTTCTTTCGTGGTC
646	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC
010	CCACCGTGGTGTAGCCGG
647	GAAGCGCGTC TGGCTCTTTGTCATCACCCGG
648	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT
040	TGAGGCGGGTCAGGTGCAG
676	TGCCCAGGCC CTTGGCGGAGTTCACTTCCTG
070	IGECCAGGEC CHIGGEGGAGHICACHICEIG
677	CTCCGCCAAG GGCCTGGGCAAGCTCGG
678	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT
	ATCACCGTGGGGATGCCC
679	CAGGCGCATG AGGGGAGGGGAGATCAGCGG
680	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC
	AGGCGGGGAATGCTCGTCC
681	CCCCTCCCCT CATGCGCCTGATCATCGTCAGC
682	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT
	CCAGTAGGGGTTCGGCAGGC
683	GAAACGGTTG GGGCATCTTGGGGGAGTCTGTC

684	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC GACCACCGACACCCGTTCG
685	CAAGATGCCC CAACCGTTTCGACGAAGGCGAG
686	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT GCGCATCCTGCTGTTCGTC
723	ATCGAATACC GGCATGTCATTGACGATTCCG
724	TGCGCACCCGTGGAAATTAATTAAGGTACC GAATTC CTGGTGGTGATGCCTCTCG
725	ATGACATGCC GGTATTCGATTAGCCGGGCG
726	TTATACGAGCCGGAAGCATAAATGTAAAGC AAGCTT GATAGGCCTCGTCGCGTTG

NB: The listed primer sequences may include 5' overlaps for isothermal assembly and/or stitch PCR (in boldface type). The 3' end is complementary to the target genomic sequence

Modes of strain construction

P. aeruginosa strains

MTC590

MTC1 was mated with MTC570: 50 μ L of an overnight LB culture of MTC570 was spot-dried on an LB plate, and 100 μ L of an overnight LB culture of MTC1 was subsequently dried on top of the first spot. The plate was incubated at 37°C overnight, and the resulting colony was scraped up with a sterile loop and resuspended in 500 μ L sterile phosphate-buffered saline (PBS). An aliquot (typically 100 μ L) of the suspension was spread on LB agar containing 75 μ g/ml gentamycin and 25 μ g/ml irgasan to select for *P. aeruginosa* transformants with integrated pEXG2- Δ amrZ plasmid. Several of the resulting colonies were then inoculated into plain LB and grown at 37°C for 4-6 hours to accumulate second crossovers. Aliquots (typically 25 μ L and 100 μ L) of the LB culture were then spread on LB plates containing 6% sucrose to select against the plasmid. A number of the sucrose-resistant colonies arising were then patched on LB and LB with 20 μ g/mL gentamycin. At least 2 sucrose-resistant, gent-sensitive clones were then streaked for single colonies, checked by PCR for presence of the desired deletion, and frozen at -80°C in 25% glycerol.

MTC1240, 1241, 1281, 1284

These strains were isolated from the transposon mutagenesis experiment, and the locations of the transposons were determined by sequencing out from the transposon arm, as described in the Materials and Methods.

MTC1381

Constructed like MTC590, but MTC590 was mated with MTC1336.

MTC1387

Constructed like MTC590, but MTC590 was mated with MTC1348.

MTC1398

Constructed like MTC590, but MTC590 was mated with MTC1346.

MTC1448

Constructed like MTC590, but MTC1 was mated with MTC1336.

MTC1450

Constructed like MTC590, but MTC1 was mated with MTC1348.

MTC1512

Constructed like MTC590, but MTC1 was mated with MTC1346.

MTC1521

Constructed like MTC590, but MTC1 was mated with MTC1315.

MTC1522

Constructed like MTC590, but MTC1381 was mated with MTC1315.

MTC1523

Constructed like MTC590, but MTC1512 was mated with MTC1315.

MTC1525

Constructed like MTC590, but MTC1450 was mated with MTC1315.

MTC1533

MTC1 was mated with MTC1529 as described above for MTC590, and a 10- μ L aliquot of the PBS-resuspended mating mix was spread on LB plates with 75 μ g/mL tetracycline and 25 μ g/mL irgasan to select for *P. aeruginosa* transformants. At least 2 colonies were then re-

streaked for single colonies on LB-tet (25 μ g/mL), grown in LB overnight at 37°C, and stored in 25% glycerol at -80°C.

MTC1535

Constructed like MTC1533, but MTC590 was mated with MTC1529.

MTC1537

Constructed like MTC1533, but MTC1381 was mated with MTC1529.

MTC1539

Constructed like MTC1533, but MTC1398 was mated with MTC1529.

MTC1541

Constructed like MTC1533, but MTC1387 was mated with MTC1529.

MTC1543

Constructed like MTC1533, but MTC1387 was mated with MTC1551.

MTC1549

Constructed like MTC1533, but MTC1381 was mated with MTC1408.

MTC1562

Constructed like MTC590, but MTC590 was mated with MTC1552.

MTC1603

Constructed like MTC590, but MTC590 was mated with MTC1597.

MTC1605

Constructed like MTC590, but MTC590 was mated with MTC1595.

MTC1649

Constructed like MTC590, but MTC1 was mated with MTC1632.

MTC1651

Constructed like MTC590, but MTC590 was mated with MTC1632.

MTC1666

Constructed like MTC590, but MTC1651 was mated with MTC1348.

MTC1709

Constructed like MTC590, but MTC1 was mated with MTC1699.

MTC1711

Constructed like MTC590, but MTC1450 was mated with MTC1699.

MTC1713

Constructed like MTC590, but MTC1 was mated with MTC1597.

MTC1714

Constructed like MTC590, but MTC1448 was mated with MTC1699.

MTC1716

Constructed like MTC590, but MTC1512 was mated with MTC1699.

E. coli strains

MTC570, 1315, 1336, 1346, 1348, 1552, 1595, 1597, 1632, 1699

The appropriate pEXG2-derived knockout plasmids (listed in Table S2) were electroporated into SM10 (MTC27), and transformants were selected on LB plates containing $20 \,\mu g/mL$ gentamycin.

MTC1408, 1529, 1551

The appropriate mini-CTX-1 or mini-CTX-1-lux derivatives were electroporated into SM10 (MTC27), and transformants were selected on LB plates containing 25 μ g/mL tetracycline.

Modes of plasmid construction

All plasmids constructed in this study were assembled from purified PCR products (using the primers listed in Table S3) and restriction enzyme-cleaved plasmid backbones by using isothermal assembly (Gibson *et al.*, 2009).

рСТХ-1-16550

The *PA14_16550* gene was PCR-amplified from PA14 chromosomal DNA using primers 607 and 608. The resulting fragment was assembled into EcoRI/HindIII-cleaved mini-CTX-1.

pCTX-1-ptsP

The *ptsP* gene was PCR-amplified from PA14 chromosomal DNA using primers 609 and 610, and the upstream promoter was amplified using primers 611 and 612. The promoter was PCR-stitched to the CDS using primers 610 and 612. The resulting fragment was assembled into EcoRI/HindIII-cleaved mini-CTX-1.

pCTX-1-P_{adcA}-lux

The *adcA* promoter was PCR-amplified from PA14 genomic DNA using primers 641 and 642 and assembled into EcoRI/BamHI-cleaved mini-CTX-1.

pEXG2-*AamrZ*

The upstream and downstream flanking sequences of the *amrZ* gene were amplified from PA14 chromosomal DNA using primer pairs 259/260 and 261/262, respectively. A fragment containing the *amrZ* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 260 and 262. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

pEXG2-Δ*bifA*

The upstream and downstream flanking sequences of most of the *bifA* coding sequence were amplified from PA14 chromosomal DNA using primer pairs 547/548 and 549/550, respectively. A fragment containing the *bifA* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 547 and 550. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

pEXG2-Δ16550

The upstream and downstream flanking sequences of the *PA14_16550* coding sequence were amplified from PA14 chromosomal DNA using primer pairs 573/574 and 575/576, respectively. A fragment containing the *PA14_16550* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 574 and 576. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

pEXG2-\(\Delta 69700\)

The upstream and downstream flanking sequences of the *PA14_69700* coding sequence were amplified from PA14 chromosomal DNA using primer pairs 593/594 and 595/596, respectively. A fragment containing the *PA14_69700* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 594 and 596. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

pEXG2-AptsP

The upstream and downstream flanking sequences of the *ptsP* coding sequence were amplified from PA14 chromosomal DNA using primer pairs 597/598 and 599/600, respectively. A fragment containing the *ptsP* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 598 and 600. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

pEXG2-*\LadcA*

The upstream and downstream flanking sequences of the *adcA* coding sequence were amplified from PA14 chromosomal DNA using primer pairs 645/646 and 647/648, respectively. A fragment containing the *adcA* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 646 and 648. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

$pEXG2-ptsP_{\Delta GAF}$

The upstream and downstream flanking sequences of the sequence encoding the GAF domain of PtsP were amplified from PA14 chromosomal DNA using primer pairs 598/676 and 677/678, respectively. A fragment containing the GAF-domain-encoding deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 598 and 678. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

pEXG2- $\Delta ptsO$

The upstream and downstream flanking sequences of the *ptsO* coding sequence were amplified from PA14 chromosomal DNA using primer pairs 683/684 and 685/686, respectively. A fragment containing the *ptsO* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 684 and 686. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

$pEXG2-\Delta ptsN$

The upstream and downstream flanking sequences of the *ptsN* coding sequence were amplified from PA14 chromosomal DNA using primer pairs 679/680 and 681/682, respectively. A fragment containing the *ptsN* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 680 and 682. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

pEXG2- $\Delta wspF$

The upstream and downstream flanking sequences of the wspF coding sequence were amplified from PA14 chromosomal DNA using primer pairs 723/724 and 725/726, respectively. A fragment containing the *ptsN* gene deletion was generated by stitch PCR using the initial fragments as self-priming templates with primers 724 and 726. The resulting deletion fragment was assembled into EcoRI/HindIII-cleaved pEXG2.

References

- Becher, A. & H. P. Schweizer, (2000) Integration-proficient *Pseudomonas aeruginosa* vectors for isolation of single-copy chromosomal *lacZ* and *lux* gene fusions. *Biotechniques* 29: 948-950, 952.
- Caiazza, N. C. & G. A. O'Toole, (2004) SadB is required for the transition from reversible to irreversible attachment during biofilm formation by *Pseudomonas aeruginosa* PA14. *J Bacteriol* **186**: 4476-4485.
- Gibson, D. G., L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison, 3rd & H. O. Smith, (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods* 6: 343-345.
- Hoang, T. T., A. J. Kutchma, A. Becher & H. P. Schweizer, (2000) Integration-proficient plasmids for *Pseudomonas aeruginosa*: site-specific integration and use for engineering of reporter and expression strains. *Plasmid* 43: 59-72.
- Kulasakara, H., V. Lee, A. Brencic, N. Liberati, J. Urbach, S. Miyata, D. G. Lee, A. N. Neely, M. Hyodo, Y. Hayakawa, F. M. Ausubel & S. Lory, (2006) Analysis of *Pseudomonas aeruginosa* diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')cyclic-GMP in virulence. *Proc Natl Acad Sci U S A* **103**: 2839-2844.
- Kulasekara, H. D., I. Ventre, B. R. Kulasekara, A. Lazdunski, A. Filloux & S. Lory, (2005) A novel two-component system controls the expression of *Pseudomonas aeruginosa* fimbrial cup genes. *Mol Microbiol* 55: 368-380.
- Rietsch, A., I. Vallet-Gely, S. L. Dove & J. J. Mekalanos, (2005) ExsE, a secreted regulator of type III secretion genes in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A* **102**: 8006-8011.
- Simon, R., Prieffer, U., and Puhler, A., (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. *Biotechnology (N.Y.)* 1: 784-790.
- Wurtzel, O., D. R. Yoder-Himes, K. Han, A. A. Dandekar, S. Edelheit, E. P. Greenberg, R. Sorek & S. Lory, (2012) The single-nucleotide resolution transcriptome of *Pseudomonas* aeruginosa grown in body temperature. *PLoS Pathog* 8: e1002945.