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Figure S1. Related to Figure 1. Q-Q plot of social deprivation (left panel) shows that the distribution of –log10 P-values follows that which would be expected under the null 

hypothesis. Q-Q plot of household income (right panel) shows that the distribution of –log10 P-values indicates more low P-values than would be expected under the null 

hypothesis.  

 



 

 

 

   

 

  

 

Figure S2. Related to Figure 1. Median full-time gross annual earnings by sex in the UK from 1999 to 2015.  

Employees employed for greater than one year and were working full timed defined as greater than 30 hours per 

week, or 25 for teaching professions. Dashed line indicates discontinuities in the estimates of the Annual Survey 

of Hours and Earnings.  

Figure taken from the Office for National Statistics 

(http://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annuals

urveyofhoursandearnings/2015provisionalresults#gender-pay-differences). 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Related to Figure 1. Manhattan and Q-Q plot of the reduced sample size of 88,183. The upper panel 

shows the Manhattan plot for household income using. The red line indicates genome wide significance (P < 5 × 

10−8). The black line indicates values that were suggestive of statistical significance (P < 1 × 10−5). The lower 

panel shows the  Q-Q plot  and shows that the distribution of –log10 P-values indicates more low P-values than 

would be expected under the null hypothesis.
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Figure S4. Related to Figure 1. The panel on the left shows the distribution of scores from the Townsend scores in UK Biobank with those taken from the national census in 

2001 in England and Wales. The scores form each phenotype have been reversed so that a greater score indicates a greater SES. The similarity of these two distributions 

indicates that the UK Biobank data set is comparable to the rest of the UK. The panel on the right shows the distribution of the Income scores in UK Biobank. This indicates 

that most of the participants were in households where the income was between £18,000 to £31,999 and £31,000 to £51,999. 



 

 

 

Table S1. Related to Figure 1B. Genome-wide significant SNP-based association results for household income (P < 5 x 10-8). The results are ordered by significance of the 

association. The independent SNP signals, as determined by the LD Clumping analysis, are highlighted in red. The sample size was 96,900 for each SNP presented below. 

Functional annotation of the household income associated genome-wide significant SNPs. All information contained in this table was extracted from the GTEx database 

(http://www.broadinstitute.org/gtex/) and the Regulome DB database (http://regulome.stanford.edu/index). 

 

 

  

 

SNP 

number 

Chr Position Allele 1 Allele 2 P-value Beta MAF INFO cis-

eQTL 

Regulome 

DB Score 

Position 

weight 

matrix 

Transcription 

factor 

binding site 

Histone 

modifications 

DNase 

hyper 

sensitive 

sites 

FAIRE 

sites 

DMR 

rs187848990 2 101207261 T C 2.23 × 10−8 0.077 0.030 0.945 no 6 yes no yes no no no 

rs7252896 19 32820876 A T 3.11 × 10−8 0.030 0.247 0.924 no 6 yes no yes no no no 

rs8100891 19 32829513 G C 3.42 × 10−8 0.029 0.261 0.998 yes 5 yes yes yes no no no 

rs7255223 19 32824310 A C 4.27 × 10−8 0.028 0.263 0.995 yes 4 no yes yes yes no no 



 

Table S3. Related to Figure 3 and Figure 4. Genetic correlations between SES as measured by social deprivation and household income from UK Biobank and the 32 

health and anthropometric variables. The heritability Z-score and the mean χ2 indicate the level of power to detect association where a heritability Z-score of >4 and a mean χ2 

>1.02 being considered well powered [S47]. Tests that withstood FDR correction are shown in bold. FDR correction indicated statistical significance at P = 0.0153 for social 

deprivation and at P = 0.032 for household income. 

 Social Deprivation  Household Income 

Phenotypes 
Genetic 

correlation 

Standard 

error 
P-value 

Heritability 

Z-score 

Mean 

χ2 

 Genetic 

correlation 

Standard 

error 
P-value 

Heritability 

Z-score 

Mean 

χ2 

            

Cognitive abilities            

Childhood intelligence 0.500 0.118 2.30× 10−5 5.942 1.076  0.668 0.102 4.96 × 10−11 5.8616 1.076 

Years of Education 0.548 0.054 1. 80 × 10−24 20.687 1.372  0.903 0.040 4.14 × 10−115 20.687 1.372 

VNR Biobank 0.338 0.073 3.80 × 10−6 10.865 1.167  0.704 0.059 3.94 × 10−33 10.481 1.167 

            

Longevity            

Longevity 0.301 0.1242 0.0154 4.127 1.038  0.303 0.107 0.005 4.049 1.038 

            

Vascular and autoimmune 

disease      

 

     

Coronary artery disease −0.029 0.075 0.700 7.954 1.145  −0.132 0.061 0.032 7.890 1.145 

Systolic blood pressure −0.091 0.067 0.175 12.507 1.048  −0.071 0.056 0.204 12.172 1.048 

Diastolic blood pressure −0.175 0.065 0.007 11.519 1.051  −0.108 0.060 0.073 10.677 1.051 

Rheumatoid arthritis −0.065 0.073 0.377 3.691 1.064  −0.092 0.073 0.205 3.814 1.064 

Smoking yes/no −0.511 0.078 5.87 × 10−11 11.358 1.104  −0.321 0.062 2.11 × 10−7 11.358 1.104 

            

Metabolic disease/phenotypes            

Type 2 Diabetes −0.109 0.074 0.143 9.066 1.133  −0.002 0.069 0.972 9.001 1.133 

Obesity −0.268 0.049 3.23 × 10−8 17.370 1.124  −0.263 0.044 2.11 × 10−9 17.556 1.124 

Childhood obesity −0.234 0.072 0.001 9.261 1.033  −0.016 0.067 0.809 9.357 1.033 

HOMA B −0.072 0.091 0.430 6.605 1.053  −0.158 0.088 0.073 6.145 1.053 

HOMA IR −0.189 0.115 0.101 5.342 1.053  −0.297 0.103 0.004 5.252 1.053 



 

HbA1c −0.192 0.110 0.081 5.410 1.060  −0.208 0.076 0.006 5.291 1.060 

High density lipoprotein 

cholesterol 0.175 0.056 0.002 5.535 1.152 

 

0.207 0.058 3.48 × 10−4 5.546 1.152 

Low density lipoprotein 

cholesterol −0.179 0.074 0.015 3.717 1.140 

 

−0.231 0.072 0.001 3.585 1.140 

Triglycerides −0.187 0.053 4.30 × 10−4 5.931 1.153  −0.226 0.048 2.47 × 10−6 5.937 1.153 

Fasting insulin −0.150 0.111 0.175 5.814 1.054  −0.242 0.098 0.014 5.867 1.054 

            

Psychiatric disease            

ADHD −0.366 0.204 0.073 2.297 1.016  −0.209 0.147 0.156 2.420 1.016 

Alzheimer's 500kb −0.041 0.105 0.698 5.531 1.105  −0.222 0.083 0.007 5.365 1.105 

Alzheimer's −0.060 0.127 0.636 2.127 1.114  −0.273 0.115 0.018 1.917 1.114 

Autism 0.009 0.079 0.913 8.759 1.058  0.071 0.069 0.302 8.485 1.058 

Bipolar −0.039 0.067 0.558 10.591 1.186  0.148 0.065 0.024 10.405 1.186 

MDD −0.312 0.117 0.007 5.474 1.078  −0.326 0.101 0.001 5.520 1.078 

Schizophrenia −0.215 0.045 1.66 × 10−6 22.285 1.812  −0.104 0.039 0.009 22.202 1.812 

Neuroticism UK Biobank −0.159 0.054 0.003 9.121 1.239  −0.303 0.048 3.92 × 10−10 9.090 1.239 

Neuroticism −0.224 0.115 0.051 4.199 1.057  −0.433 0.103 2.85 × 10−5 4.334 1.057 

Meta−Neuroticism   9.06 × 10−4         

            

Anthropometric traits            

Height 0.124 0.034 3.00 × 10−4 17.958 2.973  0.208 0.033 1.51 × 10−10 17.766 2.973 

Head circumference 0.027 0.113 0.810 5.492 1.041  0.239 0.096 0.013 5.311 1.041 

BMI −0.261 0.040 7.83 × 10−11 18.081 1.262  −0.218 0.036 9.62 × 10−10 18.765 1.262 

Birthweight −0.021 0.094 0.826 6.109 1.062  0.131 0.080 0.102 5.735 1.062 

            

Neurological measures            

ICV 0.095 0.122 0.438 3.819 1.041  0.533 0.106 4.79 × 10−7 3.745 1.041 

Hippocampal volume 0.084 0.121 0.486 3.655 1.024  0.097 0.117 0.407 3.736 1.024 

Abbreviations: HOMA B, homeostatic model assessment beta-cells; HOMA IR, homeostatic model assessment insulin resistance; HbA1c, glycated 

haemoglobin; ADHD, attention deficit hyperactivity disorder; MDD, major depressive disorder; BMI, body mass index; ICV, intracranial volume.



 

 

 

 

 

Supplemental Experimental Procedures 

Study design and participants 

The principal data set used in this study of socioeconomic status (SES) was taken from UK Biobank 

(http://www.ukbiobank.ac.uk) [S48]. UK Biobank consists of 502,655 community-dwelling participants 

recruited between 2006 and 2010 in the United Kingdom (target age range 40-69 years). Participants gave 

detailed information about their background and lifestyles, underwent cognitive and physical tests, and agreed to 

have their health followed longitudinally. In addition, blood, urine, and saliva samples were provided for future 

analyses. In the current study, genome-wide genotyping data were available on 112,151 individuals (52.53% 

female) aged 40-73 years (mean age = 56.9 years, SD = 7.9) after the quality control process was implemented 

(described below). UK Biobank received ethical approval from the Research Ethics Committee (REC) (REC 

reference, 11/NW/0382). This study has been completed under UK Biobank application 10279. 

 

Phenotype measurement of SES  

Two measurements of SES were used in the current study. An area based measurement, The Townsend 

Social deprivation Index [S49], and self-reported household income. The Townsend score is a measure of the 

level of social deprivation for the area in which the individual lives. Each participant was assigned a Townsend 

score at the time of recruitment. Data from the last national census were used to derive the score for each 

participant based on their postcode. Four variables contribute to a participant’s Townsend score: the percentage 

of those aged 16 or over who are unemployed, and percentages of households who do not own a car, do not own 

their home, and which are overcrowded. The Townsend score is an indicator of the level of social deprivation in 

an area, where a greater score indicates a higher level of deprivation and a lower average SES.  

Self-reported household income was collected using a 5 point scale corresponding to the total 

household income before tax, 1 being less than £18,000, 2 being £18,000 - £29,999, 3 being £30,000 - £51,999, 

4 being £52,000 – £100,000, and 5 being greater than £100,000. Participants were removed from the analysis if 

they answered “do not know” (n= 4319), or “prefer not to answer” (n = 10553).  

In response to a reviewer’s request, we investigated the degree to which multiple individuals from the 

same household may have contributed to UK Biobank. It should be noted that the data pertaining to participant 

http://www.ukbiobank.ac.uk/


 

co-habitation is based on address and so individuals who reside in the same army barracks, care homes, 

hospitals etc, would count as living together. In addition these data do not take into account any changes of 

address since recruitment, nor the how long participants have been living in the same address. We removed one 

individual per household retaining the male if available in order to more closely pair the phenotype (household 

income) with the genotype more likely to contain causal elements, Figure S2. This resulted in a final sample size 

of 88,183 (47,797 males and 40,386 females). We then repeated the GWAS on this reduced data set along with 

the gene-based analysis, genetic correlations, and polygenic profile scores.  

 

Genotyping and Quality Control  

The 152,729 blood samples submitted to UK Biobank were genotyped using either the UKBileve array 

(N = 49,979) or the UK Biobank axiom array (N = 102,750). Affymetrix performed genotyping on 33 batches of 

~4,700 samples and also conducted the initial quality control procedure on the genotyping data. Details of the 

sample processing specific to the UK Biobank project are available at 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583, and the details of the Axiom array at 

http://media.affymetrix.com/support/downloads/manuals/axiom_2_assay_auto_workflow_user_guide.pdf.  

Prior to release of data from UK Biobank, a stringent quality control protocol was applied, and 

performed at the Wellcome Trust Centre for Human Genetics (WTCHG). Further details of the quality control 

procedure implemented by the WTCHG can be found at 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580.  

 Additional quality control was performed for this study. Individuals were removed based on non-

British ancestry (within those who self-identified as being British, principal component analysis was used to 

remove outliers, n=32,484), high missingness (n=0), relatedness (n=7,948), QC failure in UK Bileve (n=187), 

and gender mismatch (n=0). A total of 112,151 individuals remained for further analyses. 

 

Genome-wide association analyses (GWAS) in the UK Biobank sample 

 

The UK Biobank interim release was imputed to a reference set which combined the UK10K haplotype 

and 1000 Genomes Phase 3 reference panels. Full details can be found at 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020. The association results were filtered to exclude 

variants where minor allele frequency (<0.1%) or imputation quality (<0.1) leaving a total of ~17.3 million 

SNPs. 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583
http://media.affymetrix.com/support/downloads/manuals/axiom_2_assay_auto_workflow_user_guide.pdf
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020


 

 

Curation of summary data from GWAS on physical and psychiatric disease 

Genetic correlations and polygenic profile scores were derived using the SES variables in UK Biobank 

and summary statistics from 32 mostly health-related phenotypes which show phenotypic correlations with SES. 

Table S2 provides key references showing evidence for the phenotypic associations between measures of SES 

and health. Full details of the prior GWAS studies which provided summary statistics along with links to the 

data (where applicable) are provided in Table S2.  

 

Statistical Analysis   

Genome-wide SNP-based heritability  

The total phenotypic variance explained by common SNPs was estimated using GCTA-GREML [S50, 

S51]. All genotyped autosomal variants were included in the GCTA-GREML analyses for both the social 

deprivation and the household income variables from UK Biobank.  

 

SNP-based association analyses 

Association analyses for both the social deprivation phenotype and the household income phenotype 

were adjusted to control for the effects of age, sex, assessment centre, genotyping batch, genotyping array, and 

population stratification (using 10 principal components). A total of 112,005 participants had both a Townsend 

score and genotype data available and a total of 96,900 genotyped individuals provided data on household 

income. Association analyses were conducted using SNPTEST v2.5 [S52] (software available at 

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html#introduction). An additive model was used 

by specifying the ‘frequentist1’ option and genotype dosage scores were used to account for imputed genotype 

uncertainty.   

 

Clumping 

The degree to which genome-wide significant hits were tagging independent regions of the genome 

was examined by using linkage disequilibrium (LD) clumping in PLINK. Here, the European panel of the 1000 

genomes (phase 1, release 3) was used to model the degree of LD between markers. Index SNPs, defined as 

those with a P-value of < 5 x 10−8, SNPs within 500kb of the index SNP and in LD of r2 >0.1 and with a P-value 

of < 1x10−5, were used to define genomic regions.   

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html#introduction


 

 

Gene-based association analysis 

Gene-based association analyses were conducted using MAGMA [S53]. Summary data from the SNP-

based analyses were used to derive gene-based statistics. SNPs were allocated to genes based on their position 

according to the NCBI 37.3 build with gene boundaries being defined as the start and stop site. The European 

panel of the 1000 genomes (phase 1, release 3) was used to model linkage disequilibrium. This resulted in a total 

of 18,061 genes being included in the gene-based analysis for social deprivation and for household income. A 

Bonferroni correction was used to control for multiple testing, giving an alpha level for social deprivation and 

for household income of 2.768 x 10−6.  

 

Functional annotation and gene expression 

For the four genome-wide significant SNPs associated with household income (reported below), 

evidence of expression quantitative trait loci (eQTL) and functional annotation were explored using publicly-

available online resources. The Genotype-Tissue Expression Portal (GTEx) (http://www.gtexportal.org) was 

used to identify eQTLs associated with the SNPs. Regulome DB [S54]. (http://www.regulomedb.org/) was used 

to identify regulatory DNA elements in non-coding and intergenic regions of the genome in normal cell lines 

and tissues. 

 

LDS regression partitioned heritability method 

Partitioned heritability can be achieved using the LDS regression method [S55]. This analysis 

examines groups of SNPs that share the same functional properties and is used to derive a heritability metric for 

each grouping. The goal of these analyses is to determine if specific groups of SNPs make a greater contribution 

to the total heritability estimate than would be expected by their size. This is achieved by performing multiple 

regression of GWAS test statistics onto LD scores for partitioned regions of the genome. This enables the 

percentage of a trait’s total SNP-based heritability for specific regions of the genome to be derived. In order to 

show that a region of the genome is making a greater contribution to a phenotype than would be expected, an 

enrichment statistic is derived. Here enrichment is defined as the proportion of the heritability of the region, 

divided by the proportion of SNPs contained within it or Pr(h2)/Pr(SNPs). Should Pr(h2)/Pr(SNPs) = 1, no 

enrichment is found, as the proportion of SNPs a region contains is equal to the heritability it tags. In instances 

http://www.regulomedb.org/


 

where Pr(h2)/Pr(SNPs) >1 the region shows evidence that it is making a greater contribution towards the 

heritability estimate than its size alone would suggest.  

Enrichment of partitioned regions was performed separately for social deprivation and household 

income. Firstly a baseline model was derived using 52 overlapping, functional categories (described below). 

Secondly, a cell-specific model was constructed by adding each of the 10 cell-specific functional groups to the 

baseline model one at a time. 

Multiple testing was controlled for by applying an FDR correction to the to the baseline model using 52 

categories. For the cell-specific analysis the baseline model was first included and the level of enrichment for 

each cell specific category as derived. Here, 10 tests were controlled for using FDR. 

A total of 52 overlapping categories were included in the baseline model. These were coding regions, 

3’UTR, 5’UTR, promoter and intronic regions [S56, S57]. The gene sets of digital genomic footprint and 

transcription factor binding site were used [S57, S58]. The CTCF, promoter-flanking, transcribed, transcription 

start sites (TSS), strong enhancer and weak enhancer categories are included [S59]. DNase I hypersensitivity 

sites (DHS) were formed by utilising the data from ENCODE and from the Roadmap Epigenomes data [S60]. 

These were used to create two functional groups, one corresponding to all cell types and the second only those 

that were found within the foetal cell type. Cell type specific H3K4me1, H3K4me3, and H3K9ac data were 

taken from work performed on the Epigenomics Roadmap [S34]. An additional version of H3k27ac was also 

included [S61]. For each of these groups all cell types were used in the baseline model. Super enhancers are 

clusters of enhancers that show a high level of activity [S61]. This group correspond to a subset of the H3K27 

annotation. Also included is a group that has been shown to be conserved along the mammalian line [S62, S63]. 

Finally, a group of enhancers were included that show a bidirectional capped transcript. These were identified 

using cap analysis of the gene expression levels in the sample panel of FANTOM5 [S64]. In order to control for 

SNPs within these categories tagging variance coming from outside the groupings a 500 kb boundary was 

included around each category and a 100bp window around the ChIP-seq peaks (regions that were DNase 

hypersensitive or associated with the H3K4me1, H3K4me, or the H3K9ac groupings). 

The SNPs in the baseline histone mark groupings were formed by combining across tissue types. In 

order to determine if specific tissue types make greater contributions to SES we grouped each mark into cell 



 

types of central nervous system, kidney, liver, cardiovascular, connective/bone, gastrointestinal, 

immune/hematopoietic, adrenal/pancreas, skeletal muscle, and other. 

 

Genetic overlap with other traits  

Genetic correlations can be derived by exploiting the pattern of LD found across the genome. This is 

due to the level of association a SNP shows in a GWAS is a product of both its own contribution toward a 

phenotype as well as variants that it is in LD with [S65]. In addition, SNPs in regions of high LD provide a 

measure of a greater proportion of the genome than SNPs in regions of low LD.  

Assuming a polygenic architecture, SNPs in regions of high LD will show greater association statistics 

than SNPs found in regions of low LD. This means that the level of LD can be used to predict GWAS 

association test statistics [S47, S66]. By extending this logic to a bivariate design, the product of test statistics 

from each locus can be predicted using LD in the presence of a non-zero genetic correlation between pairs of 

traits. 

Here, we use LDS regression to derive genetic correlations between SES, as measured by the 

Townsend Social Deprivation Index [S49] and household income, and health traits using 32 large GWAS 

consortia data sets to quantify the level of overlap between the genetic architecture of health traits and SES in 

UK Biobank. This method has been used before to establish a shared genetic component between cognitive 

functions and health traits [S47, S67, S68]. With regard to the analyses using the summary data from the 

Alzheimer’s disease GWAS, due to the large effects in the APOE region, a 500kb region was removed from 

around each side of this region and the analysis was repeated. The Alzheimer’s data set without this region is 

referred to as Alzheimer’s 500kb in the Tables S3. Due to the high genetic correlation between the two measures 

of neuroticism used (rg = 1), the P values derived from the genetic correlations between these two variables with 

social deprivation were meta-analysed using Stouffer’s weighted Z [S69, S70]. This meta-analysed P value was 

then used to test whether statistical significance remained following FDR control for the tests performed. 

We use the data processing pipeline described by Bulik-Sullivan et al., (2015) [S47] to derive genetic 

correlations between pairs of traits. A MAF of > 0.01 was used as a cut off and only those SNPs found in the 

HapMap3 with 1000 Genomes EUR with a MAF > 0.05 were included. The integrated_phase1_v3.20101123 

was used for LDS regression. Next, indels and structural variants were removed, as were strand-ambiguous 

SNPs. Genome-wide significant SNPs were also removed, along with SNPs with very large effect sizes (χ2 > 80) 



 

as the presence of outliers can increase the standard error in a regression model. LD scores and weights for use 

with the GWAS of European ancestry were downloaded from the Broad Institute 

(http://www.broadinstitute.org/~bulik/eur_ldscores/). An unconstrained intercept was used in the regression 

model as it was not possible to quantify the degree of sample overlap between the traits used here.  

 

Polygenic prediction 

The .map and .ped files supplied by UK Biobank were recoded to the ACGT format (from the 1, 2 

numerical allele code) using a bespoke program developed by one of the authors (DCL). This program used the 

look-up substitution method where by a look up string hash table was created to hold the SNP-ID in addition to 

the allele identifiers for the SNP. A loop was conducted on the string position which created an additional string 

with the correct ACGT encode. This was then included to the six mandatory fields extracted from the initial 

string.   

Polygenic profile scores were created for 28 health-related phenotypes from published GWAS in all 

participants with genome-wide SNP data using PRSice [S71]. Strand-ambiguous SNPs and SNPs with a minor 

allele frequency < 0.01 were removed prior to creating the polygenic profile scores. SNPs in linkage equilibrium 

with an r2 < 0.25 within a 200bp window were obtained using clumping. The polygenic profile scores were then 

calculated by the sum of the alleles associated with the phenotype of interest across many genetic loci, weighted 

by their effect size estimated from the GWAS summary statistics. Five polygenic profile scores were created 

including variants according to the significance of their association with their phenotype, at P-value thresholds 

of 0.01, 0.05, 0.1, 0.5 and all SNPs.     

The associations between the 28 polygenic profile scores and SES were examined using regression 

models, adjusting for age at measurement, sex, genotyping batch, genotyping array, assessment centre, and the 

first ten genetic principal components to adjust for population stratification. All analyses were performed in R, 

and all obtained P-values were corrected for multiple testing using the False Discovery Rate (FDR) method 

[S72].  

A number of the data sets used in the analysis incorporating LDS regression were unsuitable for use 

with the polygenic profile score method and so the phenotypes of, HDL, LDL, and triglycerides had to be 

omitted from polygenic score analysis. In addition, the polygenic profile score method cannot be used in 

situations where there is sample overlap. Because of this, phenotypes within UK Biobank could not be 

compared with each other using this method. Sample overlap may have occurred between the GWAS consortia 

http://www.broadinstitute.org/~bulik/eur_ldscores/


 

used to establish genetic correlations between SES and health variables as participants from the UK were used. 

However, there is currently no method to quantify the degree to which this may have occurred, and therefore 

some of the polygenic profile scores results should be interpreted with caution. The genetic correlations are, 

however, robust to sample overlap [S47]. 

Replication  

The genome wide significant SNPs from the GWAS on household income in UK Biobank were tested 

for replication into another measure of SES, years of education using an independent sample of ~200,000 

individuals [S3]. Years of education was measured as the number of years of schooling completed. The data 

provided by The Social Science Genetic Association Consortium [S3] did not contain data from 23andMe or 

from UK Biobank, or any of the UK based cohorts. rs7252896 was not included in the years of education data 

and no SNPs were found with an r2 of greater than 0.5 that were not amongst the genome wide significant SNPs 

from UK Biobank. 

In order to further examine the degree to which the genetic architecture of social deprivation and 

household income as measured in the UK Biobank data set overlapped with that of years of education assembled 

by The Social Science Genetics Association Consortium we used Linkage Disequilibrium Score regression to 

derive genetic correlations. The same data processing pipeline was used as described above. 

Next, using PRSice [S71], we derived polygenic profile scores using the summary statistics from the 

social deprivation and household income GWASs in UK Biobank and used these scores to predict social 

deprivation and household income in Generation Scotland: the Scottish Family Health Study (GS:SFHS) data 

set [S73, S74, S75]. Social deprivation was measured in GS:SFHS using the Scottish Index of Multiple 

Deprivation 2009 (SIMD, http://www.scotland.gov.uk/topics/statistics/simd/). In brief this measure takes small 

areas of Scotland which are then ranked according to seven categories each indicating SES. These are income, 

employment, health, education, geographic access, crime, and housing. The scores derived using the SIMD are 

ranked the most deprived, 1, to areas that are the least deprived 6505. Household income in GS:SFHS was 

measured by multiple choice where the possible answers were 1 less than £10,000, 2 between £10,000 and 

£30,000, 3 between £30,000 and £50,000, 4 between £50,000 and £70,000, 5 more than £70,000, and 6 prefer 

not to answer [S74, S75]. Individuals who responded with 6 “prefer not to answer” were excluded from the 

analysis. Individuals were removed if they had contributed to both GS:SFHS and UK Biobank (N = 174). Linear 

regression models were used to examine the associations between the polygenic profiles for the UK Biobank 

http://www.scotland.gov.uk/topics/statistics/simd/


 

household income and Townsend and the target phenotypes in GS:SFHS, adjusted for age at measurement, sex 

and the first five genetic principal components for population stratification. All models were corrected for 

multiple testing across all polygenic profile scores at all five thresholds in each cohort using the False Discovery 

Rate method [S76].  

Using marker weights from the social deprivation GWAS in UK Biobank, highly significant 

associations at each P-value threshold with SIMD in GS:SFHS where found. The most predictive score being 

that which was derived using the all SNPs, (P-value threshold = 0.01, Beta = 0.033, SE = 0.008, r2 = 0.001, P = 

2.26 × 10−5,  P-value threshold = 0.05, Beta = 0.065, SE = 0.008, r2 = 0.005, P = 2.26 × 10−5, P-value threshold 

= 0.1, Beta = 0.072, SE = 0.008, r2 = 0.007, P = 2.26 × 10−5, P-value threshold = 0.5, Beta = 0.077, SE = 0.008, 

r2 = 0.008, P = 2.26 × 10−5, P-value threshold = 1, Beta = 0.079, SE = 0.008, r2 = 0.008, P = 2.26 × 10−5). 

Polygenic scores derived using household income in UK Biobank predicted a significant proportion of 

phenotypic variance for household income in GS: SFHS at each of the P-value thresholds used. The most 

predictive polygenic score was derived using a P-value threshold of 0.5 (P-value threshold = 0.01, Beta = 0.035, 

SE = 0.008, r2 = 0.001, P = 1.47 × 10−5,  P-value threshold = 0.05, Beta = 0.042, SE = 0.008, r2 = 0.002, P = 

1.82 × 10−7, P-value threshold = 0.1, Beta = 0.046, SE = 0.008, r2 = 0.002, P = 6.77 × 10−9, P-value threshold = 

0.5, Beta = 0.052, SE = 0.008, r2 = 0.003, P = 5.07 × 10−11, P-value threshold = 1, Beta = 0.051, SE = 0.008, r2 = 

0.003, P = 1.20 × 10−10). 

Function of genes identified by clumping and MAGMA 

AF4/FMR2 Family, Member 3 (AFF3) encodes a tissue-restricted nuclear transcriptional activator that 

is preferentially expressed in lymphoid tissue, previously associated with lymphoblastic leukaemia [S77], 

intellectual disability [S78], and rheumatoid arthritis [S79]. 

Carbohydrate Sulfotransferase 10 (CHST10) encodes a protein necessary for synthesising the neuronally 

expressed carbohydrate HNK1, which is involved in neurodevelopment and synaptic plasticity [S80]. 

LON Peptidase N-Terminal Domain And Ring Finger 2 (LONRF2) has been associate with coeliac disease 

[S81]. 

Neuromedin S (NMS) plays an important role in regulating circadian rhythms [S82]. 

Phosducin-Like 3 (PDCL3) is involved in the process of angiogenesis [S83].  



 

KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) is involved in chromatin modification and has previously 

been associated with intellectual disability [S84]. 

Macrophage Stimulating 1 (MST1) belongs to a family of kinases that are associated with a number of 

pathologies, including cancer, endothelial malformations and autoimmune disease [S85]. 

Expression levels of Ring Finger Protein 123 (RNF123) are associated with depression [S86]. 

Mutations in Microtubule-Associated Protein Tau (MAPT) have been associated with several neurodegenerative 

diseases, including Alzheimer’s disease [S87]. 

Acylaminoacyl-Peptide Hydrolase (APEH) has an antioxidant function and has been associated with various 

cancers [S88].  

Bassoon Presynaptic Cytomatrix Protein (BSN) encodes a scaffold protein expressed in the brain, is involved 

with neurotransmitter release and was previously associated with Crohn’s disease [S89] and more recently with 

self-rated health [S90]. 

Pleckstrin Homology Domain Containing, Family M (With RUN Domain) Member 1 (PLEKHM1) encodes a 

protein essential for bone resorption and variants within the gene are associated with osteopetrosis [S91]. 

Sarcoglycan, Delta (35kDa Dystrophin-Associated Glycoprotein) (SGCD) encodes a subcomplex of the 

dystrophin-glycoprotein complex. Mutations in this gene have been associated with limb-girdle muscular 

dystrophy type 2F [S92] and cardiomyopathy [S93]. 

Dystroglycan 1 (Dystrophin-Associated Glycoprotein 1) (DAG1) encodes a laminin binding component of the 

dystrophin-glycoprotein complex. Mutations in DAG1 are associated with a number of muscular dystrophies 

[S94]. 

Genetic variants in the Corticotropin Releasing Hormone Receptor 1 (CRHR1) have been associated with 

alcoholism [S95] and anxiety disorders [S96].  

Aminomethyltransferase (AMT) encodes one of four critical components of the glycine cleavage system. 

Mutations in this gene have been associated with glycine encephalopathy [S97]. 

Zinc Finger, DHHC-Type Containing 11 (ZDHHC11) is located in a genomic region associated with lung [S98] 

and bladder cancers [S99]. 



 

1-Aminocyclopropane-1-Carboxylate Synthase Homolog (Arabidopsis)(Non-Functional)-Like (ACCSL) 

KANSL1 MAPT, PLEKHM1 and CRHR1 are in a region on chromosome 17 recently associated with 

Alzheimer’s Disease [S100].  

 

Comparison between income in the full data set and income in the restricted sample of 88,183 

We first performed GCTA-GREML using the reduced sample size and found a very similar heritability 

estimate of 12% (SE = 0.7%). The results of the GWAS can be seen in Figure S3, shows the genome wide 

significant SNPs. The results of the GWAS on the reduced data set revealed 12 new genome-wide significant 

SNPs in 2 independent regions on chromosome 9. The SNP rs139128645, also on chromosome 9, did fall within 

an intron in the EHMT1 gene. This gene has previously been associated with Kleefstra syndrome [S101] which 

includes symptoms such as developmental delay as well as learning difficulties. Another result of the loss of 

sample size was that the significant SNPs found using the whole sample were no longer significant at the 

genome-wide threshold of 5 × 10−8. The results indicate that the beta weights and the standard errors of the 

genome-wide significant SNPs for both the reduced and full data sets were highly similar and that the 

fluctuation of sample size between these two comparisons is the most likely reason for the small difference in 

the P-values found between the full and reduced sample size, rather than any bias introduced from individuals 

residing together. This conclusion is also supported by the results of the gene based statistics, genetic 

correlations, partitioned heritability and the polygenic profile scores (as the genetic overlap between income and 

the health and anthropometric traits is very similar, along with the proportion of variance explained using the 

polygenic profile scores. These follow up results are available from the author. Additionally, as for the full 

sample, enrichment was found for SNPs in within 500bp of H3K9ac SNPs as well as those found in conserved 

regions, but not for SNPs within 500 bp of the DHS and conserved regions.   
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