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SUMMARY

Individuals with lower socio-economic status (SES)
are at increased risk of physical and mental illnesses
and tend to die at an earlier age [1–3]. Explanations
for the association between SES and health typically
focus on factors that are environmental in origin [4].
However, common SNPs have been found collec-
tively to explain around 18% of the phenotypic vari-
ance of an area-based social deprivation measure
of SES [5]. Molecular genetic studies have also
shown that common physical and psychiatric dis-
eases are partly heritable [6]. It is possible that
phenotypic associations between SES and health
arise partly due to a shared genetic etiology. We con-
ducted a genome-wide association study (GWAS) on
social deprivation and on household income using
112,151 participants of UK Biobank. We find that
common SNPs explain 21% of the variation in social
deprivation and 11% of household income. Two in-
dependent loci attained genome-wide significance
for household income, with the most significant
SNP in each of these loci being rs187848990 on chro-
mosome 2 and rs8100891 on chromosome 19. Genes
in the regions of these SNPs have been associated
with intellectual disabilities, schizophrenia, and syn-
aptic plasticity. Extensive genetic correlations were
found between both measures of SES and illnesses,
anthropometric variables, psychiatric disorders, and
cognitive ability. These findings suggest that some
SNPs associated with SES are involved in the brain
and central nervous system. The genetic associa-
tions with SES obviously do not reflect direct causal
Current Biology 26, 3083–3089, Novem
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effects and are probably mediated via other partly
heritable variables, including cognitive ability, per-
sonality, and health.

RESULTS AND DISCUSSION

Using GCTA-GREML [7], we first estimated the heritability of

each of the SES variables in the UK Biobank sample. A total

of 21% (SE = 0.5%) of phenotypic variation in social deprivation,

as measured using Townsend scores, and 11% (SE = 0.7%)

of household income was explained by the additive effects of

common SNPs. Next, genome-wide association analyses for

social deprivation and household income were performed using

an imputed dataset that combined the UK10K haplotype and

1000 Genomes Phase 3 reference panels; details can be found

at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020. We

found no genome-wide significant findings associated with

social deprivation (see Figure 1A and Figure S1). For household

income, four SNPs attained genome-wide significance (p < 5 3

10�8): rs187848990 on chromosome 2, and rs7252896,

rs7255223, and rs8100891 on chromosome 19 (see Figure 1B,

Figure S1, and Table S1).

The ‘‘clump’’ function in PLINK [8] was used to identify pat-

terns of linkage disequilibrium in the dataset and showed that

these four SNPs were located in two independent regions (Fig-

ure 1C). The region on chromosome 2 spanned 583 kb, and

the most significant SNP was rs187848990 (p = 2.325 3 10�8).

This region contains five genes: AFF3, CHST10, LONRF2,

NMS, and PDCL3. The AFF3 gene has previously been associ-

ated with intellectual disability [9], and CHST10 is involved with

synaptic plasticity [10]. The region on chromosome 19 spanned

18 kb, with the most significant SNP being rs8100891, p =

3.423 3 10�8. This region contains the gene ZNF507, which

has been implicated in neurodevelopmental disorders including

schizophrenia [11], a disorder that affects cognitive function and
ber 21, 2016 ª 2016 The Authors. Published by Elsevier Ltd. 3083
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Results of Genome-wide Analysis

on Social Deprivation and Household Income

(A) Manhattan plot of –log10 (p values) for social

deprivation. The red line indicates genome-wide

significance (p < 5 3 10�8). The black line indicates

values that were suggestive of statistical signifi-

cance (p < 1 3 10�5). See also Figure S1.

(B) Manhattan plot of –log10 (p values) for household

income. The red line indicates genome-wide sig-

nificance (p < 5 3 10�8). The black line indicates

values that were suggestive of statistical signifi-

cance (p < 1 3 10�5). See also Figure S1.

(C) Regional association plots for household income

of SNPs that attained genome-wide significance

(p < 5 3 10�8). rs187848990 is on the left;

rs8100891 is on the right. The most significant SNP

in these regions is represented with a purple dia-

mond. Each circle represents an individual SNP,

and the color indicates pairwise linkage disequilib-

rium with the most significant SNP in the region (as

calculated from 1000 Genomes in November 2014).

The solid blue line indicates the recombination rate,

and the –log10 p values are shown on the y axis.

See also Table S1 and Figures S1–S4.
that shows a strong genetic correlation with intelligence [12]. It is

possible, therefore, that these genetic associations with SES

may be mediated, in part, through cognitive ability; it is well es-

tablished that an individual’s level of cognitive ability is corre-

lated with their SES [13].

Using the GTEx database (http://www.broadinstitute.org/

gtex/), cis-eQTL associations were identified for the four house-

hold income genome-wide significant SNPs (Table S1). For this
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study, data mining of regulatory elements

was restricted to normal tissues. There

was evidence of regulatory elements asso-

ciatedwith all four of the genome-wide sig-

nificant SNPs (Table S1).

We next sought to replicate the four

genome-wide significant SNPs in a sample

of �200,000 individuals who were as-

sessedon the number of years of schooling

completed, as this variable is often used as

a measure of SES. Summary statistics

were made available from the Social Sci-

ence Genetic Association Consortium’s

GWAS of educational attainment [14],

with data from UK Biobank, UK-based co-

horts, and 23andMe being omitted from

the analysis. Three of our genome-wide

significant SNPs were successfully repli-

cated using years of education as the

phenotype, rs187848990 on chromosome

2 (b = 0.066, p = 0.047), and rs7255223

(b = 0.044, p = 7.28 3 10�4) and

rs8100891 (b = 0.044, p = 7.62 3 10�4) on

chromosome 19. rs7252896 was not

included in the education data and thus

could not be replicated. We then sought

to use a SNP that was in high linkage
disequilibrium (LD) with rs7252896 to use as a proxy SNP for

replication; however, there were no SNPs in the education data-

set that were in LD with rs7252896 (r2 of greater than 0.5),

excluding rs7255223 and rs8100891.

We also used this education summaryGWASdataset to derive

genetic correlations between both the social deprivation and

household income variables in UKBiobank. A genetic correlation

of 0.548 (SE = 0.054, p = 1.796 3 10�24) was found between

http://www.broadinstitute.org/gtex/
http://www.broadinstitute.org/gtex/


social deprivation and years of education, and there was a ge-

netic correlation of 0.903 (SE = 0.040, p = 4.135 3 10�115) be-

tween income and years of education. These substantial genetic

correlations indicate that the twomeasures of SES, asmeasured

in UK Biobank, have a very similar genetic architecture with a

third SES variable—education—measured in an independent

sample.

Next, we used polygenic profile scores, derived using the so-

cial deprivation and household income variables’ GWASs in UK

Biobank, to predict social deprivation (using the Scottish Index

of Multiple Deprivation, SIMD) and household income in an inde-

pendent sample, Generation Scotland: Scottish Family Health

Study (GS:SFHS) [15, 16]. Polygenic profile scores, calculated

using marker weights from the social deprivation GWAS in

UK Biobank, produced highly significant associations at each

pvalue thresholdwithSIMD inGS:SFHS,with themost predictive

score being that which was derived using all SNPs (b = 0.079,

SE = 0.008, r2 = 0.008, p = 2.26 3 10�5). Similarly, a polygenic

score derived using household income in UK Biobank predicted

a significant proportion of phenotypic variance for household

income in GS:SFHS at each of the p value thresholds used,

with polygenic scores derived using a p value threshold of 0.5

being the most predictive (b = 0.052, SE = 0.008, r2 = 0.003,

p = 5.073 10�11). The results of the polygenic profile scores illus-

trate that the molecular genetic architecture of these SES vari-

ables, as measured in the UK Biobank datasets, overlaps with

that of GS:SFHS, indicating that the same genetic variants are

associatedwith phenotypic variation inSES in eachof thesesam-

ples. The betas found using the polygenic profile score method

predict only a small proportion of the phenotypic variance, which

is in line with other phenotypes [17].

Gene-based association testing for the two SES variables

in the UK Biobank sample was conducted using MAGMA

[18]. Following Bonferroni correction for multiple testing (a =

2.768 3 10�6), gene-based association tests identified one

gene associated with social deprivation: ACCSL on chromo-

some 11 (p = 3.48 3 10�7). For household income, 12 genes

showed a significant association: KANSL1 (p = 8.20 3 10�8),

MST1 (p = 1.10 3 10�7), RNF123 (p = 1.19 3 10�7), MAPT (p =

1.23 3 10�7), APEH (p = 2.64 3 10�7), BSN (p = 1.03 3 10�6),

PLEKHM1 (p = 1.16 3 10�6), SGCD (p = 1.30 3 10�6), DAG1

(p = 1.55 3 10�6), CRHR1 (p = 2.39 3 10�6), AMT (p = 2.39 3

10�6), and ZDHHC11 (p = 2.54 3 10�6) (Supplemental

Experimental Procedures). The MAPT, KANSL1, PLEKHM1,

and CRHR1 genes have been associated with Alzheimer’s

disease [19].

Partitioned heritability analysis was then conducted on both

SES phenotypes in UK Biobank [20]. The goal of the partitioned

heritability analysis was to determine whether SNPs that are

grouped together, according to a specific biological function or

role, make an enriched contribution to the total proportion of her-

itability for each of the SES variables. The functional categories

used here overlap considerably, meaning that the heritability

measured by all groups, when they are summed, can exceed

100%. By deriving a heritability estimate for functional classes

of SNPs across the genome, a significant enrichment was found

for conserved regions of the genome. These conserved regions

accounted for 2.6%of the SNPs in both SES phenotypes and ac-

counted for 44% (SE = 12%) of the heritability of social depriva-
tion and 53% (SE = 12%) of the heritability for household income.

The trend for enrichment in heritability emanating from such re-

gions is consistent with the results from other quantitative traits

and diseases [20] and, as such, further highlights the importance

of these genetic regions as sources of phenotypic variance

across these complex traits. Under models of neutral selective

pressure, these regions accumulate base-pair substitutions at

a lower rate than other regions of the genome, indicative of their

being regions wheremutation results in the production of pheno-

typic variance susceptible to the effects of purifying selection.

Genetic variancewithin these regionsmay highlight a role for dis-

ease-causing loci, which in turn might account for some pheno-

typic variance in SES. However, it is also possible that, as intel-

ligence is phenotypically and genetically associated with many

health traits [21] and is thought to be evolutionarily selected for

[22], these regions may show their association with SES partly

through cognitive differences. These two explanations are not

mutually exclusive because, after intelligence is included as a

covariate, the associations between adult SES and health out-

comes, although attenuated, remain significant [1].

Partitioned heritability analysis was also used to conduct a

cell-specific analysis of ten broad tissue types (see Supple-

mental Experimental Procedures). Figure 2 shows the results

of cell-specific enrichment for social deprivation and household

income. For social deprivation, significant enrichment was found

in variants exerting an effect within the central nervous system.

Variants expressed in the central nervous system accounted

for 15% of the total number of SNPs but accounted for 47%

(SE = 11%) of the heritability of social deprivation and 37%

(SE = 9%) of the heritability of household income. For household

income, this did not survive multiple-testing correction.

We next derived genetic correlations, using linkage disequilib-

rium score (LDS) regression [23], between bothmeasures of SES

and a set of 32 phenotypes that have all been shown in some

studies to be phenotypically associated with SES. Table S2 pro-

vides references describing examples of the phenotypic associ-

ations between measures of SES and broadly conceived health

variables. Full details of theGWAS that provided summary statis-

tics for each of the 32 phenotypes, along with links to the data,

are also provided in Table S2. The direction of effect for the

genetic correlations and polygenic profile scores examining

Townsend scores was reversed to facilitate a comparison with

the household income variable.

Following false discovery rate (FDR) correction for multiple

comparisons, 16 of the 34 genetic correlations were statistically

significant for the Townsend social deprivation measure (see

Figure 3 and Tables S3), and 24 of the 34 were significant for

household income (Figure 4 and Table S3). The large number

of genetic correlations found indicates that themolecular genetic

associations with SES overlap with many other health-relevant

phenotypes. A large degree of overlap was found for variables

that are cognitive in nature. Significant genetic correlations

were observed, for example, between both measures of SES

and childhood cognitive ability (social deprivation, rg = 0.500; in-

come, rg = 0.667), with participants’ verbal-numerical reasoning

scores in the UK Biobank clinic visit (social deprivation, rg =

0.338; income, rg = 0.711), and also with longevity (social depri-

vation, rg = 0.301; household income, rg = 0.303). The direction of

effect in each instance indicates that more affluent SES is
Current Biology 26, 3083–3089, November 21, 2016 3085



Figure 2. Enrichment Analysis for Social Deprivation and Household Income using the Ten Tissue-Specific Functional Categories

The enrichment statistic is the proportion of heritability found in each functional group divided by the proportion of SNPs in each group: Pr(h2)/Pr(SNPs). Error bars

are jackknife standard errors around the estimate of enrichment. The dashed line indicates no enrichment found when Pr(h2)/Pr(SNPs) = 1. Social deprivation

(blue) in only one category was significant, as indicated by an asterisk. No significant enrichment was found for any of the categories considered for the household

income (green) phenotype.
associated with longer life and higher intelligence. The average

age of the participants in the GWAS for childhood intelligence

was 11 years, whereas the measurements of SES from UK Bio-

bank were taken at a mean age of 57 years. The finding of a ge-

netic correlation between these two traits may indicate that a set

of genetic variants contributes to higher intelligence, which in

turn contributes to a higher SES in mid-life. Significant genetic

correlations were found between household income and intra-

cranial volume and infant head circumference (rg = 0.533 and

rg = 0.239, respectively).

A noteworthy feature of our findings is that the pattern of

genetic correlations between our two measures of SES—one

area-based and one individual-based—was very similar, and

the genetic correlation between the two measures of SES was

high, at 0.871 (SE = 0.064). The Townsend social deprivation

score is widely used as a proxy indicator of adult socioeconomic

status, usually in the absence of an individual measure. It has

been shown to be predictive of cancer incidence, all-cause mor-

tality, and other health outcomes [24]. Such area-level effects

may comprise both compositional effects, i.e., effects that can

be explained in terms of the characteristics of the residents of

those areas, and contextual effects, i.e., effects that can be ex-

plained in terms of the characteristics of the areas. Although

ecological correlations cannot be used to make causal infer-

ences about individuals—the ecological fallacy—it has been

suggested that they arise largely from associations at the individ-

ual level [25]. One study found that area-based Townsend scores

correlate highly with a similar measure of deprivation calculated

at the individual level [26]. In our UK Biobank sample, where the

individual-level measure of SES was based on household in-

come alone, its correlation with Townsend score was small to

moderate in size (r = 0.24); despite this, the pattern of genetic

correlations between these two measures was very similar.
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There are at least two explanations for the genetic SES-health

correlations found using the LDS regression method. The first is

that the genetic correlations might have been found as a result of

the same genetic variants being directly involved in two pheno-

types. The second is the notion of mediated pleiotropy, which

describes situations in which a phenotype is causally related

to another, perhaps via other variables; therefore, if a genetic

variant is associated with the first phenotype, it will be indirectly

associated with the second [27]. Should multiple variants be

used to establish pleiotropy, such aswhen using the LDS regres-

sion method, both of these forms of pleiotropy may apply, at

different loci. However, because SES has no clear biological

analog—it describes the environment of an individual or their

status within it—mediated pleiotropy thorough intelligence or

personality traits such as conscientiousness, for example, would

appear to be a much more likely interpretation than biological

pleiotropy; that is, we do not conceive of there being genetic var-

iants directly related to SES measures.

The genetic correlations derived in the current paper cannot

distinguish the direction of the effect of this shared genetic

association between SES and health and cognitive variables.

Whereas it is possible that a greater level of cognitive ability

will facilitate an individual’s ability to move to a higher SES, it

could also be the case that those in higher SES environments

are exposed to environmental stimuli that facilitate their intellec-

tual development. As both SES and cognitive ability are partly

heritable, each of these possibilities would result in a genetic cor-

relation between SES and cognitive ability. Mendelian randomi-

zation (MR) is a technique that sits above genetic correlations

and polygenic profile scores in the so-called hierarchy of evi-

dence [28] for ascertaining causal inference with regard to how

genetic contributions act on exposure and outcomes, as well

as for testing the direction of association. However, the data



Figure 3. Genetic Correlations between Social Deprivation and Health and Anthropometric Variables

The x axis depicts the magnitude of the genetic correlations; the y axis shows each trait. Statistical significance is indicated by an asterisk. FDR correction

indicated statistical significance at p = 0.015. Error bars represent standard error using a ratio block jackknife. HOMA B, homeostatic model assessment b cells;

HOMA IR, homeostatic model assessment insulin resistance; HbA1c, glycated hemoglobin; ADHD, attention deficit hyperactivity disorder; MDD,

major depressive disorder; BMI, body mass index; ICV, intracranial volume. Social deprivation scores were reversed so that a higher Townsend score indicates a

higher SES.

See also Tables S2, S3, and S4.
required to perform these analyses for all traits are not currently

available.

The associations between rs187848990 and rs8100891 with

household income, along with the heritability estimates for

both measures of SES, are, we think, the result of mediation

through other phenotypes. Because genetic differences will

not directly result in differences in SES, they may be contributing

to differences in variables such as intelligence, personality,

resistance to diseases, and other factors, which, in turn, can

contribute to differences in SES.

The effect sizes found for each individual SNP were small;

however, as has been found for other polygenic traits, it is the

combined effect of multiple SNPs that contributes to some of

the observable phenotypic variance. Polygenic profile scores

were created for 28 health-related phenotypes using published

GWAS in all participants with genome-wide SNP data. When

predicting into social deprivation based on the Townsend score,

polygenic profile scores derived from the summary statistics of

11 GWASs of health-related traits predicted a significant propor-

tion of phenotypic variance (Table S4). When predicting into

household income, 26 out of 28 demonstrated statistical signifi-

cance (Table S4). Polygenic profile scores explained only a very

small proportion of variance, but they illustrate that genetic risk

for a range of diseases and cognitive ability can predict variance

in these two SES measures.

As the income variable used in our GWAS pertained to house-

hold income, it may have included multiple individuals from the

same household. This may have led to individuals providing a
phenotype score that did not reflect their own income, but rather

the income of those that they lived with. We sought to determine

the number of individuals who co-habited in theUKBiobank data

and the degree to which this may have influenced the results of

the household income GWAS. We omitted one individual per

household, retaining the male where possible (Figure S2), which

resulted in a reduced sample size of 88,183 individuals who had

provided data on their level of household income. Next, we

repeated the GWAS, GREML, gene-based analysis, genetic cor-

relations, and the polygenic profile scores. Using this reduced

sample in the household income dataset, two additional sugges-

tive peaks were found on chromosome 9, with the most signifi-

cant SNPs in each of these regions being rs139128645 (b =

�0.22, p = 1.39 3 10�8) and rs7467480 (b = 0.027, p = 2.22 3

10�8) (Figure S3). The results of the GWAS and the additional

analyses were consistent with the likelihood that, by modifying

the sample size, there will beminor changes to the test statistics;

the results of the GWAS on the full sample for household income

and the reduced sample for household income were highly

similar. The results did not suggest that a bias had been intro-

duced by there being multiple individuals from a single house-

hold. The full results of the reduced-sample GWAS, along with

the follow-up analyses, are available from the authors.

The results here show that 21% of people’s differences in

area-level social deprivation and 11% of household income

can be explained by additive common genetic factors. Four

genome-wide significant SNPs were found for household in-

come, leading to the identification of two independent genomic
Current Biology 26, 3083–3089, November 21, 2016 3087



Figure 4. Genetic Correlations between Household Income and Health and Anthropometric Variables

The x axis depicts the magnitude of the genetic correlations; the y axis shows each trait. Statistical significance is indicated by an asterisk. FDR correction

indicated statistical significance at p = 0.032. Error bars represent standard error using a ratio block jackknife. HOMA B, homeostatic model assessment

b cells; HOMA IR, homeostatic model assessment insulin resistance; HbA1c, glycated hemoglobin; ADHD, attention deficit hyperactivity disorder; MDD, major

depressive disorder; BMI, body mass index; ICV, intracranial volume. For household income, higher scores represent higher income.

See also Tables S2, S3, and S4.
regions containing genes with known associations with intellec-

tual disabilities, synaptic plasticity, and schizophrenia. Extensive

genetic correlations were found between both measures of SES

and health-related traits, indicating a highly diffuse genetic archi-

tecture. These genetic correlations might provide a partial expla-

nation for the phenotypic association between SES and health—

the majority of which, we think, is due to environmental factors.

EXPERIMENTAL PROCEDURES

We examined two measures of SES that were available in UK Biobank (http://

www.ukbiobank.ac.uk) [29]. The first measure was the Townsend Social

Deprivation Index [30]—a measure of the level of social deprivation in which

the participant lives—and the second measure was household income. A total

of 112,005 individuals had a Townsend score, of whom 52.53% were female

(mean age = 56.91 years, SD = 7.93, range 40–73). A total of 96,900 partici-

pants had data pertaining to household income, of whom 50.64%were female

(mean age = 56.53 years, SD = 7.95, range 40–73). Participants had undergone

genome-wide SNP genotyping; the full details of this can be found in the Sup-

plemental Experimental Procedures.

We used data from the UK Census of 2001 (https://census.ukdataservice.

ac.uk/media/215850/Townsend2001.csv) and compared the distribution of

Townsend scores from all of England and Wales to those in UK Biobank that

had been genotyped. The data from the UK census exclude wards of less

than 100 households, which only altered wards in the City of London and

the Scilly Isles. The score was first reversed so that a greater Townsend score

corresponds to a higher SES. As can be seen in Figure S4, the distribution of

the Townsend score from the UK Biobank dataset follows the same trend as

that found across England and Wales. This indicates that, whereas those

from very low SES environments—corresponding to a Townsend score of

less than �10—did not participate in UK Biobank, the distribution of scores

is highly similar to what was found across England and Wales (UK Biobank
3088 Current Biology 26, 3083–3089, November 21, 2016
median = 2.3, census of 2001, median = 1.1). The distribution of the income

scores can be found in Figure S4.

We conducted separate analyses for the Townsend deprivation score and

household income. All phenotypes were adjusted for age, gender, assessment

center, genotyping batch, genotyping array, and ten principal components in

order to correct for population stratification prior to all analyses. See Supple-

mental Experimental Procedures for full description of genotyping, imputation,

and the phenotypes used.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2016.09.035.

AUTHOR CONTRIBUTIONS

Conceptualization, W.D.H., C.R.G., I.J.D.; Software, D.C.M.L., G.D.; Formal

Analysis, W.D.H., S.P.H., R.E.M., G.D.; Data Curation, W.D.H., S.P.H.,

S.E.H.; Writing – Original Draft, W.D.H., as discussed with I.J.D.; Writing –

Review and Editing, W.D.H., S.P.H., R.E.M., S.E.H., D.C.M.L., G.D., A.O.,

A.M.M., C.R.G., I.J.D.

ACKNOWLEDGMENTS

This research has been conducted using the UK Biobank resource. This work

was undertaken in The University of Edinburgh Centre for Cognitive Ageing

and Cognitive Epidemiology (CCACE), supported by the cross-council Life-

long Health and Wellbeing initiative (MR/K026992/1). Funding from the

Biotechnology and Biological Sciences Research Council (BBSRC), the Med-

ical Research Council (MRC), and the University of Edinburgh is gratefully

acknowledged. CCACE funding supports S.P.H., S.E.H., D.C.M.L., G.D.,

C.R.G., and I.J.D. W.D.H. is supported by a grant from Age UK (Disconnected

http://www.ukbiobank.ac.uk
http://www.ukbiobank.ac.uk
https://census.ukdataservice.ac.uk/media/215850/Townsend2001.csv
https://census.ukdataservice.ac.uk/media/215850/Townsend2001.csv
http://dx.doi.org/10.1016/j.cub.2016.09.035


Mind Project). We thank Stuart J. Ritchie for comments on a draft of the manu-

script. I.J.D. is a participant in UK Biobank.

Received: March 1, 2016

Revised: July 13, 2016

Accepted: September 19, 2016

Published: November 3, 2016

REFERENCES

1. Batty, G.D., Der, G., Macintyre, S., and Deary, I.J. (2006). Does IQ explain

socioeconomic inequalities in health? Evidence from a population based

cohort study in the west of Scotland. BMJ 332, 580–584.

2. Calixto, O.-J., and Anaya, J.-M. (2014). Socioeconomic status. The

relationship with health and autoimmune diseases. Autoimmun. Rev. 13,

641–654.

3. Marmot, M.G., Smith, G.D., Stansfeld, S., Patel, C., North, F., Head, J.,

White, I., Brunner, E., and Feeney, A. (1991). Health inequalities among

British civil servants: the Whitehall II study. Lancet 337, 1387–1393.

4. Wilkinson, R.G., and Marmot, M.G. (2003). Social Determinants of Health:

The Solid Facts (Copenhagen: World Health Organization).

5. Marioni, R.E., Davies, G., Hayward, C., Liewald, D., Kerr, S.M., Campbell,

A., Luciano,M., Smith, B.H., Padmanabhan, S., Hocking, L.J., et al. (2014).

Molecular genetic contributions to socioeconomic status and intelligence.

Intelligence 44, 26–32.

6. Polderman, T.J., Benyamin, B., de Leeuw, C.A., Sullivan, P.F., van

Bochoven, A., Visscher, P.M., and Posthuma, D. (2015). Meta-analysis

of the heritability of human traits based on fifty years of twin studies.

Nat. Genet. 47, 702–709.

7. Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011). GCTA:

a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88,

76–82.

8. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender,

D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., and Sham, P.C. (2007).

PLINK: a tool set for whole-genome association and population-based

linkage analyses. Am. J. Hum. Genet. 81, 559–575.

9. Melko, M., Douguet, D., Bensaid, M., Zongaro, S., Verheggen, C., Gecz,

J., and Bardoni, B. (2011). Functional characterization of the AFF (AF4/

FMR2) family of RNA-binding proteins: insights into the molecular pathol-

ogy of FRAXE intellectual disability. Hum. Mol. Genet. 20, 1873–1885.

10. Ong, E., Yeh, J.C., Ding, Y., Hindsgaul, O., and Fukuda, M. (1998).

Expression cloning of a human sulfotransferase that directs the synthesis

of the HNK-1 glycan on the neural cell adhesion molecule and glycolipids.

J. Biol. Chem. 273, 5190–5195.

11. Talkowski, M.E., Rosenfeld, J.A., Blumenthal, I., Pillalamarri, V., Chiang,

C., Heilbut, A., Ernst, C., Hanscom, C., Rossin, E., Lindgren, A.M., et al.

(2012). Sequencing chromosomal abnormalities reveals neurodevelop-

mental loci that confer risk across diagnostic boundaries. Cell 149,

525–537.

12. Hill, W.D., Davies, G., Liewald, D.C., McIntosh, A.M., and Deary, I.J.;

CHARGE Cognitive Working Group (2016). Age-dependent pleiotropy

between general cognitive function and major psychiatric disorders.

Biol. Psychiatry 80, 266–273.

13. Strenze, T. (2007). Intelligence and socioeconomic success: A meta-ana-

lytic review of longitudinal research. Intelligence 35, 401–426.

14. Okbay, A., Beauchamp, J.P., Fontana,M.A., Lee, J.J., Pers, T.H., Rietveld,

C.A., Turley, P., Chen, G.-B., Emilsson, V., Meddens, S.F.W., et al.;

LifeLines Cohort Study (2016). Genome-wide association study identifies

74 loci associated with educational attainment. Nature 533, 539–542.

15. Smith, B.H., Campbell, A., Linksted, P., Fitzpatrick, B., Jackson, C., Kerr,

S.M., Deary, I.J., Macintyre, D.J., Campbell, H., McGilchrist, M., et al.

(2013). Cohort Profile: Generation Scotland: Scottish Family Health
Study (GS:SFHS). The study, its participants and their potential for genetic

research on health and illness. Int. J. Epidemiol. 42, 689–700.

16. Smith, B.H., Campbell, H., Blackwood, D., Connell, J., Connor, M., Deary,

I.J., Dominiczak, A.F., Fitzpatrick, B., Ford, I., Jackson, C., et al. (2006).

Generation Scotland: the Scottish Family Health Study; a new resource

for researching genes and heritability. BMC Med. Genet. 7, 74.

17. Davies, G., Marioni, R.E., Liewald, D.C., Hill, W.D., Hagenaars, S.P.,

Harris, S.E., Ritchie, S.J., Luciano, M., Fawns-Ritchie, C., Lyall, D., et al.

(2016). Genome-wide association study of cognitive functions and

educational attainment in UK Biobank (N=112c151). Mol. Psychiatry 21,

758–767.

18. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015).

MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput.

Biol. 11, e1004219.

19. Jun, G., Ibrahim-Verbaas, C.A., Vronskaya, M., Lambert, J.C., Chung, J.,

Naj, A.C., Kunkle, B.W., Wang, L.S., Bis, J.C., Bellenguez, C., et al.; IGAP

Consortium (2016). A novel Alzheimer disease locus located near the gene

encoding tau protein. Mol. Psychiatry 21, 108–117.

20. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh,

P.-R., Anttila, V., Xu, H., Zang, C., Farh, K., et al.; ReproGen Consortium;

Schizophrenia Working Group of the Psychiatric Genomics Consortium;

RACI Consortium (2015). Partitioning heritability by functional annotation

using genome-wide association summary statistics. Nat. Genet. 47,

1228–1235.

21. Hagenaars, S.P., Harris, S.E., Davies, G., Hill, W.D., Liewald, D.C., Ritchie,

S.J., Marioni, R.E., Fawns-Ritchie, C., Cullen, B., Malik, R., et al.;

METASTROKE Consortium, International Consortium for Blood Pressure

GWAS; SpiroMeta Consortium; CHARGE Consortium Pulmonary

Group, CHARGE Consortium Aging and Longevity Group (2016). Shared

genetic aetiology between cognitive functions and physical and

mental health in UK Biobank (N=112c151) and 24 GWAS consortia. Mol.

Psychiatry. Published online January 26, 2016. http://dx.doi.org/10.

1038/mp.2015.225.

22. Penke, L., Denissen, J.J., and Miller, G.F. (2007). The evolutionary ge-

netics of personality. Eur. J. Pers. 21, 549–587.

23. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh,

P.-R., Duncan, L., Perry, J.R., Patterson, N., Robinson, E.B., et al.;

ReproGen Consortium; Psychiatric Genomics Consortium; Genetic

Consortium for Anorexia Nervosa of the Wellcome Trust Case Control

Consortium 3 (2015). An atlas of genetic correlations across human dis-

eases and traits. Nat. Genet. 47, 1236–1241.

24. Smith, G.D., Whitley, E., Dorling, D., and Gunnell, D. (2001). Area based

measures of social and economic circumstances: cause specific mortality

patterns depend on the choice of index. J. Epidemiol. Community Health

55, 149–150.

25. MacRae, K. (1994). Socioeconomic deprivation and health and the

ecological fallacy. BMJ 309, 1478–1479.

26. Adams, J., Ryan, V., and White, M. (2005). How accurate are Townsend

Deprivation Scores as predictors of self-reported health? A comparison

with individual level data. J. Public Health (Oxf.) 27, 101–106.

27. Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M., and Smoller, J.W.

(2013). Pleiotropy in complex traits: challenges and strategies. Nat. Rev.

Genet. 14, 483–495.

28. Gage, S.H., Davey Smith, G., Ware, J.J., Flint, J., andMunafò, M.R. (2016).
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Figure S1. Related to Figure 1. Q-Q plot of social deprivation (left panel) shows that the distribution of –log10 P-values follows that which would be expected under the null 

hypothesis. Q-Q plot of household income (right panel) shows that the distribution of –log10 P-values indicates more low P-values than would be expected under the null 

hypothesis.  

 



 

 

 

   

 

  

 

Figure S2. Related to Figure 1. Median full-time gross annual earnings by sex in the UK from 1999 to 2015.  

Employees employed for greater than one year and were working full timed defined as greater than 30 hours per 

week, or 25 for teaching professions. Dashed line indicates discontinuities in the estimates of the Annual Survey 

of Hours and Earnings.  

Figure taken from the Office for National Statistics 

(http://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annuals

urveyofhoursandearnings/2015provisionalresults#gender-pay-differences). 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Related to Figure 1. Manhattan and Q-Q plot of the reduced sample size of 88,183. The upper panel 

shows the Manhattan plot for household income using. The red line indicates genome wide significance (P < 5 × 

10−8). The black line indicates values that were suggestive of statistical significance (P < 1 × 10−5). The lower 

panel shows the  Q-Q plot  and shows that the distribution of –log10 P-values indicates more low P-values than 

would be expected under the null hypothesis.

Household Income 



 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Related to Figure 1. The panel on the left shows the distribution of scores from the Townsend scores in UK Biobank with those taken from the national census in 

2001 in England and Wales. The scores form each phenotype have been reversed so that a greater score indicates a greater SES. The similarity of these two distributions 

indicates that the UK Biobank data set is comparable to the rest of the UK. The panel on the right shows the distribution of the Income scores in UK Biobank. This indicates 

that most of the participants were in households where the income was between £18,000 to £31,999 and £31,000 to £51,999. 



 

 

 

Table S1. Related to Figure 1B. Genome-wide significant SNP-based association results for household income (P < 5 x 10-8). The results are ordered by significance of the 

association. The independent SNP signals, as determined by the LD Clumping analysis, are highlighted in red. The sample size was 96,900 for each SNP presented below. 

Functional annotation of the household income associated genome-wide significant SNPs. All information contained in this table was extracted from the GTEx database 

(http://www.broadinstitute.org/gtex/) and the Regulome DB database (http://regulome.stanford.edu/index). 

 

 

  

 

SNP 

number 

Chr Position Allele 1 Allele 2 P-value Beta MAF INFO cis-

eQTL 

Regulome 

DB Score 

Position 

weight 

matrix 

Transcription 

factor 

binding site 

Histone 

modifications 

DNase 

hyper 

sensitive 

sites 

FAIRE 

sites 

DMR 

rs187848990 2 101207261 T C 2.23 × 10−8 0.077 0.030 0.945 no 6 yes no yes no no no 

rs7252896 19 32820876 A T 3.11 × 10−8 0.030 0.247 0.924 no 6 yes no yes no no no 

rs8100891 19 32829513 G C 3.42 × 10−8 0.029 0.261 0.998 yes 5 yes yes yes no no no 

rs7255223 19 32824310 A C 4.27 × 10−8 0.028 0.263 0.995 yes 4 no yes yes yes no no 



 

Table S3. Related to Figure 3 and Figure 4. Genetic correlations between SES as measured by social deprivation and household income from UK Biobank and the 32 

health and anthropometric variables. The heritability Z-score and the mean χ2 indicate the level of power to detect association where a heritability Z-score of >4 and a mean χ2 

>1.02 being considered well powered [S47]. Tests that withstood FDR correction are shown in bold. FDR correction indicated statistical significance at P = 0.0153 for social 

deprivation and at P = 0.032 for household income. 

 Social Deprivation  Household Income 

Phenotypes 
Genetic 

correlation 

Standard 

error 
P-value 

Heritability 

Z-score 

Mean 

χ2 

 Genetic 

correlation 

Standard 

error 
P-value 

Heritability 

Z-score 

Mean 

χ2 

            

Cognitive abilities            

Childhood intelligence 0.500 0.118 2.30× 10−5 5.942 1.076  0.668 0.102 4.96 × 10−11 5.8616 1.076 

Years of Education 0.548 0.054 1. 80 × 10−24 20.687 1.372  0.903 0.040 4.14 × 10−115 20.687 1.372 

VNR Biobank 0.338 0.073 3.80 × 10−6 10.865 1.167  0.704 0.059 3.94 × 10−33 10.481 1.167 

            

Longevity            

Longevity 0.301 0.1242 0.0154 4.127 1.038  0.303 0.107 0.005 4.049 1.038 

            

Vascular and autoimmune 

disease      

 

     

Coronary artery disease −0.029 0.075 0.700 7.954 1.145  −0.132 0.061 0.032 7.890 1.145 

Systolic blood pressure −0.091 0.067 0.175 12.507 1.048  −0.071 0.056 0.204 12.172 1.048 

Diastolic blood pressure −0.175 0.065 0.007 11.519 1.051  −0.108 0.060 0.073 10.677 1.051 

Rheumatoid arthritis −0.065 0.073 0.377 3.691 1.064  −0.092 0.073 0.205 3.814 1.064 

Smoking yes/no −0.511 0.078 5.87 × 10−11 11.358 1.104  −0.321 0.062 2.11 × 10−7 11.358 1.104 

            

Metabolic disease/phenotypes            

Type 2 Diabetes −0.109 0.074 0.143 9.066 1.133  −0.002 0.069 0.972 9.001 1.133 

Obesity −0.268 0.049 3.23 × 10−8 17.370 1.124  −0.263 0.044 2.11 × 10−9 17.556 1.124 

Childhood obesity −0.234 0.072 0.001 9.261 1.033  −0.016 0.067 0.809 9.357 1.033 

HOMA B −0.072 0.091 0.430 6.605 1.053  −0.158 0.088 0.073 6.145 1.053 

HOMA IR −0.189 0.115 0.101 5.342 1.053  −0.297 0.103 0.004 5.252 1.053 



 

HbA1c −0.192 0.110 0.081 5.410 1.060  −0.208 0.076 0.006 5.291 1.060 

High density lipoprotein 

cholesterol 0.175 0.056 0.002 5.535 1.152 

 

0.207 0.058 3.48 × 10−4 5.546 1.152 

Low density lipoprotein 

cholesterol −0.179 0.074 0.015 3.717 1.140 

 

−0.231 0.072 0.001 3.585 1.140 

Triglycerides −0.187 0.053 4.30 × 10−4 5.931 1.153  −0.226 0.048 2.47 × 10−6 5.937 1.153 

Fasting insulin −0.150 0.111 0.175 5.814 1.054  −0.242 0.098 0.014 5.867 1.054 

            

Psychiatric disease            

ADHD −0.366 0.204 0.073 2.297 1.016  −0.209 0.147 0.156 2.420 1.016 

Alzheimer's 500kb −0.041 0.105 0.698 5.531 1.105  −0.222 0.083 0.007 5.365 1.105 

Alzheimer's −0.060 0.127 0.636 2.127 1.114  −0.273 0.115 0.018 1.917 1.114 

Autism 0.009 0.079 0.913 8.759 1.058  0.071 0.069 0.302 8.485 1.058 

Bipolar −0.039 0.067 0.558 10.591 1.186  0.148 0.065 0.024 10.405 1.186 

MDD −0.312 0.117 0.007 5.474 1.078  −0.326 0.101 0.001 5.520 1.078 

Schizophrenia −0.215 0.045 1.66 × 10−6 22.285 1.812  −0.104 0.039 0.009 22.202 1.812 

Neuroticism UK Biobank −0.159 0.054 0.003 9.121 1.239  −0.303 0.048 3.92 × 10−10 9.090 1.239 

Neuroticism −0.224 0.115 0.051 4.199 1.057  −0.433 0.103 2.85 × 10−5 4.334 1.057 

Meta−Neuroticism   9.06 × 10−4         

            

Anthropometric traits            

Height 0.124 0.034 3.00 × 10−4 17.958 2.973  0.208 0.033 1.51 × 10−10 17.766 2.973 

Head circumference 0.027 0.113 0.810 5.492 1.041  0.239 0.096 0.013 5.311 1.041 

BMI −0.261 0.040 7.83 × 10−11 18.081 1.262  −0.218 0.036 9.62 × 10−10 18.765 1.262 

Birthweight −0.021 0.094 0.826 6.109 1.062  0.131 0.080 0.102 5.735 1.062 

            

Neurological measures            

ICV 0.095 0.122 0.438 3.819 1.041  0.533 0.106 4.79 × 10−7 3.745 1.041 

Hippocampal volume 0.084 0.121 0.486 3.655 1.024  0.097 0.117 0.407 3.736 1.024 

Abbreviations: HOMA B, homeostatic model assessment beta-cells; HOMA IR, homeostatic model assessment insulin resistance; HbA1c, glycated 

haemoglobin; ADHD, attention deficit hyperactivity disorder; MDD, major depressive disorder; BMI, body mass index; ICV, intracranial volume.



 

 

 

 

 

Supplemental Experimental Procedures 

Study design and participants 

The principal data set used in this study of socioeconomic status (SES) was taken from UK Biobank 

(http://www.ukbiobank.ac.uk) [S48]. UK Biobank consists of 502,655 community-dwelling participants 

recruited between 2006 and 2010 in the United Kingdom (target age range 40-69 years). Participants gave 

detailed information about their background and lifestyles, underwent cognitive and physical tests, and agreed to 

have their health followed longitudinally. In addition, blood, urine, and saliva samples were provided for future 

analyses. In the current study, genome-wide genotyping data were available on 112,151 individuals (52.53% 

female) aged 40-73 years (mean age = 56.9 years, SD = 7.9) after the quality control process was implemented 

(described below). UK Biobank received ethical approval from the Research Ethics Committee (REC) (REC 

reference, 11/NW/0382). This study has been completed under UK Biobank application 10279. 

 

Phenotype measurement of SES  

Two measurements of SES were used in the current study. An area based measurement, The Townsend 

Social deprivation Index [S49], and self-reported household income. The Townsend score is a measure of the 

level of social deprivation for the area in which the individual lives. Each participant was assigned a Townsend 

score at the time of recruitment. Data from the last national census were used to derive the score for each 

participant based on their postcode. Four variables contribute to a participant’s Townsend score: the percentage 

of those aged 16 or over who are unemployed, and percentages of households who do not own a car, do not own 

their home, and which are overcrowded. The Townsend score is an indicator of the level of social deprivation in 

an area, where a greater score indicates a higher level of deprivation and a lower average SES.  

Self-reported household income was collected using a 5 point scale corresponding to the total 

household income before tax, 1 being less than £18,000, 2 being £18,000 - £29,999, 3 being £30,000 - £51,999, 

4 being £52,000 – £100,000, and 5 being greater than £100,000. Participants were removed from the analysis if 

they answered “do not know” (n= 4319), or “prefer not to answer” (n = 10553).  

In response to a reviewer’s request, we investigated the degree to which multiple individuals from the 

same household may have contributed to UK Biobank. It should be noted that the data pertaining to participant 

http://www.ukbiobank.ac.uk/


 

co-habitation is based on address and so individuals who reside in the same army barracks, care homes, 

hospitals etc, would count as living together. In addition these data do not take into account any changes of 

address since recruitment, nor the how long participants have been living in the same address. We removed one 

individual per household retaining the male if available in order to more closely pair the phenotype (household 

income) with the genotype more likely to contain causal elements, Figure S2. This resulted in a final sample size 

of 88,183 (47,797 males and 40,386 females). We then repeated the GWAS on this reduced data set along with 

the gene-based analysis, genetic correlations, and polygenic profile scores.  

 

Genotyping and Quality Control  

The 152,729 blood samples submitted to UK Biobank were genotyped using either the UKBileve array 

(N = 49,979) or the UK Biobank axiom array (N = 102,750). Affymetrix performed genotyping on 33 batches of 

~4,700 samples and also conducted the initial quality control procedure on the genotyping data. Details of the 

sample processing specific to the UK Biobank project are available at 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583, and the details of the Axiom array at 

http://media.affymetrix.com/support/downloads/manuals/axiom_2_assay_auto_workflow_user_guide.pdf.  

Prior to release of data from UK Biobank, a stringent quality control protocol was applied, and 

performed at the Wellcome Trust Centre for Human Genetics (WTCHG). Further details of the quality control 

procedure implemented by the WTCHG can be found at 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580.  

 Additional quality control was performed for this study. Individuals were removed based on non-

British ancestry (within those who self-identified as being British, principal component analysis was used to 

remove outliers, n=32,484), high missingness (n=0), relatedness (n=7,948), QC failure in UK Bileve (n=187), 

and gender mismatch (n=0). A total of 112,151 individuals remained for further analyses. 

 

Genome-wide association analyses (GWAS) in the UK Biobank sample 

 

The UK Biobank interim release was imputed to a reference set which combined the UK10K haplotype 

and 1000 Genomes Phase 3 reference panels. Full details can be found at 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020. The association results were filtered to exclude 

variants where minor allele frequency (<0.1%) or imputation quality (<0.1) leaving a total of ~17.3 million 

SNPs. 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583
http://media.affymetrix.com/support/downloads/manuals/axiom_2_assay_auto_workflow_user_guide.pdf
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020


 

 

Curation of summary data from GWAS on physical and psychiatric disease 

Genetic correlations and polygenic profile scores were derived using the SES variables in UK Biobank 

and summary statistics from 32 mostly health-related phenotypes which show phenotypic correlations with SES. 

Table S2 provides key references showing evidence for the phenotypic associations between measures of SES 

and health. Full details of the prior GWAS studies which provided summary statistics along with links to the 

data (where applicable) are provided in Table S2.  

 

Statistical Analysis   

Genome-wide SNP-based heritability  

The total phenotypic variance explained by common SNPs was estimated using GCTA-GREML [S50, 

S51]. All genotyped autosomal variants were included in the GCTA-GREML analyses for both the social 

deprivation and the household income variables from UK Biobank.  

 

SNP-based association analyses 

Association analyses for both the social deprivation phenotype and the household income phenotype 

were adjusted to control for the effects of age, sex, assessment centre, genotyping batch, genotyping array, and 

population stratification (using 10 principal components). A total of 112,005 participants had both a Townsend 

score and genotype data available and a total of 96,900 genotyped individuals provided data on household 

income. Association analyses were conducted using SNPTEST v2.5 [S52] (software available at 

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html#introduction). An additive model was used 

by specifying the ‘frequentist1’ option and genotype dosage scores were used to account for imputed genotype 

uncertainty.   

 

Clumping 

The degree to which genome-wide significant hits were tagging independent regions of the genome 

was examined by using linkage disequilibrium (LD) clumping in PLINK. Here, the European panel of the 1000 

genomes (phase 1, release 3) was used to model the degree of LD between markers. Index SNPs, defined as 

those with a P-value of < 5 x 10−8, SNPs within 500kb of the index SNP and in LD of r2 >0.1 and with a P-value 

of < 1x10−5, were used to define genomic regions.   

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html#introduction


 

 

Gene-based association analysis 

Gene-based association analyses were conducted using MAGMA [S53]. Summary data from the SNP-

based analyses were used to derive gene-based statistics. SNPs were allocated to genes based on their position 

according to the NCBI 37.3 build with gene boundaries being defined as the start and stop site. The European 

panel of the 1000 genomes (phase 1, release 3) was used to model linkage disequilibrium. This resulted in a total 

of 18,061 genes being included in the gene-based analysis for social deprivation and for household income. A 

Bonferroni correction was used to control for multiple testing, giving an alpha level for social deprivation and 

for household income of 2.768 x 10−6.  

 

Functional annotation and gene expression 

For the four genome-wide significant SNPs associated with household income (reported below), 

evidence of expression quantitative trait loci (eQTL) and functional annotation were explored using publicly-

available online resources. The Genotype-Tissue Expression Portal (GTEx) (http://www.gtexportal.org) was 

used to identify eQTLs associated with the SNPs. Regulome DB [S54]. (http://www.regulomedb.org/) was used 

to identify regulatory DNA elements in non-coding and intergenic regions of the genome in normal cell lines 

and tissues. 

 

LDS regression partitioned heritability method 

Partitioned heritability can be achieved using the LDS regression method [S55]. This analysis 

examines groups of SNPs that share the same functional properties and is used to derive a heritability metric for 

each grouping. The goal of these analyses is to determine if specific groups of SNPs make a greater contribution 

to the total heritability estimate than would be expected by their size. This is achieved by performing multiple 

regression of GWAS test statistics onto LD scores for partitioned regions of the genome. This enables the 

percentage of a trait’s total SNP-based heritability for specific regions of the genome to be derived. In order to 

show that a region of the genome is making a greater contribution to a phenotype than would be expected, an 

enrichment statistic is derived. Here enrichment is defined as the proportion of the heritability of the region, 

divided by the proportion of SNPs contained within it or Pr(h2)/Pr(SNPs). Should Pr(h2)/Pr(SNPs) = 1, no 

enrichment is found, as the proportion of SNPs a region contains is equal to the heritability it tags. In instances 

http://www.regulomedb.org/


 

where Pr(h2)/Pr(SNPs) >1 the region shows evidence that it is making a greater contribution towards the 

heritability estimate than its size alone would suggest.  

Enrichment of partitioned regions was performed separately for social deprivation and household 

income. Firstly a baseline model was derived using 52 overlapping, functional categories (described below). 

Secondly, a cell-specific model was constructed by adding each of the 10 cell-specific functional groups to the 

baseline model one at a time. 

Multiple testing was controlled for by applying an FDR correction to the to the baseline model using 52 

categories. For the cell-specific analysis the baseline model was first included and the level of enrichment for 

each cell specific category as derived. Here, 10 tests were controlled for using FDR. 

A total of 52 overlapping categories were included in the baseline model. These were coding regions, 

3’UTR, 5’UTR, promoter and intronic regions [S56, S57]. The gene sets of digital genomic footprint and 

transcription factor binding site were used [S57, S58]. The CTCF, promoter-flanking, transcribed, transcription 

start sites (TSS), strong enhancer and weak enhancer categories are included [S59]. DNase I hypersensitivity 

sites (DHS) were formed by utilising the data from ENCODE and from the Roadmap Epigenomes data [S60]. 

These were used to create two functional groups, one corresponding to all cell types and the second only those 

that were found within the foetal cell type. Cell type specific H3K4me1, H3K4me3, and H3K9ac data were 

taken from work performed on the Epigenomics Roadmap [S34]. An additional version of H3k27ac was also 

included [S61]. For each of these groups all cell types were used in the baseline model. Super enhancers are 

clusters of enhancers that show a high level of activity [S61]. This group correspond to a subset of the H3K27 

annotation. Also included is a group that has been shown to be conserved along the mammalian line [S62, S63]. 

Finally, a group of enhancers were included that show a bidirectional capped transcript. These were identified 

using cap analysis of the gene expression levels in the sample panel of FANTOM5 [S64]. In order to control for 

SNPs within these categories tagging variance coming from outside the groupings a 500 kb boundary was 

included around each category and a 100bp window around the ChIP-seq peaks (regions that were DNase 

hypersensitive or associated with the H3K4me1, H3K4me, or the H3K9ac groupings). 

The SNPs in the baseline histone mark groupings were formed by combining across tissue types. In 

order to determine if specific tissue types make greater contributions to SES we grouped each mark into cell 



 

types of central nervous system, kidney, liver, cardiovascular, connective/bone, gastrointestinal, 

immune/hematopoietic, adrenal/pancreas, skeletal muscle, and other. 

 

Genetic overlap with other traits  

Genetic correlations can be derived by exploiting the pattern of LD found across the genome. This is 

due to the level of association a SNP shows in a GWAS is a product of both its own contribution toward a 

phenotype as well as variants that it is in LD with [S65]. In addition, SNPs in regions of high LD provide a 

measure of a greater proportion of the genome than SNPs in regions of low LD.  

Assuming a polygenic architecture, SNPs in regions of high LD will show greater association statistics 

than SNPs found in regions of low LD. This means that the level of LD can be used to predict GWAS 

association test statistics [S47, S66]. By extending this logic to a bivariate design, the product of test statistics 

from each locus can be predicted using LD in the presence of a non-zero genetic correlation between pairs of 

traits. 

Here, we use LDS regression to derive genetic correlations between SES, as measured by the 

Townsend Social Deprivation Index [S49] and household income, and health traits using 32 large GWAS 

consortia data sets to quantify the level of overlap between the genetic architecture of health traits and SES in 

UK Biobank. This method has been used before to establish a shared genetic component between cognitive 

functions and health traits [S47, S67, S68]. With regard to the analyses using the summary data from the 

Alzheimer’s disease GWAS, due to the large effects in the APOE region, a 500kb region was removed from 

around each side of this region and the analysis was repeated. The Alzheimer’s data set without this region is 

referred to as Alzheimer’s 500kb in the Tables S3. Due to the high genetic correlation between the two measures 

of neuroticism used (rg = 1), the P values derived from the genetic correlations between these two variables with 

social deprivation were meta-analysed using Stouffer’s weighted Z [S69, S70]. This meta-analysed P value was 

then used to test whether statistical significance remained following FDR control for the tests performed. 

We use the data processing pipeline described by Bulik-Sullivan et al., (2015) [S47] to derive genetic 

correlations between pairs of traits. A MAF of > 0.01 was used as a cut off and only those SNPs found in the 

HapMap3 with 1000 Genomes EUR with a MAF > 0.05 were included. The integrated_phase1_v3.20101123 

was used for LDS regression. Next, indels and structural variants were removed, as were strand-ambiguous 

SNPs. Genome-wide significant SNPs were also removed, along with SNPs with very large effect sizes (χ2 > 80) 



 

as the presence of outliers can increase the standard error in a regression model. LD scores and weights for use 

with the GWAS of European ancestry were downloaded from the Broad Institute 

(http://www.broadinstitute.org/~bulik/eur_ldscores/). An unconstrained intercept was used in the regression 

model as it was not possible to quantify the degree of sample overlap between the traits used here.  

 

Polygenic prediction 

The .map and .ped files supplied by UK Biobank were recoded to the ACGT format (from the 1, 2 

numerical allele code) using a bespoke program developed by one of the authors (DCL). This program used the 

look-up substitution method where by a look up string hash table was created to hold the SNP-ID in addition to 

the allele identifiers for the SNP. A loop was conducted on the string position which created an additional string 

with the correct ACGT encode. This was then included to the six mandatory fields extracted from the initial 

string.   

Polygenic profile scores were created for 28 health-related phenotypes from published GWAS in all 

participants with genome-wide SNP data using PRSice [S71]. Strand-ambiguous SNPs and SNPs with a minor 

allele frequency < 0.01 were removed prior to creating the polygenic profile scores. SNPs in linkage equilibrium 

with an r2 < 0.25 within a 200bp window were obtained using clumping. The polygenic profile scores were then 

calculated by the sum of the alleles associated with the phenotype of interest across many genetic loci, weighted 

by their effect size estimated from the GWAS summary statistics. Five polygenic profile scores were created 

including variants according to the significance of their association with their phenotype, at P-value thresholds 

of 0.01, 0.05, 0.1, 0.5 and all SNPs.     

The associations between the 28 polygenic profile scores and SES were examined using regression 

models, adjusting for age at measurement, sex, genotyping batch, genotyping array, assessment centre, and the 

first ten genetic principal components to adjust for population stratification. All analyses were performed in R, 

and all obtained P-values were corrected for multiple testing using the False Discovery Rate (FDR) method 

[S72].  

A number of the data sets used in the analysis incorporating LDS regression were unsuitable for use 

with the polygenic profile score method and so the phenotypes of, HDL, LDL, and triglycerides had to be 

omitted from polygenic score analysis. In addition, the polygenic profile score method cannot be used in 

situations where there is sample overlap. Because of this, phenotypes within UK Biobank could not be 

compared with each other using this method. Sample overlap may have occurred between the GWAS consortia 

http://www.broadinstitute.org/~bulik/eur_ldscores/


 

used to establish genetic correlations between SES and health variables as participants from the UK were used. 

However, there is currently no method to quantify the degree to which this may have occurred, and therefore 

some of the polygenic profile scores results should be interpreted with caution. The genetic correlations are, 

however, robust to sample overlap [S47]. 

Replication  

The genome wide significant SNPs from the GWAS on household income in UK Biobank were tested 

for replication into another measure of SES, years of education using an independent sample of ~200,000 

individuals [S3]. Years of education was measured as the number of years of schooling completed. The data 

provided by The Social Science Genetic Association Consortium [S3] did not contain data from 23andMe or 

from UK Biobank, or any of the UK based cohorts. rs7252896 was not included in the years of education data 

and no SNPs were found with an r2 of greater than 0.5 that were not amongst the genome wide significant SNPs 

from UK Biobank. 

In order to further examine the degree to which the genetic architecture of social deprivation and 

household income as measured in the UK Biobank data set overlapped with that of years of education assembled 

by The Social Science Genetics Association Consortium we used Linkage Disequilibrium Score regression to 

derive genetic correlations. The same data processing pipeline was used as described above. 

Next, using PRSice [S71], we derived polygenic profile scores using the summary statistics from the 

social deprivation and household income GWASs in UK Biobank and used these scores to predict social 

deprivation and household income in Generation Scotland: the Scottish Family Health Study (GS:SFHS) data 

set [S73, S74, S75]. Social deprivation was measured in GS:SFHS using the Scottish Index of Multiple 

Deprivation 2009 (SIMD, http://www.scotland.gov.uk/topics/statistics/simd/). In brief this measure takes small 

areas of Scotland which are then ranked according to seven categories each indicating SES. These are income, 

employment, health, education, geographic access, crime, and housing. The scores derived using the SIMD are 

ranked the most deprived, 1, to areas that are the least deprived 6505. Household income in GS:SFHS was 

measured by multiple choice where the possible answers were 1 less than £10,000, 2 between £10,000 and 

£30,000, 3 between £30,000 and £50,000, 4 between £50,000 and £70,000, 5 more than £70,000, and 6 prefer 

not to answer [S74, S75]. Individuals who responded with 6 “prefer not to answer” were excluded from the 

analysis. Individuals were removed if they had contributed to both GS:SFHS and UK Biobank (N = 174). Linear 

regression models were used to examine the associations between the polygenic profiles for the UK Biobank 

http://www.scotland.gov.uk/topics/statistics/simd/


 

household income and Townsend and the target phenotypes in GS:SFHS, adjusted for age at measurement, sex 

and the first five genetic principal components for population stratification. All models were corrected for 

multiple testing across all polygenic profile scores at all five thresholds in each cohort using the False Discovery 

Rate method [S76].  

Using marker weights from the social deprivation GWAS in UK Biobank, highly significant 

associations at each P-value threshold with SIMD in GS:SFHS where found. The most predictive score being 

that which was derived using the all SNPs, (P-value threshold = 0.01, Beta = 0.033, SE = 0.008, r2 = 0.001, P = 

2.26 × 10−5,  P-value threshold = 0.05, Beta = 0.065, SE = 0.008, r2 = 0.005, P = 2.26 × 10−5, P-value threshold 

= 0.1, Beta = 0.072, SE = 0.008, r2 = 0.007, P = 2.26 × 10−5, P-value threshold = 0.5, Beta = 0.077, SE = 0.008, 

r2 = 0.008, P = 2.26 × 10−5, P-value threshold = 1, Beta = 0.079, SE = 0.008, r2 = 0.008, P = 2.26 × 10−5). 

Polygenic scores derived using household income in UK Biobank predicted a significant proportion of 

phenotypic variance for household income in GS: SFHS at each of the P-value thresholds used. The most 

predictive polygenic score was derived using a P-value threshold of 0.5 (P-value threshold = 0.01, Beta = 0.035, 

SE = 0.008, r2 = 0.001, P = 1.47 × 10−5,  P-value threshold = 0.05, Beta = 0.042, SE = 0.008, r2 = 0.002, P = 

1.82 × 10−7, P-value threshold = 0.1, Beta = 0.046, SE = 0.008, r2 = 0.002, P = 6.77 × 10−9, P-value threshold = 

0.5, Beta = 0.052, SE = 0.008, r2 = 0.003, P = 5.07 × 10−11, P-value threshold = 1, Beta = 0.051, SE = 0.008, r2 = 

0.003, P = 1.20 × 10−10). 

Function of genes identified by clumping and MAGMA 

AF4/FMR2 Family, Member 3 (AFF3) encodes a tissue-restricted nuclear transcriptional activator that 

is preferentially expressed in lymphoid tissue, previously associated with lymphoblastic leukaemia [S77], 

intellectual disability [S78], and rheumatoid arthritis [S79]. 

Carbohydrate Sulfotransferase 10 (CHST10) encodes a protein necessary for synthesising the neuronally 

expressed carbohydrate HNK1, which is involved in neurodevelopment and synaptic plasticity [S80]. 

LON Peptidase N-Terminal Domain And Ring Finger 2 (LONRF2) has been associate with coeliac disease 

[S81]. 

Neuromedin S (NMS) plays an important role in regulating circadian rhythms [S82]. 

Phosducin-Like 3 (PDCL3) is involved in the process of angiogenesis [S83].  



 

KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) is involved in chromatin modification and has previously 

been associated with intellectual disability [S84]. 

Macrophage Stimulating 1 (MST1) belongs to a family of kinases that are associated with a number of 

pathologies, including cancer, endothelial malformations and autoimmune disease [S85]. 

Expression levels of Ring Finger Protein 123 (RNF123) are associated with depression [S86]. 

Mutations in Microtubule-Associated Protein Tau (MAPT) have been associated with several neurodegenerative 

diseases, including Alzheimer’s disease [S87]. 

Acylaminoacyl-Peptide Hydrolase (APEH) has an antioxidant function and has been associated with various 

cancers [S88].  

Bassoon Presynaptic Cytomatrix Protein (BSN) encodes a scaffold protein expressed in the brain, is involved 

with neurotransmitter release and was previously associated with Crohn’s disease [S89] and more recently with 

self-rated health [S90]. 

Pleckstrin Homology Domain Containing, Family M (With RUN Domain) Member 1 (PLEKHM1) encodes a 

protein essential for bone resorption and variants within the gene are associated with osteopetrosis [S91]. 

Sarcoglycan, Delta (35kDa Dystrophin-Associated Glycoprotein) (SGCD) encodes a subcomplex of the 

dystrophin-glycoprotein complex. Mutations in this gene have been associated with limb-girdle muscular 

dystrophy type 2F [S92] and cardiomyopathy [S93]. 

Dystroglycan 1 (Dystrophin-Associated Glycoprotein 1) (DAG1) encodes a laminin binding component of the 

dystrophin-glycoprotein complex. Mutations in DAG1 are associated with a number of muscular dystrophies 

[S94]. 

Genetic variants in the Corticotropin Releasing Hormone Receptor 1 (CRHR1) have been associated with 

alcoholism [S95] and anxiety disorders [S96].  

Aminomethyltransferase (AMT) encodes one of four critical components of the glycine cleavage system. 

Mutations in this gene have been associated with glycine encephalopathy [S97]. 

Zinc Finger, DHHC-Type Containing 11 (ZDHHC11) is located in a genomic region associated with lung [S98] 

and bladder cancers [S99]. 



 

1-Aminocyclopropane-1-Carboxylate Synthase Homolog (Arabidopsis)(Non-Functional)-Like (ACCSL) 

KANSL1 MAPT, PLEKHM1 and CRHR1 are in a region on chromosome 17 recently associated with 

Alzheimer’s Disease [S100].  

 

Comparison between income in the full data set and income in the restricted sample of 88,183 

We first performed GCTA-GREML using the reduced sample size and found a very similar heritability 

estimate of 12% (SE = 0.7%). The results of the GWAS can be seen in Figure S3, shows the genome wide 

significant SNPs. The results of the GWAS on the reduced data set revealed 12 new genome-wide significant 

SNPs in 2 independent regions on chromosome 9. The SNP rs139128645, also on chromosome 9, did fall within 

an intron in the EHMT1 gene. This gene has previously been associated with Kleefstra syndrome [S101] which 

includes symptoms such as developmental delay as well as learning difficulties. Another result of the loss of 

sample size was that the significant SNPs found using the whole sample were no longer significant at the 

genome-wide threshold of 5 × 10−8. The results indicate that the beta weights and the standard errors of the 

genome-wide significant SNPs for both the reduced and full data sets were highly similar and that the 

fluctuation of sample size between these two comparisons is the most likely reason for the small difference in 

the P-values found between the full and reduced sample size, rather than any bias introduced from individuals 

residing together. This conclusion is also supported by the results of the gene based statistics, genetic 

correlations, partitioned heritability and the polygenic profile scores (as the genetic overlap between income and 

the health and anthropometric traits is very similar, along with the proportion of variance explained using the 

polygenic profile scores. These follow up results are available from the author. Additionally, as for the full 

sample, enrichment was found for SNPs in within 500bp of H3K9ac SNPs as well as those found in conserved 

regions, but not for SNPs within 500 bp of the DHS and conserved regions.   
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