Supplemental Materials

ADDITIONAL RESULTS

Comparisons of rare variant frequencies with humans

We determined the distribution of alternative allele frequencies (AAF) in the 133 rhesus macaques and compared this with the same statistic for human samples (Supplemental Figures S15A and B). For low-frequency SNPs (AAF<0.04) the proportion of SNVs is higher in the human population than in Indian rhesus, while for AAF>0.05, the proportion of SNVs is lower in human. This indicates that rare variants make up a larger proportion of total SNVs in the human genome than the Indian rhesus genome. This may be due to the recent explosion of human population size (Keinan and Clark 2012). However, the distribution of AAF in Chinese rhesus is quite different from Indian rhesus (especially in the low- and high-frequency range of SNPs, see Supplemental Figure S15B), suggesting that Indian and Chinese rhesus populations likely experienced quite different recent demographic histories.

<u>Residual variant intolerance score tests</u>

We also investigated gene-specific evidence of natural selection in the rhesus lineage, which can reveal aspects of evolutionary process or history, as well as identify candidate loci for disease-related research (Rhesus Macaque Genome Sequencing and Analysis Consortium *et al* 2007; Vitti et al. 2013). We calculated residual variation intolerance scores (RVIS), a statistic originally developed for prioritizing variants and genes according to their likelihoods of producing disease in humans (Petrovski et al. 2013). The RVIS scores for specific genes can be affected by either positive or negative selection. These analyses identified 22 genes with the smallest RVIS (P<0.001) as candidate genes for negative selection and 35 genes with large RVIS (P<0.001) as candidate genes for positive or balancing selection (see Supplemental Figure S16).

We also performed an additional check for a possible effect of mapping errors on the observed signals of positive selection. Cryptic (unrecognized) gene copy number differences among individuals may produce incorrect SNV calls, but will also produce characteristic patterns of inter-animal variation in read coverage for the genes showing copy number variation (CNV). If there is no copy number variation within our sample for a given gene, then average coverage in the region of that gene (x) will be proportional to average coverage across the whole genome (y). We can screen for CNV effects on RVIS using a regression of y onto x, and compare the

regression results for genes under putative positive selection with those showing potential evidence of purifying selection to determine whether any effect of CNV and mapping errors is more apparent for genes identified as under positive selection. We used the average coverage across the whole genome in each Indian rhesus sample, and then calculated the average coverage in each genic region for each Indian rhesus sample. Next, we calculated the regression of read depth across the genome (y) against read depth for genes for which RVIS analysis indicated positive selection (x). The results of the regressions are shown in Supplemental Table S9. We found that the adjusted R^2 values are very high for positive genes, and adjusted R^2 , minimum and maximum residuals are not significantly different in genes flagged as candidates for positive selection versus those scored as experiencing purifying selection (p>0.05 in *t*-test and Mann–Whitney *U* test). Therefore, we do not find evidence for any significant effect of CNV-induced mapping errors on the RVIS statistics for genes under positive selection compared to those genes under purifying selection. A further note: because positive selection may decrease the heterozygosity in affected genic regions, heterozygosity is not suitable for measuring the effects of mapping errors caused by gene CNV.

Our findings regarding RVIS are consistent with prior observations that immune response genes frequently undergo adaptive change in mammalian species. This RVIS approach in nonhuman primates may be useful in identifying genetic models of human disease because variants in a gene under strong negative selection in both humans and a nonhuman primate species will be more likely to produce deleterious phenotypic effects in parallel in the two species.

ADDITIONAL METHODS

RVIS analyses

The coding sequence co-ordinates of genes on rhesus autosomes were downloaded from ENSEMBL database (<u>ftp://ftp.ensembl.org/pub/release-</u>

<u>80/gtf/macaca_mulatta/Macaca_mulatta.MMUL_1.80.gtf.gz</u>). A total of 18,466 genes with variants in transcripts were obtained from our SNV dataset. The annotation of these variants in the rhesus genome was downloaded from the ENSEMBL database VEP annotation (<u>ftp://ftp.ensembl.org/pub/release-80/variation/VEP/</u>). Using these annotations, we classified the variants in coding regions into non-functional (synonymous) and functional (including missense, nonsense, and splicing) variants. These variants were mapped onto the baboon (*Papio anubis*)

2

reference genome sequence using liftOver tools, and we treated the reference allele in the baboon reference sequence as the ancestral allele for macaques. (If the ancestral allele was missing, the major allele was treated as the ancestral allele.) We next defined a threshold dividing "common" from "rare" variants with the derived allele frequency (DAF) > 0.01. In this analysis we determined the number of non-functional, common variant sites within the coding region of a gene. We then regressed the number of common functional variants on the number of non-functional coding-region variants in 17,787 IRh genes (CRh sample size is too small) and calculated the standardized residual as the RVIS.

In order to identify the genes not evolving neutrally in IRh population, we simulated 130M genes according to the IRh demographic history described in this paper to get the null distribution of RVIS under neutrality. The genotypes of 1.3 x 10⁶ (10⁶ 10kb-, 2 x 10⁵ 50kb- and 10⁵ 100kb- segment) genes in 123 samples were simulated by scrm software, as described under our demographic analyses. We counted the numbers of total SNVs and common (DAF>0.01) SNPs in each gene, calculated the RVIS for each gene and obtained the distribution of RVIS across 123 samples simulated as the null distribution of RVIS under neutral evolution of rhesus genes (see Supplemental Figure S17). As controls, we checked the effects of segmental length and the number of genes considered on the distribution of RVIS, and found that those factors do not affect the RVIS distribution significantly (P>0.05, Mann–Whitney U test). Finally we determined the P-value for each IRh gene under this null distribution of RVIS for theoretically neutral genes. Genes with RVIS significantly deviating from the mean of RVIS in the null distribution are candidates for genes affected by selection. Large positive RVIS values located in the positive tail of the null distribution indicate that the gene is highly tolerant to the accumulation of functional variants, which can be due to either positive or balancing selection. Large negative RVIS values indicate an intolerance to functional variants, which is likely due to strong negative selection.

Ion Torrent re-sequencing

To further assess the reliability of the final SNV call set, we performed another independent validation by sequencing. We used the Ion Torrent PGM platform (Thermo Fisher Scientific Inc.) to sequence custom designed amplicons covering rhesus macaque SNVs with a range of minor allele frequencies. The total number of SNVs re-tested this way was 611. We found that, based on the Ion Torrent data, the inferred false discovery rate (FDR) for doubletons (SNVs with minor allele observed twice in our data) was 5.8%, for tripletons (observed three times) was 5.6% and for common SNV genotypes (MAF 2-3% in our dataset) was 8.6%. These FDR rates

3

of course include both the false negative errors from the Ion Torrent data and the false positive errors in the Illumina data.

PSMC (p 4+25*2+4+6) estimation of 3 Chinese and 3 Indian rhesus

Supplemental Figure S1: Demographic histories inferred by PSMC with pattern "4+25*2+4+6". PSMC estimations with pattern "4+25*2+4+6" for 3 high-coverage Chinese rhesus (35086, 36013 and 37945) and 3 high-coverage Indian rhesus (34770, 36461 and 36470). Ne: effective population size.

Observed SFS (52 Indian rhesus) vs. simulated SFS 0.01 obs Stairway model PSMC model (p 6+29*2) PSMC model (p 4+25*2+4+6) 0.001 Frequency 0.0001 1e-05 10 1 MAC В Observed SFS (3 Chinese rhesus) vs. simulated SFS 0.01 obs Stairway model PSMC model (p 6+29*2) PSMC model (p 4+25*2+4+6) Frequency 0.001 0.0001 · 1 3 1 2 MAC

Α

Supplemental Figure S2: Comparison of observed SFS with simulated SFS. (A) Observed SFS was from 52 low-coverage Indian rhesus. Simulated SFS was obtained by simulating 1 Gb DNA sequence using scrm program assuming the Stairway plot model, the PSMC model with "6+29*2" pattern and the PSMC model with "4+25*2+4+6" pattern. The Stairway plot model was the inferred demographic history of 75 highcoverage Indian rhesus. The two PSMC model were obtained by averaging the inferred demographic histories of 3 high-coverage Indian rhesus (34770, 36461 and 36470). (**B**) Observed SFS was from 3 low-coverage Chinese rhesus. Simulated SFS was obtained by simulating 1 Gb DNA sequence using scrm program assuming the Stairway plot model, the PSMC model with "6+29*2" pattern and the PSMC model with "4+25*2+4+6" pattern. The Stairway plot model was the inferred demographic history of 6 highcoverage Indian rhesus. The two PSMC model was obtained by averaging the inferred demographic histories of 3 high-coverage Chinese rhesus (35086, 36013 and 37945). The blue line and the orange line in the plot mostly overlapped.

Figure S3A

Stairway plot estimation

Figure S3B

Figure S3C

Supplemental Figure S3: Stairway plot and PSMC estimations with simulated data assuming a recent population size recovery. A total of 200 simulated DNA sequence samples were simulated using the scrm software. For each simulation, 75 individuals were simulated each with 500 Mb DNA sequences. We assumed the Stairway plot estimation based on 75 high-coverage Indian rhesus is the true demographic model and the ratio of recombination rate and mutation rate is 0.4. Then Stairway plot and PSMC with pattern parameter "6+29*2" and "4+25*2+4+6" were used to infer demographic histories based on the simulated DNA sequences. Only the first individual (of the 75 individuals) were used for PSMC estimations while all 75 individuals were used for the Stairway plot and PSMC were plotted.

Supplemental Figure S4. The distribution of minor allele frequency for rhesus macaque polymorphisms in regions orthologous to the 4.2% of the human genome found to be conserved across 29 mammals (Lindblad-Toh et al. 2011). The distribution of MAF for polymorphisms in the conserved regions is shifted to the left compared with polymorphisms in the remainder of the rhesus macaque genome.

Supplemental Figure S5: rdnsv results for rhesus and humans. Blue bars indicate the distribution of rdnsv values for 133 rhesus macaques. The red bars indicate the equivalent distribution of rdnsv for 133 humans from the 1000 Genomes dataset, selected to match whole genome sequence coverage for the rhesus as closely as possible.

Supplemental Figure S6: Sequence coverage for each of the 133 rhesus macaque samples, ranked and plotted from lowest coverage to highest. Mean coverage across the full sample set is 26.7x.

Figure S7A

Figure S7B

13

Figure S7C

Supplemental Figure S7: Principal components plots of SNV genotypes across 152 rhesus macaques. PC1 clearly separates Chinese-origin animals from Indian-origin animals. PC2 separates one colony of Indian-origin rhesus macaques from a larger cluster of other Indian-origin animals. The scatter among the Indian-origin animals along PC1 shows that several likely have some degree of Chinese-origin ancestry.

Supplemental Figure S8. Ti/TV ratios (panel A) and the numbers of SNPs (panel B) observed in the autosomal SNV datasets across a range of variant ratio scores used in SNPTools SNV discovery analysis. The red point is the final cutoff (variant ratio score = 1.6) used for subsequent data processing (genotype likelihood estimation and imputation, etc.).

Supplemental Figure S9. Changes in Ti/Tv ratios with minor allele frequency (MAF) in rhesus datasets (133 samples) called by SNPTools, GATK toolkits, intersection of SNPTools and GATK called (Rhesus_final), and human dataset (1000 Genome data, phase 1, 133 samples randomly selected from 1092 samples).

Supplemental Figure S10. Venn diagram of intersection of SNV sites from autosomes of *Macaca mulatta* (n = 133 samples) discovered using SNPTools and GATK.

Supplemental Figure S11. Comparison of recombination rates on chimpanzee chromosome 19 estimated by software LDHat and the original results reported by Auton et al (2012). The blue line is the expectation of recombination rate being equal in both datasets.

Supplemental Figure S12. Pearson correlation coefficients at different scales between recombination rates/genetic distances estimated in 49 CEU vs 49 YRI (black) samples, 49 CEU samples vs Hapmap (blue), and 49 YRI samples vs Hapmap (orange). Hapmap genetic map data is downloaded from (The International HapMap Consortium 2007).

Supplemental Figure S13. Distribution of $4N_er$ on 439 non-inverted (panel A) and 95 inverted (panel B) orthologous autosomal syntenic regions estimated directly by software *LDHat* in both Indian rhesus and human (YRI) populations.

Supplemental Figure S14. Distribution of linkage disequilibrium (LD) correlation coefficient (r²) on 439 non-inverted (panel A) and 95 inverted (panel B) orthologous autosomal syntenic regions calculated manually in both Indian rhesus and human (YRI) populations.

Supplemental Figure S15A. Density distribution calculated as the proportion of all SNVs that have alternative allele frequency (AAF) within different frequency bins. This is for autosomal variants in rhesus (only 123 Indian-origin rhesus samples) and human (n=123 samples from 1000 Genomes data, phase 1).

Supplemental Figure S15B. Density distribution calculated as the proportion of all SNVs that have alternative allele frequency (AAF) within different frequency bins. This plot compared distributions for AAF in Chinese rhesus (sample size n=9), Indian rhesus (9 samples randomly sampled from 123 samples), chimpanzees (9 samples randomly sampled from 10 samples, downloaded from http://panmap.uchicago.edu) and human (1000 Genomes data, phase 1, 9 samples randomly sampled from 1092 samples).

Supplemental Figure S16. Results for RVIS analysis. The grey points represent genes detected under neutral evolution (P>0.001). The red points (n=35) are genes with large positive RVIS that deviates significantly from neutrality (P<0.001). Blue points (n=22) are genes with large negative RVIS deviating significantly from neutrality (P<0.001).

Supplemental Figure S17. The null distribution of RVIS for 1.3×10^6 Indian rhesus genes simulated under neutral evolution given the calculated demographics changes from this analysis. These genes include 10^6 10kb-, 2×10^5 50kb- and 10^5 100kb-segments.

Institution	Total sample size	Indian-origin	Chinese-origin
California NPRC	20	14	6
New England NPRC	14	14	0
Oregon NPRC	17	17	0
Southwest NPRC	6	6	0
Tulane NPRC	19	19	0
Wisconsin NPRC	33	33	0
Yerkes NPRC	7	7	0
Caribbean Primate Res. Center (Cayo Santiago)	14	14	0
Anhui University (China)	3	0	3
			(wild-caught)
Total	133	124	9

Supplemental Table S1: Sources for rhesus macaque DNA samples

NPRC: National Primate Research Center

Supplemental Table S2: Comparison of model fitness.

Demographic model	Log-Likelihood	AIC
Stairway plot model – Indian rhesus	-197249.5	394799.0
PSMC model (p 6+29*2) – Indian rhesus	-3041798.2	6083766.5
PSMC model (p 4+25*2+4+6) – Indian	5116327.1	10232812.2
rhesus		
Stairway plot model – Chinese rhesus	-31920.8	63865.6
PSMC model (p 6+29*2) – Chinese rhesus	-17929.6	36029.3
PSMC model (p 4+25*2+4+6) – Chinese	-19084.6	38327.2
rhesus		

Note: For each demographic model, 1 Gb DNA sequence was simulated with scrm program. Composite likelihood and Akaike information criterion of the observed site frequency spectrum (SFS) of 52 low-coverage Indian rhesus or 3 low-coverage Chinese rhesus was calculated using the SFS as the expected SFS. The Stairway plot model – Indian rhesus was the inferred demographic history of 75 high-coverage Indian rhesus. The PSMC model (p 6+29*2) – Indian rhesus and PSMC model (p 4+25*2+4+6) – Indian rhesus were obtained by averaging the inferred demographic histories of 3 high-coverage Indian rhesus. The Stairway plot model – Chinese rhesus was the inferred demographic history of 6 high-coverage Indian rhesus. The PSMC model (p 6+29*2) – Chinese rhesus and the PSMC model (p 4+25*2+4+6) – Chinese rhesus was obtained by averaging the inferred series of 3 high-coverage Indian the poser rhesus and the PSMC model (p 4+25*2+4+6) – Chinese rhesus was obtained by averaging the inferred series rhesus was obtained by averaging the inferred demographic histories of 3 high-coverage Chinese rhesus and the PSMC model (p 4+25*2+4+6) – Chinese rhesus was obtained by averaging the inferred demographic histories of 3 high-coverage Chinese rhesus.

Supplemental Table S3: Results from DFE-alpha analyses of rhesus SNVs

			Neutrally Evolving			Selectively Evolving							
			Percentag	ge of Mut	ations in	N _e s Range	alpha	Maximum Likelihood log		Po		Population Size	
Neutral Dataset	Epoch	Demographic Scenario	0-1	1-10	10-100	>100		Neutral	Selected	AIC	N1	N2	N3
Downstream	1	Constant population	26.96%	14.35%	21.55%	37.14%	-7.83%	-4,580,171.99	-488,516.80	977,039.60	100		
	2	Search for the best-fitting population size n2	36.37%	5.47%	6.30%	51.86%	-57.96%	-4,561,438.13	-484,297.23	968,604.47	100	191	
	3	Two population size changes	32.09%	8.88%	11.33%	47.69%	-34.98%	-4,546,359.33	-483,382.50	966,779.00	100	40	170
Intron	1	Constant population	22.10%	12.23%	18.83%	46.84%	12.53%	-59,096,053.59	-488,434.80	976,875.60	100		1
	2	Search for the best-fitting population size n2	28.94%	5.78%	6.94%	58.34%	-23.68%	-58,889,916.51	-484,673.02	969,356.03	100	174	
	3	Two population size changes	26.73%	7.41%	9.47%	56.39%	-11.65%	-58,681,661.52	-483,378.24	966,770.48	100	40	170
Synonymous	1	Constant population	15.80%	9.01%	14.13%	61.06%	38.72%	-592,787.58	-488,367.17	976,740.34	100		
	2	Search for the best-fitting population size n2	22.51%	2.75%	3.08%	71.67%	3.12%	-588,824.30	-483,947.19	967,904.38	100	210	
	3	Two population size changes	19.52%	5.22%	6.61%	68.65%	19.62%	-587,230.86	-483,352.60	966,719.20	100	40	170
Upstream	1	Constant population	26.91%	14.33%	21.52%	37.24%	-7.65%	-4,591,336.69	-488,515.70	977,037.40	100		
	2	Search for the best-fitting population size n2	36.30%	5.46%	6.29%	51.95%	-57.66%	-4,573,442.89	-484,297.17	968,604.33	100	191	
	3	Two population size changes	31.78%	9.12%	11.73%	47.37%	-33.49%	-4,558,290.61	-483,435.17	966,884.34	100	40	170

DFE-alpha results for nonsynonymous selected datasets compared to downstream (50kbp), intron, synonymous, and upstream (50kbp) neutral datasets. DFE-alpha was run using three demographic models: 1 epoch (constant population), 2 epoch (one population size change) and 3 epoch (two population changes). Calculated alpha values for each model were used to estimate the proportion of deleterious mutations with effects in four different ranges of fitness effects on a scale N_es. The Akaike information criterion (AIC) was calculated for maximum likelihoods for the selected data set.

Supplemental Table S4. List of human genes involved in eye or retinal diseases that were searched for putatively functional mutations in the rhesus macaque population survey.

ABCA4	CACNA1F	DFNB31	GRK1	KIF11	NPHP4	PHYH	RGS9	TIMP3	WFS1
ABHD12	CC2D2A	DHDDS	GRM6	KLHL7	NR2E3	PITPNM3	RGS9BP	TK2	ZNF408
ADAM9	CDH23	DMD	GUCA1B	LCA5	NRL	PLA2G5	RHO	TLR3	ZNF423
AHI1	CEP164	DTHD1	GUCY2D	LRAT	OAT	PROM1	RIMS1	TLR4	ZNF513
AIPL1	CEP290	ELOVL4	GUCY2F	LRIT3	OFD1	PRPF3	RLBP1	TLR6	
ALMS1	CERKL	EMC1	HARS	LRP1B	OPA1	PRPF31	ROM1	TMEM126A	
ARL2BP	CFB	ERCC6	HTRA1	LZTFL1	OPA3	PRPF6	RP1L1	TMEM216	
ARL6	CHM	EYS	IDH3B	MAK	OPN1LW	PRPF8	RPE65	TOPORS	
BBS10	CIB2	FAM161A	IFT140	MERTK	OPN1SW	PRPH2	RPGRIP1L	TREX1	
BBS12	CLRN1	FBLN5	IMPDH1	MFRP	PAX2	PVRL1	RS1	TRIM32	
BBS2	CNGA3	FLVCR1	IMPG1	MKKS	PCDH15	RAB28	SAG	TRPM1	
BBS4	CNGB1	FSCN2	IMPG2	MKS1	PDE6A	RAX2	SDCCAG8	TTC8	
BBS5	CNGB3	FZD4	INPP5E	MPV17	PDE6B	RB1	SEMA4A	TTPA	
BBS7	COL2A1	GNAT1	INVS	MTTP	PDE6C	RBP3	SLC24A1	TULP1	
BBS9	COL9A1	GNAT2	IQCB1	MYO7A	PDE6H	RD3	SNRNP200	USH2A	
C3	CRB1	GNPTG	ITM2B	NDP	PDZD7	RDH12	SPATA7	VCAN	
CA4	CRX	GPR125	KCNJ13	NEK2	PEX7	RDH5	TEAD1	VPS13B	
CABP4	CYP4V2	GPR179	KCNV2	NPHP1	PGK1	RGR	TIMM8A	WDR19	

Supplemental Table S5. List of rhesus macaque variants scored by HGMD or ClinVar as "disease causing" or "pathogenic." Analysis was performed using WGSA (Liu et al. 2015).

Please refer to Excel file Supplemental_table _S5.xlsx.

Supplemental Table S6. Sample names with NCBI SRA accession numbers, colony source of sample, ancestry, sex and sequencing read coverage.

NCBI SRA	Sample Name	Colony source of sample	Ancestry	Sex	Sequence
SAMN03264739	MMUL CH-36390	California National Primate Research Center	Chinese	F	11.5
SAMN03264740	MMUL.CH-36394	California National Primate Research Center	Chinese	F	8.6
SAMN03264732	MMUL.IN-36332	California National Primate Research Center	Indian	M	9.7
SAMN03264736	MMUL.IN-36371	California National Primate Research Center	Indian	F	10.7
SAMN03264738	MMUL.CH-36389	California National Primate Research Center	Chinese	M	9.4
SAMN03264734	MMUL.IN-36357	California National Primate Research Center	Indian	F	10.3
SAMN03264735	MMUL.IN-36359	California National Primate Research Center	Indian	F	9.8
SAMN03264737	MMUL.IN-36374	California National Primate Research Center	Indian	F	9.9
SAMN03264733	MMUL.IN-36355	California National Primate Research Center	Indian	F	10.8
SAMN03264762	MMUL.IN-36460	Caribbean Primate Research Center	Indian	F	9.2
SAMN03264763	MMUL.IN-36467	Caribbean Primate Research Center	Indian	F	8.4
SAMN03264767	MMUL.IN-36477	Caribbean Primate Research Center	Indian	F	9.0
SAMN03264768	MMUL.IN-36476	Caribbean Primate Research Center	Indian	F	8.3
SAMN03264773	MMUL.IN-36475	Caribbean Primate Research Center	Indian	М	11.7
SAMN03264775	MMUL.IN-36474	Caribbean Primate Research Center	Indian	М	8.7
SAMN03264779	MMUL.IN-36466	Caribbean Primate Research Center	Indian	F	7.9
SAMN03264676	MMUL.IN-35250	New England Primate Research Center	Indian	F	7.7
SAMN03264677	MMUL.IN-35252	New England Primate Research Center	Indian	F	11.0
SAMN03264678	MMUL.IN-35253	New England Primate Research Center	Indian	F	7.9
SAMN03264679	MMUL.IN-35254	New England Primate Research Center	Indian	М	7.0
SAMN03264681	MMUL.IN-35256	New England Primate Research Center	Indian	F	10.3
SAMN03264683	MMUL.IN-35259	New England Primate Research Center	Indian	F	10.3
SAMN03264695	MMUL.IN-35717	Oregon National Primate Research Center	Indian	F	9.6
SAMN03264696	MMUL.IN-35718	Oregon National Primate Research Center	Indian	F	11.3
SAMN03264697	MMUL.IN-35722	Oregon National Primate Research Center	Indian	F	11.6
SAMN03264699	MMUL.IN-35724	Oregon National Primate Research Center	Indian	F	9.4
SAMN03264700	MMUL.IN-35728	Oregon National Primate Research Center	Indian	F	8.5
SAMN03264702	MMUL.IN-35730	Oregon National Primate Research Center	Indian	F	11.4
SAMN03264703	MMUL.IN-35732	Oregon National Primate Research Center	Indian	F	8.4
SAMN03264725	MMUL.IN-35969	Southwest National Primate Research Center	Indian	F	10.2
SAMN03264726	MMUL.IN-35972	Southwest National Primate Research Center	Indian	М	7.3
SAMN03264727	MMUL.IN-35975	Southwest National Primate Research Center	Indian	F	8.4
SAMN03264716	MMUL.IN-35895	Tulane National Primate Research Center	Indian	F	10.6
SAMN03264718	MMUL.IN-35907	Tulane National Primate Research Center	Indian	М	8.6
SAMN03264719	MMUL.IN-35916	Tulane National Primate Research Center	Indian	F	10.9
SAMN03264721	MMUL.IN-35921	Tulane National Primate Research Center	Indian	F	10.0
SAMN03264722	MMUL.IN-35923	Tulane National Primate Research Center	Indian	F	7.2
SAMN03264724	MMUL.IN-35957	Tulane National Primate Research Center	Indian	F	9.7
SAMN03264715	MMUL.IN-35883	Tulane National Primate Research Center	Indian	М	8.0
SAMN03264717	MMUL.IN-35902	Tulane National Primate Research Center	Indian	М	7.7
SAMN03264720	MMUL.IN-35919	Tulane National Primate Research Center	Indian	F	7.5
SAMN03264605	MMUL.IN-28499	Wisconsin National Primate Research Center	Indian	М	11.3
SAMN03264606	MMUL.IN-28500	Wisconsin National Primate Research Center	Indian	F	9.5

SAMN02264607		Wisconsin National Primate Research Contor	Indian	м	10.5
SAMN03264607	MMUL IN-28518	Wisconsin National Primate Research Center	Indian	F	10.3
SAMN03264609	MMUL IN-28535	Wisconsin National Primate Research Center	Indian	M	7.9
SAMN03264610	MMUL.IN-28555	Wisconsin National Primate Research Center	Indian	M	7.6
SAMN03264618	MMUL IN-30423	Wisconsin National Primate Research Center	Indian	F	9.6
SAMN03264619	MMUL IN-30424	Wisconsin National Primate Research Center	Indian	M	10.6
SAMN03264685	MMUL IN-35490	Yerkes National Primate Research Center	Indian	F	11.4
SAMN03264689	MMUL.IN-35496	Yerkes National Primate Research Center	Indian	F	11.5
SAMN03264694	MMUL.IN-35502	Yerkes National Primate Research Center	Indian	F	8.9
SAMN03264597	MMUL.IN-18277	Yerkes National Primate Research Center	Indian	F	35.8
SAMN03264598	MMUL.IN-19466	Yerkes National Primate Research Center	Indian	М	36.2
SAMN03264600	MMUL.IN-24898	Wisconsin National Primate Research Center	Indian	F	39.4
SAMN03264613	MMUL.IN-30119	Wisconsin National Primate Research Center	Indian	F	35.9
SAMN03264614	MMUL.IN-30136	Wisconsin National Primate Research Center	Indian	М	29.9
SAMN03264616	MMUL.IN-30158	Wisconsin National Primate Research Center	Indian	М	42.1
SAMN03264620	MMUL.IN-31505	Wisconsin National Primate Research Center	Indian	F	36.5
SAMN03264621	MMUL.IN-32510	Wisconsin National Primate Research Center	Indian	F	25.6
SAMN03264622	MMUL.IN-32538	Wisconsin National Primate Research Center	Indian	М	26.9
SAMN03264623	MMUL.IN-32754	Wisconsin National Primate Research Center	Indian	F	27.7
SAMN03264624	MMUL.IN-33674	Wisconsin National Primate Research Center	Indian	М	32.1
SAMN03264625	MMUL.IN-33707	Wisconsin National Primate Research Center	Indian	М	31.0
SAMN03264627	MMUL.IN-34597	New England Primate Research Center	Indian	F	36.5
SAMN03264629	MMUL.IN-34600	New England Primate Research Center	Indian	М	32.1
SAMN03264630	MMUL.IN-34602	New England Primate Research Center	Indian	M	35.0
SAMN03264635	MMUL.IN-34762	Yerkes National Primate Research Center	Indian	F	38.2
SAMN03264639	MMUL.IN-34770	Yerkes National Primate Research Center	Indian	F	37.3
SAMN03264641	MMUL.IN-35044	Oregon National Primate Research Center	Indian	М	36.2
SAMN03264642	MMUL.IN-35045	Oregon National Primate Research Center	Indian	М	60.7
SAMN03264643	MMUL.IN-35046	Oregon National Primate Research Center	Indian	М	34.2
SAMN03264645	MMUL.IN-35048	Oregon National Primate Research Center	Indian	М	40.0
SAMN03264646	MMUL.IN-35049	Oregon National Primate Research Center	Indian	М	42.7
SAMN03264647	MMUL.IN-35051	Oregon National Primate Research Center	Indian	F	35.1
SAMN03264649	MMUL.IN-35055	Oregon National Primate Research Center	Indian	F	32.6
SAMN03264650	MMUL.IN-35059	Oregon National Primate Research Center	Indian	М	37.2
SAMN03264651	MMUL.IN-35060	Oregon National Primate Research Center	Indian	М	41.2
SAMN03264652	MMUL.IN-35061	Oregon National Primate Research Center	Indian	М	40.8
SAMN03264653	MMUL.CH-35082	California National Primate Research Center	Chinese	F	45.7
SAMN03264657	MMUL.CH-35086	California National Primate Research Center	Chinese	F	32.0
SAMN03264658	MMUL.IN-35087	California National Primate Research Center	Indian	F	30.3
SAMN03264659	MMUL.IN-35088	California National Primate Research Center	Indian	М	32.5
SAMN03264660	MMUL.IN-35089	California National Primate Research Center	Indian	F	33.7
SAMN03264661	MMUL.IN-35090	California National Primate Research Center	Indian	М	31.8
SAMN03264662	MMUL.IN-35091	California National Primate Research Center	Indian	F	57.4
SAMN03264666	MMUL.IN-35095	California National Primate Research Center	Indian	М	36.1
SAMN03264667	MMUL.IN-35096	California National Primate Research Center	Indian	F	35.8
SAMN03264668	MMUL.IN-35144	New England Primate Research Center	Indian	Μ	32.0
SAMN03264670	MMUL.IN-35150	New England Primate Research Center	Indian	М	33.8
SAMN03264672	MMUL.IN-35154	New England Primate Research Center	Indian	Μ	33.5
SAMN03264673	MMUL.IN-35160	New England Primate Research Center	Indian	Μ	36.1

		New England Driverte Dessenth Contan	Lin all and		00 F
SAMN03264674	MMUL.IN-35162	New England Primate Research Center	Indian		32.5
SAIVINU3204705	MMUL IN 25965	Tulane National Primate Research Center	Indian		32.7
SAMINU3204700	IVIIVIUL.IIN-33003		Indian		41.0
SAMN03264707	MMUL.IN-35866	I ulane National Primate Research Center	Indian	F	41.0
SAMN03264708	MMUL.IN-35868	Tulane National Primate Research Center	Indian	F	34.7
SAMN03264709	MMUL.IN-35871	Tulane National Primate Research Center	Indian	М	39.1
SAMN03264710	MMUL.IN-35872	Tulane National Primate Research Center	Indian	F	39.2
SAMN03264711	MMUL.IN-35873	Tulane National Primate Research Center	Indian	М	42.7
SAMN03264712	MMUL.IN-35874	Tulane National Primate Research Center	Indian	М	37.8
SAMN03264713	MMUL.IN-35875	Tulane National Primate Research Center	Indian	F	42.9
SAMN03264714	MMUL.IN-35876	Tulane National Primate Research Center	Indian	М	42.7
SAMN03264728	MMUL.IN-35976	Southwest National Primate Research Center	Indian	F	41.1
SAMN03264729	MMUL.IN-35990	Southwest National Primate Research Center	Indian	М	38.2
SAMN03264730	MMUL.CH-36013	California National Primate Research Center	Chinese	F	41.0
SAMN03264761	MMUL.IN-39345	California National Primate Research Center	Indian	F	42.0
SAMN03083651	MMUL.IN-36468	Caribbean Primate Research Center	Indian	F	40.4
SAMN03264769	MMUL.IN-36461	Caribbean Primate Research Center	Indian	М	41.1
SAMN03264770	MMUL.IN-36462	Caribbean Primate Research Center	Indian	М	38.2
SAMN03264771	MMUL.IN-36463	Caribbean Primate Research Center	Indian	М	39.1
SAMN03264774	MMUL.IN-36473	Caribbean Primate Research Center	Indian	М	42.3
SAMN03264780	MMUL.IN-36471	Caribbean Primate Research Center	Indian	F	40.9
SAMN03264781	MMUL.IN-36470	Caribbean Primate Research Center	Indian	F	40.3
SAMN03264764	MMUL.IN-11414-01b	Wisconsin National Primate Research Center	Indian	F	34.5
SAMN03264765	MMUL.IN-11433-07b	Wisconsin National Primate Research Center	Indian	F	53.3
SAMN03264766	MMUL.IN-11433-08b	Wisconsin National Primate Research Center	Indian	М	42.0
SAMN03264741	MMUL.IN-37730	Wisconsin National Primate Research Center	Indian	М	42.7
SAMN03264743	MMUL.IN-37732	Wisconsin National Primate Research Center	Indian	F	44.0
SAMN03264744	MMUL.IN-37733	Wisconsin National Primate Research Center	Indian	F	42.5
SAMN03264745	MMUL.IN-37734	Wisconsin National Primate Research Center	Indian	М	38.4
SAMN03264746	MMUL.IN-37735	Wisconsin National Primate Research Center	Indian	М	41.3
SAMN03264749	MMUL.IN-37738	Wisconsin National Primate Research Center	Indian	F	38.8
SAMN03264750	MMUL.IN-37739	Wisconsin National Primate Research Center	Indian	М	40.7
SAMN03264751	MMUL.IN-37740	Wisconsin National Primate Research Center	Indian	М	41.6
SAMN03264752	MMUL.IN-37741	Wisconsin National Primate Research Center	Indian	М	38.4
SAMN03264753	MMUL.IN-37742	Wisconsin National Primate Research Center	Indian	М	40.4
SAMN03264756	MMUL.IN-37745	Wisconsin National Primate Research Center	Indian	F	39.6
SAMN03264757	MMUL.IN-37746	Wisconsin National Primate Research Center	Indian	F	38.6
SAMN03264758	MMUL.CH-37854	Wild Caught	Chinese	М	34.7
SAMN03264759	MMUL.CH-37945	Wild Caught	Chinese	М	23.2
SAMN03264760	MMUL.CH-37950	Wild Caught	Chinese	F	29.6
SAMN02981228	MMUL.IN-17573	Southwest National Primate Research Center	Indian	F	41.5

Supplemental Table S7. The ethnicity component of 123 human samples (compared to 123 Indian rhesus samples) and 9 samples (compared to 9 Chinese rhesus samples) randomly selected out of 1092 samples of 1000 Genome phase 1 data.

Populations	Sample# in 123 samples	Sample# in 9 samples
ASW	6	1
CEU	9	
CHB	12	
CHS	11	1
CLM	3	
FIN	12	
GBR	11	1
IBS	2	
JPT	8	2
MXL	5	
LWK	13	1
PUR	4	
TSI	14	2
YRI	13	1
Total	123	9

Physical position (BP)	Auton et al's gold standard	Recombination rate estimated
32283	5.23453	5.1763
160265	5.25162	5.2019
171883	5.33109	5.26139
171894	5.39152	5.35215
171900	5.46739	5.42645
173758	5.46739	5.43385
175470	5.47135	5.44415
176680	5.47817	5.45525
180599	5.47817	5.44439
183015	5.47817	5.44247
183466	5.47817	5.44535
189555	5.47817	5.45053
189559	5.47866	5.44922
190282	5.47866	5.45372
193970	3.33944	3.95515
194197	0.054	0.05479
196522	0.05422	0.0522
197075	0.05413	0.05204
197783	0.05401	0.05221
198230	0.05566	0.05236
198580	0.1431	0.09694
198823	4.80846	4.95894
199762	4.81867	4.96966
199816	4.82148	4.97129
199821	4.82148	4.97618
200214	4.84606	4.98573

Supplemental Table S8. Comparison of selected recombination rates on chimpanzee chromosome 19 estimated by software LDHat and the original results reported by Auton et al (Auton et al. 2012).

Supplemental Table S9. Regression analysis of read depth coverage for genes scored as under positive or negative selection using RVIS

Predicted selection	Gene	Adjusted R ²	F-statistic P-value	Minimum residual	Maximum residual
	TAOK2	0.8193	< 2.2x10^- 16	-2.1803	2.0930
	DYNC1H1	0.8324	< 2.2x10^- 16	-2.1468	2.1012
	NOTCH1	0.6992	< 2.2x10^- 16	-3.1941	2.5455
	DNAH8	0.9557	< 2.2x10^- 16	-1.4054	5.8598
	ABCA2	0.6458	< 2.2x10^- 16	-3.8048	3.1876
	MYH11	0.8135	< 2.2x10^- 16	-2.1787	2.4975
	RBP3	0.5778	< 2.2x10^- 16	-2.1569	2.7022
	FASN	0.5829	< 2.2x10^- 16	-3.8858	2.5988
Negative selection	MYOM2	0.7762	< 2.2x10^- 16	-2.1843	3.4487
	DNAH1	0.5508	< 2.2x10^- 16	-1.8457	2.3864
	CSMD1	0.942	< 2.2x10^- 16	-1.5204	6.3514
	FLNB	0.8807	< 2.2x10^- 16	-2.0161	2.8973
	MYH2	0.9227	< 2.2x10^- 16	-1.6807	6.6676
	TSHZ1	0.8435	< 2.2x10^- 16	-1.8824	5.6681
	SDK1	0.8709	< 2.2x10^- 16	-3.1334	3.9598
	RYR3	0.9149	< 2.2x10^- 16	-1.6341	4.5853
	MYH3	0.7918	< 2.2x10^- 16	-1.9988	2.6697
	ALPK2	0.8952	< 2.2x10^- 16	-1.5189	3.8238
	TTN	0.8084	< 2.2x10^- 16	-1.2909	4.7808
	RP1	0.9292	< 2.2x10^- 16	-4.4750	4.8282
	LILRA2	0.8232	< 2.2x10^- 16	-1.8336	3.2859
Positive selection	DST	0.9092	< 2.2x10^- 16	-1.8448	4.6135
	ASPM	0.8924	< 2.2x10^- 16	-3.4194	4.5248
	BMS1	0.9577	< 2.2x10^- 16	-1.8680	5.9789
	SLFN13	0.952	< 2.2x10^-	-3.1924	5.9652
	LILRA3	0.7591	< 2.2x10^-	-2.3094	2.5293

		16		
BRCA2	0.9529	< 2.2x10^- 16	-2.4408	4.8699
FLG2	0.3403	8.658x10^- 13	-1.3690	2.3387
RYR2	0.9211	< 2.2x10^- 16	-5.6916	4.3074
MAMU-DQB	0.775	< 2.2x10^- 16	-3.3104	2.5532

* Average coverages on each Indian rhesus sample are calculated in whole genome and genic (listed in the table) regions. Regression is carried out between average coverages in whole genome and each genic region. "R²" is adjusted regression coefficient. "Residual" is the normalized difference between the observed data of y and the fitted values \hat{y} . And the distribution of residuals is nearly standard normal.

References

- Auton A, Fledel-Alon A, Pfeifer S, Venn O, Segurel L, Street T, Leffler EM, Bowden R, Aneas I, Broxholme J et al. 2012. A fine-scale chimpanzee genetic map from population sequencing. *Science* **336**(6078): 193-198.
- Keinan A, Clark AG. 2012. Recent explosive human population growth has resulted in an excess of rare genetic variants. *Science* **336**(6082): 740-743.
- Liu X, White S, Peng B, Johnson AD, Brody JA, Li AH, Huang Z, Carroll A, Wei P, Gibbs R et al. 2015. WGSA: an annotation pipeline for human genome sequencing studies. *Journal of medical genetics*.
- Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. 2013. Genic intolerance to functional variation and the interpretation of personal genomes. *PLoS Genet* **9**(8): e1003709.
- Rhesus Macaque Genome Sequencing and Analysis Consortium *et al.* 2007. Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. *Science* **316**(5822): 222-234.
- The International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. *Nature* **449**(7164): 851-861.
- Vitti JJ, Grossman SR, Sabeti PC. 2013. Detecting natural selection in genomic data. *Annual review of genetics* **47**: 97-120.