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Appendix A: Dynamical maximum entropy model

Call ~si(t) the d-dimensional flight orientation of bird
i as a function of time, of unit norm ‖~s‖ = 1. We look
for a probability disribution over whole flock trajectories,
(~s1(t), . . . , ~sN (t)), that has maximum entropy, but with
the constraints that the correlation functions:

〈~si(t) · ~sj(t)〉 (A1)

and 〈
d~si(t)

dt
· ~sj(t)

〉
(A2)

agree with the data. After time discretization, these
constraints are equivalent to imposing the values of
〈~si(t)·~sj(t)〉 and 〈~si(t+dt)·~sj(t)〉, with dt an infinitesimal
increment. Using the technique of Lagrange multipliers,
one can show that the distribution over trajectories then
takes the form [1, 2]:

P ({~si(t)}) =
1

Z
exp

∑
ij,t

J
(1)
ij;t~si(t) · ~sj(t)

+
∑
ij,t

J
(2)
ij;t~si(t+ dt) · ~sj(t)

∏
i,t

δ(‖~si(t)‖ − 1)

(A3)

where sums and products over t run over a discrete set of
times separated by dt, and where δ(·) denotes the Dirac-
delta function.

In [3], it was shown that, in the spin-wave approxima-
tion, the stochastic process described by this probability
distribution is equivalent to a random walk:

~si(t) =

∑
jMij;t~sj(t) + ~ηi(t)

‖
∑
jMij;t~sj(t) + ~ηi(t)‖

, (A4)

with ηi(t) is a Gaussian variable of zero mean and covari-
ance 〈ηi(t) · ηj(t′)〉 = d(A−1

t )ijδt,t′ . The matrices Mij;t

and Aij;t can be expressed in terms of the matrices J
(1)
ij;t

and J
(2)
ij;t. In order to take the limit dt→ 0, the matrices

need reparametrizing as:

Mij;t = δij + dt Jij;t (A5)

(A−1
t )ij = dtXij;t. (A6)

Then the random walk reduces to the Langevin equation:

d~si
dt

= −~si ×

~si ×
∑

j

Jij(t)~sj + ~ξi

 (A7)

where Jij(t) denotes the influence of bird j on bird i’s

orientation, and ~ξ(t) is a Gaussian random d-dimensional

noise with 〈~ξi(t)~ξj(t′)〉 = dXij(t)δ(t − t′). To simplify,
we assume that Xij(t) = 2Tδij ; T quantifies the noise in
alignment, and can be mapped onto a temperature, as
we’ll see later. In the following, for ease of notation we
drop the dependency of Jij on t.

The triple cross-product is easier to understand if we
note that, for any vector ~a, this cross-product reduces to

−~s× (~s× ~a) = ~a− (~s · ~a)~s ≡ ~a⊥, (A8)

which is just the projection of ~a onto the hyperplane or-
thogonal to ~s. Since ~si lives on the unit sphere, its vari-
ations must be perpendicular to itself. The triple cross-
product just implements this projection by subtracting
the parallel part. This projection ensures the conserva-
tion of the norm:

d‖~si‖2

dt
= 2~si ·

d~si
dt

= 0. (A9)

The norm of ~si stays constant and equal to one.
We rewrite Jij = Jnij , where J quantifies the aligning

strength, and nij how j is taken into account by i (nij
does not have to be an integer). J has the dimension
of an inverse time, nij is dimensionless. Since anything
inside the parentheses of Eq. A7 that is parallel to ~si is
discarded, we can rewrite it as:

d~si
dt

= J~si ×

~si ×
∑

j

Λij~sj

+ ~ξi⊥ (A10)

where we have denoted Λij =
∑
k nikδij−nij , and where

now 〈~ξi⊥(t)~ξj⊥(t′)〉 = 2(d − 1)Tδijδ(t − t′). The (d − 1)
factor replaces d because of the projection of the noise
term onto the hyperplane orthogonal to ~si. The diagonal
term in Λij was chosen so as to balance each row of the
matrix (

∑
j Λij = 0).
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Event ID N T (s) P v0 (m/s) r0 (m)

20110208 ACQ3 179 5.5 0.984 8.7 0.85

20110211 ACQ1 595 4.5 0.971 8.5 0.95

20110217 ACQ2 407 2.1 0.986 11.0 0.70

20111124 ACQ1 125 1.8 0.993 11.1 0.66

20111125 ACQ1 50 5.6 0.987 12.4 1.21

20111125 ACQ2 530 4.4 0.957 9.2 0.85

20111201 ACQ3 1 137 2.9 0.987 10.1 0.74

20111201 ACQ3 4 489 2.3 0.9763 10.5 0.74

20111214 ACQ4 1 157 2.9 0.993 11.4 0.74

20111214 ACQ4 2 162 4.1 0.973 11.6 1.08

20111215 ACQ1 401 5.7 0.987 11.0 0.82

20111220 ACQ2 200 1.7 0.984 16.2 0.62

20111222 ACQ1 59 3.5 0.984 11.7 1.24

20120209 ACQ1 412 3.5 0.997 29.2 0.80

TABLE S1. Summary of the data used in the analysis. N
is the number of birds, T the duration of the film, P =
(1/N)‖

∑
i ~si‖ the polarization of the flock, v0 the average

bird velocity, and r0 the average interbird distance. The event
ID contains its date and its acquisition index.

There is a link with the statistical description of flock
configurations inferred in [4]. If Λij is symmetric and
constant in time, the steady-state probability distribu-
tion of the set of (~s1, . . . , ~sN ) is given by the Boltzmann
distribution

P (~s1, . . . , ~sN ) ∝ exp

[
−H(s)

T

]
(A11)

with Hamiltonian:

H(s) = −J
2

∑
ij

nij~si~sj . (A12)

We can expand Eq. A10 within the spin-wave approx-
imation. In this limit, all vectors ~si almost point in a
common direction, denoted by ~n, so that we can write
~si = ~πi +

√
1− ~π2

i ~n ≈ ~πi + (1 − ~π2
i /2)~n, where ~πi is

the projection of ~si onto the hyperplane orthogonal to ~n:
~n · ~πi = 0. Expanding at first order yields:

d~πi
dt

= −J
∑
j

Λij~πj + ~ξi⊥. (A13)

In practice, this is the equation we will use for the infer-
ence.

Appendix B: Inference from data

1. Static inference

We start by recalling how to do the steady-state infer-
ence based on the steady-state distribution of Eqs. A11
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FIG. S1. Normalized autocorrelation function of the network
for all 14 flocking events. The decay is approximately expo-
nential, allowing for the definition of a characteristic decay
time τrelax for each event.

and A12. We assume that the flock is very polarized, so
that the spin-wave approximation is valid. In this ap-
proximation, the steady-state distribution reads:

P (~π|~n) =
1

Z
exp

− J

2T

∑
ij

Λij~πi~πj

 δ

(∑
i

~πi

)
(B1)

where the common direction ~n is chosen so that
∑
i ~πi =

~0, and where for simplicity nij is assumed to be symmet-
ric. Integrating over ~π satisfying that condition gives the
normalization constant:

Z =

(
2πT

J

)(N−1)(d−1)/2 ∏
λk>0

λ
−(d−1)/2
k (B2)

where λk are the eigenvalues of the matrix Λij . Since∑
j Λij = 0 for all i, we know that one of these eigen-

values is 0. It is the one corresponding to variations
along the direction (1, . . . , 1). These variations are en-
tirely suppressed by the condition

∑
i ~πi = 0, and this

direction does not contribute to the Gaussian integral,
hence the condition λk > 0.

In summary, the minus-log-likelihood of the data reads:

− lnP (~π|~n) =
J

2T
Tr(CΛ†)− (d− 1)(N − 1)

2
ln

(
J

T

1

2π

)
− d− 1

2

∑
λk>0

lnλk, (B3)
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FIG. S2. Simulations of fast versus slow relaxation. A. Inferred interaction range nc using dynamical Euler (green), dynamical
exact integration (red), or equilibrium-like inference (blue), versus the true nc for fast relaxation dynamics relative to network

rearrangement. The parameters are: Jnc = 1.5,
√

2T = 0.15, bird speed v0 = 1, unit bird density (512 birds in an 8 x 8 x 8
box with periodic boundary conditions), inference dt = 0.2. Polarization is ≈ 0.99. The equilibrium inference gives the same
result as the dynamical one, since the orientation dynamics is fast compared to network reshuffling. B. Same as A., but with
slow relaxation of orientations. The parameters are chosen to keep a similar polarization of 0.99: Jnc = 0.1,

√
2T = 0.05, bird

speed v0 = 1, unit bird density, inference dt = 1. The equilibrium inference systematically overestimates the true nc, while
the dynamical inferences predict it accurately. C. Comparison of τnetwork and τrelax in the two simulations of A. and B. The
relaxation time τrelax is taken to be 1/(Jnc), while τnetwork is estimated as explained in the main text, by fitting an exponential
decay to the overlap autocorrelation function, as in Fig. S1.
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FIG. S3. Comparison between the equilibrium inference method (abcissa) and the dynamical inference method using Euler’s
rule (ordinate), for (A) the interaction range nc and (B) the interaction parameter J/T . The agreement is relatively poor,
especially for the prediction of J/T .

where C = ~π~π†.
We want to minimize this quantity according to the principle of maximum likelihood. Taking the derivative with

respect to J/T gives:

(J/T )∗ =
(d− 1)(N − 1)

Tr(CΛ†)
≈ d− 1

Cint
(B4)

with the definition Cint = (1/N)Tr(CΛ†).
Replacing into Eq. B3 gives:

− lnP (~π|~n, (J/T )∗) =
(d− 1)(N − 1)

2
[1 + lnCint + ln(2π/(d− 1))]− d− 1

2

∑
λk>0

lnλk. (B5)

Finally, this quantity must be minimized over the param- eters defining Λij , or equivalently, ignoring the constants
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FIG. S4. Comparison of the interaction range nc inferred assuming a step-function interaction function (nstep
c , abscissa) or an

exponentially decaying interaction function (nexp
c , ordinate), using (A) the equilibrium inference method and (B) the dynamical

inference method. We expect a correspondance between nstep
c and nexp

c : nexp
c = nstep

c /2. Here this correspondance is verified
for both inference methods.

and prefactors:

lnCint −
1

N − 1

∑
λk>0

lnλk. (B6)

2. Dynamical inference using Euler’s method

We now move to the dynamical inference from data
using Eq. A13. Let us start by assuming that we have
a series of data points separated by a small dt. We can

write Euler’s approximation to the stochastic differential
equation:

~πi(t+ dt) = ~πi(t)− Jdt
∑
j

Λij~πj + ~εi (B7)

where ~εi is Gaussian noise of variance 2(d− 1)Tdt.
Or, in matrix form:

~π(t+ dt) = ~π(t)− JdtΛ~π + ~ε. (B8)

Let us denote ~π′ = ~π(t+ dt). Then the probability of ~π′

given ~π is:

P (~π′|~π) = (4πTdt)
−N(d−1)/2

exp

[
− 1

4Tdt
(~π′ − ~π + JdtΛ~π)2

]
. (B9)

The associated minus-log-likelihood, L = − lnP (~π′|~π), is thus given by:

L = N
d− 1

2
ln(4πTdt) +

1

4Tdt
Tr
[
C′ + C− 2G + 2Jdt(G−C)Λ† + (Jdt)2ΛCΛ†

]
, (B10)

where C = ~π~π†, C′ = ~π′~π′† and G = ~π′~π†. Or, in short-hand:

L
N

=
d− 1

2
ln(4πTdt) +

1

4Tdt

[
C ′s + Cs − 2Gs + 2Jdt(Gint − Cint) + (Jdt)2Cint2

]
(B11)

≡ d− 1

2
ln(4πTdt) +

L̂
4Tdt

, (B12)

with C ′s = Tr(C′)/N , Cs = Tr(C)/N , Gs = Tr(G)/N ,
Gint = Tr(GΛ†)/N , Cint = Tr(CΛ†)/N , and Cint2 =
Tr(ΛGΛ†)/N

Following the principle of maximum likelihood, which

is equivalent to solving the inverse maximum entropy
model in the spin-wave approximation, we minimize this
quantity over the parameters J, T , and the parameters of
Λij . Let us start with the temperature T . ∂L/∂T = 0
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gives:

T ∗ =
L̂

2(d− 1)dt
. (B13)

We can now minimize L taken at that value of T = T ∗,

L(T ∗)

N
=
d− 1

2

[
1 + ln L̂+ ln(2π/(d− 1))

]
. (B14)

In other words, we want to minimize L̂ over the remain-
ing parameters J and nc. Writing the condition for J ,
∂L̂/∂J = 0 gives:

J∗ =
Cint −Gint

dtCint2
. (B15)

And replacing into L̂ gives:

L̂(J∗) = C ′s + Cs − 2Gs −
(Gint − Cint)

2

Cint2
. (B16)

The first three terms do not depend on the choice of Λ.
The last step is to maximize (Gint − Cint)

2/Cint2 over the
paramters defining Λij .

3. Dynamical inference using exact integration

In general nij and Λij may depend on time, because
they will evolve with the local neighbours of each birds.
But on short time scales such that neighbours do not
change significantly, we can view them as constant. If
on this time scale the main direction of the flock has not
changed much, we can consider Eq. A13 as valid with
constant Λij . This linear stochastic equation can actually
be solved analytically:

~π(t+ dt) = e−JΛdt~π(t) +

∫ dt

0

du e−JΛ(dt−u)~ξ⊥(t+ u).

(B17)
We define the integrated noise term as:

~ε =

∫ dt

0

du e−JΛ(dt−u)~ξ⊥(t+ u). (B18)

Since it is a sum of Gaussian variables, ~ε is also Gaussian,
of mean zero and covariance:

〈~ε~ε†〉 = 2(d− 1)T

∫ dt

0

du e−JΛue−JΛ
†u (B19)

In the limit dt → 0, we recover Euler’s approximation,
Eq. B7.

With this new, exact integration formula, we can write
the minus-log-likelihood:

L = N
d− 1

2
ln(4πTdt)+

d− 1

2
ln det B+N

L̂
4Tdt

, (B20)

with:

L̂ =
1

N
Tr
[
C′A− 2Ge−JΛ

†dtA + e−JΛdtCe−JΛ
†dt
]
,

(B21)

A = B−1 and B =
1

dt

∫ dt

0

du e−JΛue−JΛ
†u. (B22)

As before, we can solve for T easily:

T ∗ =
L̂

2(d− 1)dt
, (B23)

yielding:

L(T ∗)

N
=
d− 1

2

[
1 + ln L̂+

1

N
ln det B + ln(2π/(d− 1))

]
.

(B24)
Note that now A and therefore B depend on J as well as
Λij . The sum [ln L̂+ (1/N) ln det B] must be minimized
numerically with respect to both J and the parameters
defining Λ.

4. Two parametrizations for nij

We now need to specify the matrix Λij . Here we only
consider topological distance for the interaction matrix.
Let us denote kij the rank of j among the neighbors of
i, from the closest in distance to the farthest.

In the first parametrization, already used in previous
work, we say that a bird interacts with its nstep

c closest
neighbours. This corresponds to:

step: nij = Θ(nstep
c − kij), (B25)

where Θ(x) = 1 if x ≥ 0 and 0 otherwise. Numerically,
J∗ is calculated for each integer value of nstep

c using a
simple iterative 1D optimization algorithm.

In the second parametrization, we assume an exponen-
tially decaying interaction as a function of rank:

exp: nij = exp(−kij/nexp
c ). (B26)

Numerically, we implement a 1D iterative optimization
algorithm for nstep

c , where J∗(nexp
c ) is calculated for each

nstep
c as before, in a nested loop.
Can we compare the two parametrizations? In the

first case, the average rank of an interacting neighbour is
(nstep
c + 1)/2 ≈ nstep

c /2. In the second case, this average
rank is ≈ nexp

c . It makes sense to hypothesize this av-
erage rank should be invariant, regardless of the choice
of parametrization. Then, if we infer models with data
using the two parametrizations, we expect:

nexp
c ≈ nstep

c

2
. (B27)

The second important effective parameter is the total
interaction strength J

∑
j nij , equal to Jstepn

step
c is the



6

first case, and to ≈ Jexpn
exp
c in the second one. Requiring

that these quantities are equal in the two parametriza-
tions yields:

Jexp ≈ 2Jstep. (B28)

Figure S4 shows that the effective nstep
c and nexp

c

learned from data follow these relations accurately.

Appendix C: Orientation relaxation time

In our work we compare the relaxation time of the
orientational degrees of freedom, τrelax, to the reshuffling
time of the network, τnetwork, finding the first one to be
much smaller than the second one. This may seem an
odd result, as in a fixed-lattice theory with spontaneously
broken continuous symmetry both the correlation length
and the relaxation time diverge with the system size L.
Hence, in what sense can τrelax be small?

In the following we consider a fixed lattice for the fol-
lowing reason: we need to compare the relaxation time
to the network reshuffling time; to do this consistently,
we need to work out the relaxation time of the order pa-
rameter it in absence of the effect of network reshuffling.
To fix ideas we also work on a regular lattice in the con-
tinuum limit; the following arguments, though, are valid

in general. In this limit Eq. A13 now reads:

d~π

dt
= Jnca

2∆~π + ~ξ⊥. (C1)

where ∆ is the Laplacian operator and a the lattice spac-
ing. In Fourier space, this equation becomes:

iω~π(k, ω) = −Jnc(ka)2~π(k, ω) + ~ξ⊥(k, ω) (C2)

and its solution is:

~π(k, ω) = G(k, ω)~ξ⊥(k, ω), (C3)

were the dynamical propagator (or dynamic response) of
the Gaussian spin-wave theory in Fourier space is:

G(k, ω) =
1

iω + Ja2nck2
, (C4)

We need now to compute the dynamical self-correlation
function, that is the correlation of the fluctuations at the
same position x (or site i), namely,

Crelax(t) = 〈~π(x, t0) · ~π(x, t0 + t)〉 . (C5)

From (C3) and (C4) we have,

Crelax(t) = 2(d− 1)T

∫ 1/a

1/L

ddk

∫
dω

e−iωt

(iω + Ja2nck2)(iω − Ja2nck2)
= 2(d− 1)T

∫ 1/a

1/L

ddk
e−Ja

2nck
2t

Ja2nck2
, (C6)

which (up to constant prefactors) is the self-correlation
function reported in the main text. The absence of a
mass term (zero mode) implies that in d = 3 the func-
tion Crelax(t) is a power law, so that the self-relaxation
time diverges with L. However, as we explain the main,
the modes that contribute to the rearrangement of the
network are only those with short wavelength, compara-
ble with the interaction range rc; hence, only k larger to
1/rc contributes to the network reshuffling in the integral
above, and we therefore define the effective correlation
function,

C∗relax(t) ≡ 2(d− 1)T

∫ 1/a

1/rc

ddk
e−Ja

2nck
2t

Ja2nck2
. (C7)

This correlation function has now an exponential be-
havior for large t, with finite relaxation time equal to
(1/Jnc) · (rc/a)2. The ratio between interaction range
and lattice spacing, (rc/a), is in general of order 1 for
short range interaction (as it is the case in flocks) and
therefore the time scale of relaxation of the orientational
degrees of freedom is τrelax = (Jnc)

−1, which is what we
study in the main text.

If we do not assume a regular lattice, instead of a dif-

ferential Laplacian operator, we have to deal with the
generic Laplacian matrix Λ in equation (4) in the main
text, and with its eigenvalues, let us call them Λ. In this
case the self-correlation function is given by,

Crelax(t) ≡ 2(d− 1)T

∫ Λmax

Λmin

dΛ ρ(Λ)
e−Jnc Λt

Jnc Λ
, (C8)

where ρ(Λ) is the eigenvalue spectrum of Λ. In a spa-
tially homogeneous network Λ scales as an inverse length
squared, playing the same role as k2 in a regular lat-
tice. Thus, Λmin ∼ 1/L2 and Λmax ∼ 1/a2, a being
the average nearest neighbors distance. The absence of
a Λ-independent term at the denominator is equivalent
to the absence of a k-independent term the case of a
regular lattice (zero mode). Similarly, the largest con-
tribution to the integral comes from the modes near the
lower extreme of integration, Λmin ∼ 1/L2. The pre-
vious argument then requires to restrict the integral for
Λ > 1/r2

c , hence giving

C∗relax(t) ≡ 2(d− 1)T

∫ 1/a2

1/r2c

dΛ ρ(Λ)
e−JncΛt

JncΛ
. (C9)
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which (as in the regular lattice case) gives exponential
relaxation with τrelax = (Jnc)

−1.
Our argument to restrict the k integral in the self-

correlation function to short wavelength modes, k >
1/rc, finds a strong consistency check in the following
fact: even the network correlation function, Cnetwork(t),
does depend on a local scale, exactly as C∗relax depends
on rc. When we ask what is the degree of reshuffling of
the interaction network within a time t, we are effectively
asking how much the network changes over a spatial scale
nc. We could, for example, ask what is the time needed
to disrupt the entire network, i.e. the reshuffling over a
scale N , and this would give a much larger time, scaling
with N (for a computation of this time and its connet-
cion to mutual diffusion in space see [5]). In a similar
way, when we integrate in (C6) down to 1/L we get a
time scale which scales with L. Hence, when comparing
orientation relaxation and network reshuffling we need to
fix a scale for both phenomena. Since we are interested

here in inferring the interaction rules, the right scale is
the scale of interaction, namely rc or nc. On the other
hand, as we discuss in the conclusions of the main text,
were we interested in studying (or predicting) the large
size behaviour in the long time limit, we should assess
the divergence of both time scales with the size, which
is the realm of the hydrodynamic theory. In general,
both timescales τrelax and τnetwork can be defined on a
given spatial scale r (or the equivalent topological scale
n). What we expect is that, as this scale r increases,
τrelax and τnetwork become closer and, at given r?, one
has τrelax(r?) ∼ τnetwork(r?). This lengthscale r? rep-
resents a crossover scale above which the motility of in-
dividuals becomes relevant and the system behaves in a
non-equilibrium way. When r? � rc we are in the condi-
tion of local equilibrium that we discussed in this paper.
Note that an estimate of the crossover length can also be
computed using scaling arguments within the hydrody-
namic approach, see e.g. [6]
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