
Web Appendix: Optimal Composite Scores for
Longitudinal Clinical Trials Under the Linear Mixed

Effects Model

M. Colin Ard, Nandini Raghavan and Steven D. Edland

In this Web Appendix we document R code for calculating LME weights from a pilot
data set. The supplied code can be directly applied to a simulated data set, dat, which
is also available for download from the web, and is formatted in standard long form for
longitudinal analyses of single outcome variables with columns: id (subject identifier), t
(measurement time), and test scores A, Ai, B, and Bi. Data was simulated for N = 400
subjects across three annual measurements on two pairs of tests. Parameters for the
simulation were taken directly from the analysis of the ADCS MCI/Donepezil trial9

presented in Section 3 of the manuscript, with test A corresponding to the ADAS, and
test B corresponding to the CDR. Tests Ai and Bi were calculated using the same random
effects used in the calculation of tests A and B, respectively, but with residual errors
simulated under the assumption of complete independence. The true LME weights for
the chosen parameter set and trial design, normalized to sum to 1, are wLME([0, 1, 2]T) =
[0.681, 0.319] for tests A and B, and wLME([0, 1, 2]T) = [0.684, 0.316] for tests Ai and Bi.

When pilot data from a study incorporating the same design as the planned trial is
available, balanced and complete (or can be made so by imputation), a straightforward
procedure is to estimate the parameters using a summary measures approach in which
β̂ = N−1

Pilot

∑
β̂i, and Λ̂t = N−1

Pilot

∑
(β̂i− β̂)(β̂i− β̂)T , with β̂i the ordinary least squares

slope estimate based on data from the ith subject, and NPilot the sample size for the pilot
study. As implied, Λ̂t is the estimated covariance matrix of the β̂i (cf., Appendix A).
Note that in the event that change on the composite from baseline to time T is to be
specified as the trial endpoint it may be necessary to subset the pilot data to include
only the baseline and time T measurements before calculating the β̂i’s. The required
calculations can be carried out as follows using the R package nlme16:

fit<-cbind(coef(lmList(A~t|id,data=dat))$t,

coef(lmList(B~t|id,data=dat))$t)

w<-c(solve((dim(dat)[1]-1)*cov(fit)/dim(dat)[1])%*%colMeans(fit))

w<-w/sum(w)

Applying this code to dat yields ŵLME([0, 1, 2]T) = [0.672, 0.328]. Substituting in tests Ai
and Bi in place of A and B, the estimated weights are ŵLME([0, 1, 2]T) = [0.626, 0.374].

Another option for estimating parameters is to use the R function lme(), again from
the nlme package16. Unlike the summary measures approach outlined above, this pro-
cedure directly estimates the variance components of the Λt matrix, which can then be
used to determine weights for any desired trial design for which the model is assumed
to hold. To use this approach the data should be placed in a stacked long form with

1

Optimal Composites

columns id, t, test (identifying the component test associated with each row), and y (a
numeric variable giving the observed score). Code for reformatting is follows:

tempAi<-subset(dat,,c(id,t,Ai))

names(tempAi)[3]=’y’

tempAi$test=’Ai’

tempBi<-subset(dat,,c(id,t,Bi))

names(tempBi)[3]=’y’

tempBi$test=’Bi’

long<-rbind(tempAi,tempBi)

With data in this form, code for fitting a model for two tests under the assumption of
independent residual errors, extracting parameters, and calculating weights is as follows:

fit<-lme(y~ 0 + I(as.numeric(test%in%’Ai’)) +

I(as.numeric(test%in%’Bi’)) + I(as.numeric(test%in%’Ai’)*t) +

I(as.numeric(test%in%’Bi’)*t),

data = long,

random = ~ 0 + I(as.numeric(test%in%’Ai’)) +

I(as.numeric(test%in%’Bi’)) + I(as.numeric(test%in%’Ai’)*t) +

I(as.numeric(test%in%’Bi’)*t) | id,

weights = varIdent(form = ~ 1 | test),

control=lmeControl(opt=’optim’))

M.slpest<-fixef(fit)[3:4]

s.slpest<-diag(VarCorr(fit)[3:4,’StdDev’])

Cor.slpest<-matrix(c(1,rep(as.numeric(VarCorr(fit)[4,5]),2),1), nrow=2)

S.slpest<-s.slpest%*%Cor.slpest%*%s.slpest

S.eest<-diag(as.numeric(VarCorr(fit)[’Residual’,’Variance’])*

c(1,coef(fit$modelStruct$varStruct,uncons=F)[[1]]^2))

w<-solve(S.slpest+tau*S.eest)%*%M.slpest

w<-w/sum(w)

In the code above we have used the control argument of lme() to achieve convergence.
Applying the code above to dat yields weight estimates ŵLME([0, 1, 2]T) = [0.624, 0.376].

The final option we consider for estimating LME weights uses the growth() function
from the R structural equation modeling package lavaan11. This analysis requires that
data be put in wide form with one row per subject and one column for each test at each
measurement occasion, as follows:

wide<-data.frame(id=unique(dat$id))

for(j in unique(dat$t))

{

foo<-subset(dat,t==j,c(id,A,B))

names(foo)[2:3]<-paste(c(’A’,’B’),j,sep=’.’)

wide<-merge(wide,foo)

}

With data in the appropriate form and labeled as above, parameters can be estimated
and extracted, and weights calculated as follows:

2

Optimal Composites

mdl<-’iA =~ 1*A.0 + 1*A.1 + 1*A.2

sA =~ 1*A.1 + 2*A.2

iB =~ 1*B.0 + 1*B.1 + 1*B.2

sB =~ 1*B.1 + 2*B.2

A.0 ~~ vA*A.0 \n A.1 ~~ vA*A.1 \n A.2 ~~ vA*A.2

B.0 ~~ vB*B.0 \n B.1 ~~ vB*B.1 \n B.2 ~~ vB*B.2

A.0 ~~ c*B.0 \n A.1 ~~ c*B.1 \n A.2 ~~ c*B.2

A.0 + A.1 + A.2 + B.0 + B.1 + B.2 ~ 0*1’

fit<-growth(mdl, wide)

M.slpest<-coef(fit)[c(’sA~1’,’sB~1’)]

S.slpest<-matrix(coef(fit)[c(’sA~~sA’,’sA~~sB’,’sA~~sB’,’sB~~sB’)],

nrow=2)

S.eest<-matrix(coef(fit)[c(’vA’,’c’,’c’,’vB’)],nrow=2)

w<-solve(S.slpest+tau*S.eest)%*%M.slpest

w<-w/sum(w)

In the code above, the object mdl specifies the assumed model structure, which in this
case includes correlated residuals between tests and within measurement occasions. To
specifiy a model with independent residuals, as for an analysis of Ai and Bi, one need
only delete the second to last line of this model specification. Applying the supplied code
to dat yields the weight estimates ŵLME([0, 1, 2]T) = [0.672, 0.328].

3

