S3 File. Final linear mixed-effects model of the organic matter content.

The final optimal model was selected after a stepwise backwards model selection using the likelihood ratio test:

Organic matter content_{ip} ~ α + Treatment_{icp} + Sediment depth_{icp} + Time_{icp} + Treatment_{icp} x Sediment depth_{icp} + Treatment_{icp} x Time_{icp} + Sediment depth_{icp} x Time_{icp} + Treatment_{icp} x Sediment depth_{icp} x Time_{icp} + a_p + $a_{c/p}$ + ϵ_{icp} , ϵ_{icp} ~ $N(0,\sigma^2)$

The organic matter content_{icp} is the observation *i* for each sediment core *c* at each plot ρ , where *c* runs from 1 to 3, ρ from 1 to 12 and *i* is the observation for each core at the different sites that goes from 1 to 8 (the number of samplings over time). The final model above means that Sediment salinity is modelled as a function of Treatment, Sediment depth, Time and all their two and three way interactions. Treatment is a categorical covariate and Sediment depth and Time are continuous. The terms a_p and $a_{c/p}$ are random effects representing the between-plot and between-core variation and are significant (L. Ratio = 884.3, df = 1, ρ -value < 0.001, nested term: L. Ratio = 337.4, df = 1, ρ -value < 0.001). The unexplained variance ϵ_{icp} is assumed to be normally distributed with mean 0 and variance σ^2 considered for each sediment depth d separately. The intercept of the model is represented with σ .