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Appendix A: Effect estimates from standardized and unstandardized predictors 

Following the notation defined in the main text, the (standardized) outcome 𝑌 can be expressed as: 

𝑌 = 𝛽𝐺 × 𝐺 + 𝛽𝐸 × 𝐸 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀 

    = 𝛽𝐺 × (𝐺𝑠𝑡𝑑𝜎𝐺 + 𝜇𝐺) + 𝛽𝐸 × (𝐸𝑠𝑡𝑑𝜎𝐸 + 𝜇𝐸) + 𝛽𝐺𝐸 × (𝐺𝑠𝑡𝑑𝜎𝐺 + 𝜇𝐺) × (𝐸𝑠𝑡𝑑𝜎𝐸 + 𝜇𝐸) + 𝜀  

    = (𝛽𝐺𝜎𝐺 + 𝛽𝐺𝐸𝜇𝐸𝜎𝐺) × 𝐺𝑠𝑡𝑑 + (𝛽𝐸𝜎𝐸 + 𝛽𝐺𝐸𝜇𝐺𝜎𝐸) × 𝐸𝑠𝑡𝑑 + (𝛽𝐺𝐸𝜎𝐺𝜎𝐸) × 𝐺𝑠𝑡𝑑 × 𝐸𝑠𝑡𝑑 + 𝜀′  

where 𝜀′ is a constant that depends neither on 𝐺𝑠𝑡𝑑 nor 𝐸𝑠𝑡𝑑. This leads to the following relationship between the 

standardized and unstandardized estimates: 

𝛽𝐺
′ = 𝛽𝐺 × 𝜎𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺      ⇔       𝛽𝐺 = 

𝛽𝐺
′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
  

𝛽𝐸
′ = 𝛽𝐸 × 𝜎𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸      ⇔        𝛽𝐸 =

𝛽𝐸
′

𝜎𝐸
−

𝛽𝐺𝐸
′ × 𝜇𝐺

𝜎𝐸 × 𝜎𝐺
 

𝛽𝐺𝐸
′ = 𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺                         ⇔        𝛽𝐺𝐸 =

𝛽𝐺𝐸
′

𝜎𝐸 × 𝜎𝐺
 

The variances of the unstandardized estimates equal: 

𝜎𝛽𝐺

2 = 𝑣𝑎𝑟 ( 
𝛽𝐺

′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
) =

𝜎
𝛽𝐺

′
2

𝜎𝐺
2 +

𝜎
𝛽𝐺𝐸

′
2 × 𝜇𝐸

2

𝜎𝐸
2 × 𝜎𝐺

2 − 2(
𝜇𝐸

𝜎𝐸 × 𝜎𝐺
2) ∗ 𝑐𝑜𝑣(𝛽𝐺

′ , 𝛽𝐺𝐸
′ ) 

𝜎𝛽𝐸

2 = 𝑣𝑎𝑟 ( 
𝛽𝐸

′

𝜎𝐸
−

𝛽𝐺𝐸
′ × 𝜇𝐺

𝜎𝐸 × 𝜎𝐺
) =

𝜎
𝛽𝐸

′
2

𝜎𝐸
2 +

𝜎
𝛽𝐺𝐸

′
2 × 𝜇𝐺

2

𝜎𝐸
2 × 𝜎𝐺

2 − 2(
𝜇𝐺

𝜎𝐸
2 × 𝜎𝐺

) ∗ 𝑐𝑜𝑣(𝛽𝐸
′ , 𝛽𝐺𝐸

′ ) 

𝜎𝛽𝐺𝐸

2 = 𝑣𝑎𝑟 (
𝛽𝐺𝐸

′

𝜎𝐸 × 𝜎𝐺
) =

𝜎
𝛽𝐺𝐸

′
2

𝜎𝐸
2 × 𝜎𝐺

2 

Appendix C shows that 𝑐𝑜𝑣(𝛽𝐺
′ , 𝛽𝐺𝐸

′ ) = 𝑐𝑜𝑣(𝛽𝐸
′ , 𝛽𝐺𝐸

′ ) = 0 when 𝐺 and 𝐸 are independents. Moreover, when 𝐺 

and 𝐸 are standardized, 𝜎
𝛽𝐺

′
2 = 𝜎

𝛽𝐸
′

2 = 𝜎
𝛽𝐺𝐸

′
2 ≈

𝜎2

𝑁 
 when the sample size is large, where 𝜎2 is the residual variance of 

𝑌. Assuming the main effects of 𝐺 and 𝐸 and their interaction is small and 𝜎2 = 1, the variance of the estimates 

simplifies: 

𝜎𝛽𝐺

2 ≈
𝜇𝐸

2 + 𝜎𝐸
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 

𝜎𝛽𝐸

2 ≈
𝜇𝐺

2 + 𝜎𝐺
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 

𝜎𝛽𝐺𝐸

2 ≈
1

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 



 

Appendix B: Non-centrality parameters for marginal and interaction models 

Using the estimates and variances from Appendix A one can derive 𝑛𝑐𝑝𝐺, 𝑛𝑐𝑝𝐸, and 𝑛𝑐𝑝𝐺𝐸, the non-centrality 

parameters (ncp) of the genetic main effect, the exposure main effect and the interaction effect under the 

assumptions of small effect sizes and 𝐺 − 𝐸 independence: 

𝑛𝑐𝑝𝐺 =
𝛽𝐺

2

𝜎𝛽𝐺

2 =
𝛽𝐺

2

𝜇𝐸
2 + 𝜎𝐸

2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2

 = 𝑁 × 𝜎𝐺
2 × 𝛽𝐺

2 ×
𝜎𝐸

2

𝜇𝐸
2 + 𝜎𝐸

2 

𝑛𝑐𝑝𝐸 =
𝛽𝐸

2

𝜎𝛽𝐸

2 =
𝛽𝐸

2

𝜇𝐺
2 + 𝜎𝐺

2

𝑁 × 𝜎𝐺
2 × 𝜎𝐸

2

 = 𝑁 × 𝜎𝐸
2 × 𝛽𝐸

2 ×
𝜎𝐺

2

𝜇𝐺
2 + 𝜎𝐺

2 

𝑛𝑐𝑝𝐺𝐸 =
𝛽𝐺𝐸

2

𝜎𝛽𝐺𝐸

2 =
𝛽𝐺𝐸

2

1
𝑁 × 𝜎𝐸

2 × 𝜎𝐺
2

 = 𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 × 𝛽𝐺𝐸
2  

These 𝑛𝑐𝑝 can be compared with 𝑛𝑐𝑝𝑚𝐺, the non-centrality parameter from the test of 𝐺 in a marginal model. 

The marginal effect of 𝐺, 𝛽𝑚𝐺 is by definition the sum of the main effect of 𝐺 plus the marginal contribution from 

interaction terms involving 𝐺 which equals: 

𝛽𝑚𝐺 =
𝑐𝑜𝑣(𝑌, 𝐺)

𝜎𝐺
2  =

𝛽𝐺
′ × 𝜎𝐺

𝜎𝐺
2 = 𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 

The marginal estimated effect of 𝐸 can be derived similarly and equals: 

𝛽𝑚𝐸 = 𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺  

so that 𝑛𝑐𝑝𝑚𝐺 and 𝑛𝑐𝑝𝑚𝐸 (the ncp of the marginal test of 𝐸) can be expressed as follows: 

𝑛𝑐𝑝𝑚𝐺 = 𝑁 × 𝜎𝐺
2 × (𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸)2 

𝑛𝑐𝑝𝑚𝐸 = 𝑁 × 𝜎𝐸
2 × (𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺)2 

 

Appendix C:  Variance-covariance for the GxE term and its estimated effect 

To derive the covariance and the correlation parameter between 𝐺 and 𝐺 × 𝐸 we first calculate 𝜎𝐺𝐸
2 , the variance 

of the interaction term 𝐺 × 𝐸 under the assumption of independence between 𝐺 and 𝐸. Assuming the standard 

coding for 𝐺 [0,1,2], and the frequency of the coded allele is 𝑝, and 𝐸 is normally distributed so that 𝐸2 follows a 

non-central chi-square distribution with one degree of freedom, it can be express as: 

𝜎𝐺𝐸
2 =  𝔼[𝐺2] × 𝔼[𝐸2] − 𝔼[𝐺]2 × 𝔼[𝐸]2 = ∑ (𝐺2 × 𝑝𝑟(𝐺))

𝐺∈𝑅𝑎𝑛𝑔𝑒(𝐺)

× ∫ 𝐸2𝑑𝑃
+∞

−∞

− (2 × 𝑝)2 × 𝜇𝐸
2  

         =  ( (2 × 𝑝 × (1 − 𝑝)) + 𝑝2 × 4) × 𝜎𝐸
2 × (1 +

𝜇𝐸
2

𝜎𝐸
2) − (2 × 𝑝)2 × 𝜇𝐸

2  



         =  2 × (𝑝 + 𝑝2) × (𝜎𝐸
2 + 𝜇𝐸

2) − 4 × 𝑝2 × 𝜇𝐸
2  

         =  𝜎𝐺
2 × 𝜎𝐸

2 + 𝜇𝐺
2 × 𝜎𝐸

2 + 𝜇𝐸
2 × 𝜎𝐺

2 

Under the same assumption, 𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸), the covariance between 𝐺 and 𝐺 × 𝐸 can be expressed as: 

 𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸) = 𝔼[𝐺2] × 𝔼[𝐸] − 𝔼[𝐺] × 𝔼[𝐺] × 𝔼[𝐸] 

                             = (2 × 𝑝 × (1 − 𝑝) + 𝑝2 × 4) × 𝜇𝐸 − (2 × 𝑝)2 × 𝜇𝐸 

                             = 𝜇𝐸 × 𝜎𝐺
2 

Similarly, one can derive the covariance between the exposure and the interaction and show that 𝑐𝑜𝑣(𝐸, 𝐺 ×

𝐸) = 𝜇𝐺 × 𝜎𝐸
2. From this it appears that 𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸𝑠𝑡𝑑) = 𝑐𝑜𝑣(𝐸, 𝐺𝑠𝑡𝑑 × 𝐸) = 𝑐𝑜𝑣(𝐺𝑠𝑡𝑑 , 𝐺𝑠𝑡𝑑 × 𝐸𝑠𝑡𝑑) =

𝑐𝑜𝑣(𝐸𝑠𝑡𝑑 , 𝐺𝑠𝑡𝑑 × 𝐸𝑠𝑡𝑑) = 0.  

The correlation between  𝐺 and 𝐺 × 𝐸 equals then: 

𝑐𝑜𝑟(𝐺, 𝐺 × 𝐸) =
𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸)

𝜎𝐺 × 𝜎𝐺𝐸
 =

𝜇𝐸 × 𝜎𝐺
2

𝜎𝐺 × 𝜎𝐺𝐸
=

𝜇𝐸

√𝜎𝐸
2 × (1 +

𝜇𝐺
2

𝜎𝐺
2) + 𝜇𝐸

2

 

We derive then the covariance and correlation between the estimated effect of 𝐺 and 𝐺 × 𝐸. In its general form 

the variance-covariance matrix of estimates from the interaction model can be expressed as: 𝜎𝛃 = (𝐗T𝐗)
−1

𝜎2, 

where 𝐗, the matrix of predictor variables, equals [1, 𝐺, 𝐸, 𝐺 × 𝐸] and 𝜎2 is the variance of 𝜀, the residual of 𝑌. 

𝜎𝛃 =

(

 
 

𝑁 ×

[
 
 
 
 

𝔼[12] 𝔼[𝐺]

𝔼[𝐺] 𝔼[𝐺2]

𝔼[𝐸] 𝔼[𝐺 × 𝐸]

𝔼[𝐺 × 𝐸] 𝔼[𝐺2 × E]

𝔼[𝐸] 𝔼[𝐺 × 𝐸]

𝔼[𝐺 × 𝐸] 𝔼[𝐺2 × E]

𝔼[𝐸2] 𝔼[𝐺 × 𝐸2]

𝔼[𝐺 × 𝐸2] 𝔼[𝐺2 × 𝐸2]]
 
 
 
 

)

 
 

−1

× 𝜎2 

This is a relatively complex form when 𝐺 and 𝐸 are not standardized. However when the predictors are 

standardized 𝔼[𝐸] = 𝔼[𝐺] = 0, and assuming 𝐺 and 𝐸 are independents, the formulation of 𝜎𝛃 greatly simplify, as 

all the off-diagonal elements of the matrix are null, so that: 

𝜎𝛃  =
𝜎2

𝑁

[
 
 
 
 
 
 
 
1 0

0
1

E[𝐺2]

0                0        
0                0        

0    0    
0    0    

1

E[𝐸2]
0

0
1

E[𝐺2] × E[𝐸2]]
 
 
 
 
 
 
 

 

which implies that all covariance term, including 𝑐𝑜𝑣(𝛽𝐺
′ , 𝛽𝐺𝐸

′ ) are null. Building on this, and using the equations 

from Appendix A, we can derive 𝛾, the covariance between 𝛽𝐺 and 𝛽𝐺𝐸 for the unstandardized case: 

𝛾 = 𝑐𝑜𝑣(𝛽𝐺 , 𝛽𝐺𝐸)  = 𝑐𝑜𝑣 (
𝛽𝐺

′

𝜎𝐺
− 𝛽𝐺𝐸 × 𝜇𝐸 , 𝛽𝐺𝐸) = 𝑐𝑜𝑣 (

𝛽𝐺
′

𝜎𝐺
,

𝛽𝐺𝐸
′

𝜎𝐸 × 𝜎𝐺
) + 𝜇𝐸 × 𝑐𝑜𝑣(𝛽𝐺𝐸 , 𝛽𝐺𝐸) 



    =
𝑐𝑜𝑣(𝛽𝐺

′ , 𝛽𝐺𝐸
′ )

𝜎𝐸 × 𝜎𝐺
2 − 𝜇𝐸 × 𝜎𝛽𝐺𝐸 

2 = 
−𝜇𝐸

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 

The correlation follows: 

𝑐𝑜𝑟(𝛽𝐺 , 𝛽𝐺𝐸) =
𝑐𝑜𝑣(𝛽𝐺 , 𝛽𝐺𝐸)

𝜎𝛽𝐺
× 𝜎𝛽𝐺𝐸

=

−𝜇𝐸 × √
1

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2

√
𝜇𝐸

2 + 𝜎𝐸
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2

=
−𝜇𝐸

√𝜇𝐸
2 + 𝜎𝐸

2
 

 

Appendix D:  Derivation of the Pratt index 

To estimate the variance explained by predictors or other related measures, we first derive the expected variance 

of the outcome for a given generative model. For a single interaction term and assuming 𝐺 − 𝐸 independence, it 

equals: 

𝑣𝑎𝑟(𝑌) = 𝑣𝑎𝑟(𝛽𝐸 × 𝐸 + 𝛽𝐺 × 𝐺 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀) 

               = 𝛽𝐸
2 × 𝜎𝐸

2 + 𝛽𝐺
2 × 𝜎𝐺

2 + 𝛽𝐺𝐸
2 × 𝜎𝐺𝐸

2 + 2 × 𝛽𝐺𝐸 × (𝛽𝐺 × 𝑐𝑜𝑣(𝐺, 𝐺𝐸) + 𝛽𝐸 × 𝑐𝑜𝑣(𝐸, 𝐺𝐸)) + 𝜎2 

               = (𝛽𝐺 × 𝜎𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺)2 + (𝛽𝐸 × 𝜎𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸)2 + (𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺)2 + 𝜎2 

               = 𝛽𝐺
′2 + 𝛽𝐸

′2 + 𝛽𝐺𝐸
′2 + 𝜎2 

When more interaction terms are included, the outcome variance becomes a little more complex as additional 

covariance terms are added. For example assuming 𝑘 interactions between 𝐸 and 𝐺𝑖, 𝑖 = 1…𝑘, the variance of 𝑌 

becomes: 

𝑣𝑎𝑟(𝑌) = 𝛽𝐸
2 × 𝜎𝐸

2 + ∑[𝛽𝐺𝑖

2 × 𝜎𝐺𝑖

2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸
2 × 𝜎𝐺𝑖𝐸

2 ]

𝑖

+ 2 × ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑖
× 𝜇𝐸 × 𝜎𝐺𝑖

2 ]

𝑖

+ 2

× ∑𝛽𝐺𝑖𝐸 × 𝛽𝐸 × 𝜇𝐺𝑖
× 𝜎𝐸

2

𝑖

+ ∑∑[𝑐𝑜𝑣(𝐺𝑖 × 𝐸, 𝐺𝑗 × 𝐸)]

𝑗≠𝑖𝑖

+ 𝜎2 

              = 𝛽𝐸
2 × 𝜎𝐸

2 + ∑[𝛽𝐺𝑖

2 × 𝜎𝐺𝑖

2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸
2 × 𝜎𝐺𝑖𝐸

2 ]

𝑖

+ 2 × ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑖
× 𝜇𝐸 × 𝜎𝐺𝑖

2 ]

𝑖

+ 2

× ∑𝛽𝐺𝑖𝐸 × 𝛽𝐸 × 𝜇𝐺𝑖
× 𝜎𝐸

2

𝑖

+ ∑∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑗𝐸 × 𝜇𝐺𝑖
× 𝜇𝐺𝑗

× 𝜎𝐸
2]

𝑗≠𝑖𝑖

+ 𝜎2 

For simplicity let us assume 𝜎2 is set so that 𝑣𝑎𝑟(𝑌) = 1 in all further derivation. When testing a single interaction 

term and using the equivalences from Appendix A-B , it follows that the Pratt index can be expressed as a function 

of the estimates from the interaction model and the mean and variance of the genetic variant and the exposures 

considered: 

𝑟𝐺
2∗ = (𝛽𝐺 × 𝜎𝐺) × 𝑐𝑜𝑟(𝑌, 𝐺) = (𝛽𝐺 × 𝜎𝐺) × 𝛽𝑚𝐺  × 𝜎𝐺 = 𝛽𝐺

2 × 𝜎𝐺
2 + 𝛽𝐺 × 𝛽𝐺𝐸 × 𝜎𝐺

2 × 𝜇𝐸   

𝑟𝐸
2∗ = (𝛽𝐸 × 𝜎𝐸) × 𝑐𝑜𝑟(𝑌, 𝐸) = (𝛽𝐸 × 𝜎𝐸) × (𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺) × 𝜎𝐸 = 𝛽𝐸

2 × 𝜎𝐸
2 + 𝛽𝐸 × 𝛽𝐺𝐸 × 𝜎𝐸

2 × 𝜇𝐺 



𝑟𝐺𝐸
2∗ = (𝛽𝐺𝐸 × 𝜎𝐺𝐸) × 𝑐𝑜𝑟(𝑌, 𝐺 × 𝐸) 

       = (𝛽𝐺𝐸 × 𝜎𝐺𝐸) ×
𝑐𝑜𝑣(𝛽𝐺 × 𝐺 + 𝛽𝐸 × 𝐸 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀, 𝐺 × 𝐸)

𝜎𝐺𝐸
 

       = 𝛽𝐺𝐸 × (𝛽𝐺 × 𝜇𝐸 × 𝜎𝐺
2 + 𝛽𝐸 × 𝜇𝐺 × 𝜎𝐸

2 + 𝛽𝐺𝐸 × 𝜎𝐺𝐸
2 ) 

       = 𝛽𝐺𝐸
2 × (𝜇𝐺

2 × 𝜎𝐸
2 + 𝜇𝐸

2 × 𝜎𝐺
2 + 𝜎𝐸

2 × 𝜎𝐺
2) + 𝛽𝐺𝐸 × (𝛽𝐺 × 𝜇𝐸 × 𝜎𝐺

2 + 𝛽𝐸 × 𝜇𝐺 × 𝜎𝐸
2) 

When summing the above Pratt index we obtain: 

𝑟𝐺
2∗ + 𝑟𝐸

2∗ + 𝑟𝐺𝐸
2∗ = 𝛽𝐺

2 × 𝜎𝐺
2 + 𝛽𝐺 × 𝛽𝐺𝐸 × 𝜎𝐺

2 × 𝜇𝐸 + 𝛽𝐸
2 × 𝜎𝐸

2 + 𝛽𝐸 × 𝛽𝐺𝐸 × 𝜎𝐸
2 × 𝜇𝐺 + 𝛽𝐺𝐸

2 × 𝜇𝐺
2 × 𝜎𝐸

2 + 𝛽𝐺𝐸
2

× 𝜇𝐸
2 × 𝜎𝐺

2 + 𝛽𝐺𝐸
2 × 𝜎𝐸

2 × 𝜎𝐺
2 + 𝛽𝐺𝐸 × (𝛽𝐺 × 𝜇𝐸 × 𝜎𝐺

2 + 𝛽𝐸 × 𝜇𝐺 × 𝜎𝐸
2) 

                            = 𝛽𝐺
2 × 𝜎𝐺

2 + 2 × (𝛽𝐺 × 𝜎𝐺) × (𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺) + (𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺)2 + 𝛽𝐸
2 × 𝜎𝐸

2 + 2 × (𝛽𝐸 × 𝜎𝐸)

× (𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸) + (𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸)2 + (𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺)2 

                            = (𝛽𝐺 × 𝜎𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺)2   + (𝛽𝐸 × 𝜎𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸)2 + (𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺)2 

                            = 𝑟𝐺
2 + 𝑟𝐸

2 + 𝑟𝐺𝐸
2  

The cumulative contribution of multiple interactions involving independent SNPS can also be derived from 

summary statistics, although the derivation is a little less friendly because of additional covariance terms. For 

example assuming 𝑘 interactions between 𝐸 and 𝐺𝑖, 𝑖 = 1…𝑘, we obtain (Figure S4) : 

𝑟𝐺
2∗ = ∑[𝛽𝐺𝑖

2 × 𝜎𝐺𝑖

2 + 𝛽𝐺𝑖
× 𝛽𝐺𝑖𝐸 × 𝜎𝐺𝑖

2 × 𝜇𝐸]

𝑖

 

𝑟𝐸
2∗ = 𝛽𝐸

2 × 𝜎𝐸
2 + ∑[𝛽𝐸 × 𝛽𝐺𝑖𝐸 × 𝜎𝐸

2 × 𝜇𝐺𝑖
]

𝑖

 

𝑟𝐺𝐸
2∗ = ∑[𝛽𝐺𝑖𝐸

2 × 𝜎𝐺𝑖𝐸
2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑖
× 𝜇𝐸 × 𝜎𝐺𝑖

2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐸 × 𝜇𝐺𝑖
× 𝜎𝐸

2]

𝑖

+ ∑[𝛽𝐺𝑖𝐸 × ∑[𝛽𝐺𝑗𝐸 × 𝜇𝐺𝑖
× 𝜇𝐺𝑗

× 𝜎𝐸
2]

𝑗≠𝑖

]

𝑖

 

On should note that estimating the Pratt index for the exposure can be difficult in practice when the number of 

interaction is large, as it would require the estimated main exposure effect from a joint model including all SNPs 

main effect and all interactions term with the exposure. Also, because of the correlation between main and 

interaction terms, 𝑟𝑋𝑖

2∗, as the standard 𝑟𝑋𝑖

2 , only approximate the amount the variance will change if 𝑋𝑖  was held 

constant. For the latter measure, one can refer to21. 

 

The special case of negative Pratt index: 

As opposed to standard derivation of the variance explained, the Pratt index formula allows 𝑟𝑋
2∗ being negative. 

This characteristic has been a source of concerns [Thomas, et al. 1998]. While in-depth discussion of this 
characteristic is out of the scope of this study, we consider a hypothetical example illustrating this phenomenon. 



As negative values for the Pratt index can exist in the presence of correlated predictors (whether or not there 
interaction effect are modelled), we considered the simplest example of two highly correlated factors 𝐴 and 𝐵 
(e.g. 𝐴 being coffee drinking and 𝐵 being smoking) that define a quantitative outcome 𝑌 through the linear model: 
𝑌 = 𝛽𝐴𝐴 − 𝛽𝐵𝐵. We assumed 𝐴 and 𝐵 are normal with have variance 1, 𝑐𝑜𝑟(𝐴, 𝐵) = 0.8, and 𝛽𝐴 = 2𝛽𝐵 = 2. It 

follows that the variance of 𝑌 equals 𝑟𝑦
2 = 𝛽𝐴

2 + 𝛽𝐵
2 − 2𝛽𝐴𝛽𝐵𝑐𝑜𝑟(𝐴, 𝐵) = 1.8. Using standard approach we would 

conclude that 𝐴 and 𝐵 explain 80% and 20% of the variance of 𝑌. Thus if 𝐵 was removed from the population (e.g. 
if everyone in the population stop smoking), a naïve interpretation would be that the variance of 𝑌 would 
decrease according to the amount of variance explain by 𝐵. However, if 𝐵 is removed from the population, then 
𝑌 = 𝛽𝐴𝐴 and its variance, 𝑟𝑦−𝐵

2 = 𝛽𝐴
2 = 4 and is therefore larger than before. The Pratt index captures such 

effects by assigning negative value to some predictors. In this specific case, we would have 𝑟𝐴
2∗ = 2.4 and 

𝑟𝐵
2∗ = −0.6, with the later parameter highlighting the potential increase in variance of 𝑌 if 𝐵 is removed from the 

population. 
 
 

 

Appendix F:  GRS-based test, joint test and univariate test of multiple interaction effects  

We denote 𝛃 = (𝛽𝐺1
, 𝛽𝐺2

, …𝛽𝐺𝑚
) a vector of effects from 𝑚 independent SNP, and 𝜎𝛽𝐺𝑖

2  and 𝑤𝑖 are the variance of 

each estimate and weight of each SNP 𝑖 in the genetic risk score (GRS), respectively. The effect of the weighted 

GRS on the outcome, 𝛾𝐺𝑅𝑆, equals: 

𝛾𝐺𝑅𝑆 =
𝑐𝑜𝑣(𝑌, GRS)

𝜎𝐺𝑅𝑆
2 =

𝑐𝑜𝑣(𝑌, ∑ [𝑤𝑖 × 𝐺𝑖]𝑚 )

𝜎∑ [𝑤𝑖×𝐺𝑖]𝑚

2 =
∑ (𝑤𝑖 × 𝛽𝐺𝑖

× 𝜎𝐺𝑖

2 )𝑚

∑ [𝑤𝑖
2 × 𝜎𝐺𝑖

2 ]𝑚

=

∑
𝑤𝑖 × 𝛽𝐺𝑖

𝜎𝛽𝐺𝑖

2𝑚

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

 

Consecutively, 𝜎𝛾𝐺𝑅𝑆
 the variance of 𝛾𝐺𝑅𝑆 can be derived as follows: 

𝜎𝛾𝐺𝑅𝑆
2 = 𝑣𝑎𝑟

(

 
 

∑
𝑤𝑖 × 𝛽𝐺𝑖

𝜎𝛽𝐺𝑖

2𝑚

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

)

 
 

= ∑

(

 
 

(

 
 

𝑤𝑖

𝜎𝛽𝐺𝑖

2

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

)

 
 

2

× 𝑣𝑎𝑟(𝛽𝐺𝑖
)

)

 
 

𝑚
=

∑ (
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2 )𝑚

(∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚 )

2 =
1

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

 

So that the chi-square of the marginal effect of the test of GRS equals: 

(
𝛾𝐺𝑅𝑆

𝜎𝛾𝐺𝑅𝑆

)

2

=

(∑
𝑤𝑖 × 𝛽𝐺𝑖

𝜎𝛽𝐺𝑖

2𝑚 )

2

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

 

which corresponds to the inverse-variance weighted sum meta-analysis of each individual genetic variant. 

Similarly, one can derive the expected chi-square of the GRS by exposure interaction effect using 𝛾𝐺𝑖×𝐸, the 

interaction effect between each SNP 𝑖 and the exposure. Under the assumption of independence of the m 

interaction terms we obtain: 



(
𝛾𝐼𝑁𝑇

𝜎𝛾𝐼𝑁𝑇

)

2

=

(∑
𝛾𝐺𝑖×𝐸

𝜎𝛾𝐺𝑖×𝐸
2𝑚 )

2

∑
1

𝜎𝛾𝐺𝑖×𝐸
2𝑚

 

Hence for standardized 𝐺 and 𝐸 the ncp of the 𝐺𝑅𝑆 by 𝐸 interaction test equals 

𝑛𝑐𝑝GRS×E = 𝑁 × (∑ 𝛾𝐺𝑖×𝐸
′

i=1…m )
2

𝑚⁄ , where N is the sample size and 𝛾𝐺𝑖×𝐸
′  is the interaction effect from the 

standardized model, and follows a chi-square with one degree of freedom. In comparison, the ncp for the test of 

the strongest pairwise interaction, i.e. the interaction that explained the largest amount of variance, equals 

𝑛𝑐𝑝pairwise = max(𝑁 × 𝛾𝐺𝑖×𝐸
′ ).  

 

Appendix E:  Joint test of main and interaction effects 

The multiple regression least square provides the estimated effect of the genetic main effect and interaction 

effects 𝛃 = (𝛽𝐺 , 𝛽𝐺𝐸) and their variance-covariance matrix 𝚺. The multivariate Wald test of the two parameters, 

which follow a 2 df chi-square can be expressed as: 

𝛃𝑇𝚺−1𝛃 = [𝛽𝐺 𝛽𝐺𝐸] [
𝜎𝛽𝐺

2 𝛾

𝛾 𝜎𝛽𝐺𝐸

2 ]

−1

[
𝛽𝐺

𝛽𝐺𝐸
], 

where 𝛾 is the covariance between 𝛽𝐺 and 𝛽𝐺𝐸. It can be further developed as: 

𝛃𝑇𝚺−1𝛃 = [𝛽𝐺 𝛽𝐺𝐸] ×
1

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
[
𝜎𝛽𝐺𝐸

2 −𝛾

−𝛾 𝜎𝛽𝐺

2 ] [
𝛽𝐺

𝛽𝐺𝐸
] 

                 =
1

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
× [𝜎𝛽𝐺𝐸

2 × 𝛽𝐺 − 𝛾 × 𝛽𝐺𝐸 −𝛾 × 𝛽𝐺 + 𝜎𝛽𝐺

2 × 𝛽𝐺𝐸] [
𝛽𝐺

𝛽𝐺𝐸
] 

                 =
(𝜎𝛽𝐺𝐸

2 × 𝛽𝐺 − 𝛾 × 𝛽𝐺𝐸) × 𝛽𝐺 + (𝜎𝛽𝐺

2 × 𝛽𝐺𝐸 − 𝛾 × 𝛽𝐺) × 𝛽𝐺𝐸

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
 

                 =
𝜎𝛽𝐺𝐸

2 × 𝛽𝐺
2 + 𝜎𝛽𝐺

2 × 𝛽𝐺𝐸
2 − 2 × 𝛾 × 𝛽𝐺 × 𝛽𝐺𝐸

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
 

For clarity we derived the nominator and the denominator separately, so that 𝛃𝑇𝚺−1𝛃 = 𝐴 𝐵⁄  

𝐴 = 𝜎̂𝛽𝐺𝐸

2 × (
𝛽𝐺

′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
)

2

+ 𝜎̂𝛽𝐺

2 × (
𝛽𝐺𝐸

′

𝜎𝐸 × 𝜎𝐺
)

2

+ 2 × 𝜇𝐸𝜎𝛽𝐺𝐸 
2 × (

𝛽𝐺
′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
) × (

𝛽𝐺𝐸
′

𝜎𝐸 × 𝜎𝐺
) 

     = 𝜎̂𝛽𝐺𝐸

2 × ((
𝛽𝐺

′

𝜎𝐺
)

2

− (
𝛽𝐺𝐸

′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
)

2

) + 𝜎̂𝛽𝐺

2 × (
𝛽𝐺𝐸

′

𝜎𝐸 × 𝜎𝐺
)

2

 

     =
(
𝛽𝐺

′

𝜎𝐺
)
2

− (
𝛽𝐺𝐸

′ × 𝜇𝐸
𝜎𝐸 × 𝜎𝐺

)
2

+ (
𝛽𝐺𝐸

′ × 𝜇𝐸
𝜎𝐸 × 𝜎𝐺

)
2

+ (
𝛽𝐺𝐸

′ × 𝜎𝐸
𝜎𝐸 × 𝜎𝐺

)
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2  



     =
(
𝛽𝐺

′

𝜎𝐺
)
2

+ (
𝛽𝐺𝐸

′

𝜎𝐺
)
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2  

The denominator B equals: 

 𝐵 = 𝜎̂𝛽𝐺

2 × 𝜎̂𝛽𝐺𝐸

2 − (−𝜇𝐸 × 𝜎𝛽𝐺𝐸 
2 )

2
=

𝜎𝐸
2

(𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2)2
 

So that the joint test of 𝐺 and 𝐺 × 𝐸 effects equals:  

𝛃𝑇𝚺−1𝛃 = 𝑁 × 𝜎𝐸
2 ×

(
𝛽𝐺

′

𝜎𝐺
)
2

+ (
𝛽𝐺𝐸

′

𝜎𝐺
)
2

𝜎𝐸
2 × 𝜎𝐺

2 = 𝑁 × 𝛽𝐺
′2 + 𝑁 × 𝛽𝐺𝐸

′2  

which is the sum of the individuals Wald test for the main effect and the interaction effect when 𝐺 and 𝐸 are 

standardized. Moreover, leveraging previous equivalences, we can express the joint test as a function of 𝛽𝐺
′′ and 

𝛽𝐺𝐸
′′2, the estimated main and interaction effects from the model where 𝐸 has been centered, it follows that: 

𝛃𝑇𝚺−1𝛃 = 𝑁 × 𝛽𝐺
′′2 × 𝜎𝐺

2 + 𝑁 × 𝛽𝐺𝐸
′′2 × 𝜎𝐺

2 × 𝜎𝐸
2  

  



Figure S1. Linear interaction effect across different coding schemes 

Pattern of contribution of an interaction term to an outcome when using the standard coding ([0,1,2], upper 

panel) or using centered values ([-1,0,1], lower panel) for the genotype, and using a normal distribution for the 

exposure with variance 1 and mean of 0 (a,e), 1 (b,f), 5 (c,g) and 10 (d,h) in the generative model. The interaction 

effects were set so that they explain 1% of the outcome across all models.

 

  



Figure S2. Power comparison for linear regression 

A normally distributed outcome Y is generated as a function of the main effect of a genetic variants G, the main 

effect of an exposure E and an interaction effect between G and E, using four different distributions of the 

exposure (lower panel). In scenario a) E is normally distributed with mean 0 and variance 1. In scenario b) E follows 

an exponential distribution with lambda parameter 1, so that the mean and the variance equal 1. In scenario c) E 

follows a uniform distribution with minimum 0 and maximum 10. In scenario d) E is normally distributed with 

mean 4 and variance 1. Power of the test of marginal genetic effect (marg.G), the main genetic effect (main.G), the 

interaction effect (int.GxE) and the joint test of main and interaction effect (Joint.G.GxE) are derived for each 

scenario at the significance level of 5x10-8 across 1,000 simulations each including 20,000 samples. The 

contribution of E to the variance of Y, 𝑣𝐸, equals 1%, while the contribution of G, 𝑣𝐺, is either null (upper panels) 

or equals to 𝑣𝐺𝐸, the contribution of the interaction term (middle panel). The 𝑣𝐺𝐸 are set so that the joint test 

achieve 60% power on average. In all scenarios where the mean of the exposure is large as compared to its 

standard deviation, the joint test and the marginal test of 𝐺 have dramatically larger power as compared to the 

interaction test, even when the underlying model includes an interaction effect only.  

  



Figure S3. Power comparison for logistic regression 

A binary outcome Y with a prevalence of 30% is generated as a function of the main effect of a genetic variants G, 

the main effect of an exposure E and an interaction effect between G and E, using four different distributions of 

the exposure (lower panel). In scenario a) E is normally distributed with mean 0 and variance 1. In scenario b) E 

follows an exponential distribution with lambda parameter 1, so that the mean and the variance are equal 1. In 

scenario c) E is normally distributed with mean 4 and variance 1. In scenario d) E follows a uniform distribution 

with minimum 0 and maximum 10. Power of the test of marginal genetic effect (marg.G), the main genetic effect 

(main.G), the interaction effect (int.GxE) and the joint test of main and interaction effect (Joint.G.GxE) is derived 

for each scenario at the significance level of 5x10-8 across 1,000 simulations each including 20,000 samples. The 

exposure has an odds ratio of 1.1, while the odds ratio of G and GxE are set so that the joint test achieve 60% 

power on average. In all scenarios where the mean of the exposure is large as compared to its standard deviation, 

the joint test and the marginal test of G have dramatically larger power as compared to the interaction test, even 

when the underlying model includes an interaction effect only.  

 



Figure S4. The Pratt index across multiple interactions. 

Examples of the cumulated contribution of the genetic, exposure and interaction effects to the variance of an 

outcome Y when using the standard approach (variance explained by the interaction term on top of the marginal 

effect, ∑𝑟2) and the Pratt index (∑𝑟∗2). The outcome was generated as a function of 10,000 independent causal 

SNPs and a single exposure. In scenario a) the exposure is binary and rare (5% prevalence) and modifies the effect 

of 10% of the causal SNPS. In scenario b) the exposure is binary and very common (90% prevalence) and modifies 

the effect of 30% of the causal SNPs. In scenario c) the exposure is normally distributed with mean 4 and variance 

1 and modifies the effect of 60% of the causal SNPs. The frequencies of the causal SNPs are drawn from a uniform 

distribution with a minimum of 0.01 and a maximum of 0.99. For simplicity all main genetic effect and interaction 

effects have equal effect size and the direction of the interaction effects are set so the average contribution of 

interaction effects to the marginal effect of the exposure is null. The genetic main effects and interaction effects 

combined explain 60% of the variance of Y, and the exposure main effect explains 10%. The standard approach 

shows a similar pattern across the 3 scenarios, while the Pratt index correctly recovers the cumulated contribution 

of the GxE terms (i.e. as defined in the generative model). 

 

 

 

  



Figure S5. Joint test of main genetic effect and multiple interaction effects in a linear regression. 

A normally distributed outcome 𝑌, a genetic variants 𝐺 and 10 non-centered normally distributed exposures 

𝐄 = (𝐸1, 𝐸2, … , 𝐸10) are generated for 2,000 individuals across 100,000 replicates. The distribution of the -log10(p-

value) of two tests for the joint analysis of the main genetic effect and the 10 interaction effects between 𝐺 and 𝐄 

are compared under a null model of no main genetic effect and no interaction: the multivariate Wald test of 

estimates obtained from the interaction model when using the raw exposures (upper panels, blue), and a test 

based on the sum of chi-squares from individuals main and interaction estimates obtain from the same model but 

after centering  the exposures (middle panels, red). The correlation between these two tests is then compared 

under an alternative hypothesis where the variance explained by the main genetic effect and the interaction terms 

are drawn from a uniform [0, 0.002] (bottom panels). Four scenarios are considered: in a) 𝐄 is multivariate normal 

with no correlation between the exposures; in b) 𝐄 is multivariate normal with an average absolute pairwise 

correlation of 0.07 between the exposures (95% of the correlations are in [-0.19, 0.19]); in c) 𝐄 is multivariate 

normal with an average absolute pairwise correlation of 0.22 between the exposure (95% of the correlations are 

in [-0.44, 0.44]); and in d) 𝐄 is multivariate log-normal with no correlation between the exposures. Three patterns 

are considered for the genetic variant, i) G is not associated with 𝐄 (G0); ii) G is causal for 3 out of the 10 exposures 

with effect size (i.e. the exposure’s variance explained) drawn from a univariate [0, 0.01] (G1); and iii) G is causal 

for 3 out of the 10 exposures with effect size drawn from a univariate [0, 0.05] (G2). 

  



Figure S6. Joint test of main genetic effect and multiple interaction effects in a logistic regression. 

A binary outcome 𝑌 with 40% prevalence, a genetic variant 𝐺 and 10 non-centered normally distributed exposures 

𝐄 = (𝐸1, 𝐸2, … , 𝐸10) are generated for 2,000 individuals across 100,000 replicates. The distribution of the -log10(p-

value) of two tests for the joint analysis of the main genetic effect and the 10 interaction effects between 𝐺 and 𝐄 

are compared under a null model of no main genetic effect and no interaction: the multivariate Wald test of 

estimates obtained from the interaction model when using the raw exposures (upper panels, blue), and a test 

based on the sum of chi-squares from individuals main and interaction estimates obtain from the same model but 

after centering  the exposures (middle panels, red). The correlation between these two tests is then compared 

under an alternative hypothesis where the main genetic effect and the interaction effect have an odds ratio of 1.1 

(bottom panels). Four scenarios are considered: in a) 𝐄 is multivariate normal with no correlation between the 

exposures; in b) 𝐄 is multivariate normal with an average absolute pairwise correlation of 0.07 between the 

exposures (95% of the correlations are in [-0.19, 0.19]); in c) 𝐄 is multivariate normal with an average absolute 

pairwise correlation of 0.22 between the exposure (95% of the correlations are in [-0.44, 0.44]); and in d) 𝐄 is 

multivariate log-normal with no correlation between the exposures. Three patterns are considered for the genetic 

variant, i) G is not associated with 𝐄 (G0); ii) G is causal for 3 out of the 10 exposures with effect size (i.e. the 

exposure’s variance explained) drawn from a univariate [0, 0.01] (G1); and iii) G is causal for 3 out of the 10 

exposures with effect size drawn from a univariate [0, 0.05] (G2). 

  



Figure S7. GRS-based statistic and meta-analysis of single SNP estimates in linear regression. 

A normally distributed outcome Y is generated as a function of the main effect of 20 genetic variants, the main 

effect of an exposure E and 20 interaction effects between the exposure and each of the 20 genetic variants across 

1,000 replicates including each 2,000 samples. Three distributions of the exposure are considered. In scenario a) E 

is normally distributed with mean 3 and variance 1; in scenario b) E follows a uniform distribution with minimum 0 

and maximum 10; and in scenario c) E follows an exponential distribution with parameter lambda of 1. The GRS-

based test of marginal genetic effect (𝑌~𝐺𝑅𝑆, left panels), and main (center panels) and interaction (right panels) 

effects from the interaction model (𝑌~𝐺𝑅𝑆 + 𝐸 + 𝐺𝑅𝑆 × 𝐸) are compared against the corresponding inverse-

variance weighted meta-analysis of univariate statistics. 

 
  



Figure S8. GRS-based statistic and meta-analysis of single SNP estimates in logistic regression. 

A binary outcome Y with prevalence of 40% is generated as a function of the main effect of 20 genetic variants, 

the main effect of an exposure E and 20 interaction effects between the exposure and each of the 20 genetic 

variants across 1,000 simulations including each 2,000 samples. Three distributions of the exposure are 

considered. In scenario a) E is normally distributed with mean 3 and variance 1; in scenario b) E follows a uniform 

distribution with minimum 0 and maximum 10; and in scenario c) E follows an exponential distribution with 

parameter lambda of 1. The GRS-based test of marginal genetic effect (𝑙𝑜𝑔𝑖𝑡(𝑃𝑟𝑌=1)~𝐺𝑅𝑆, left panels), and main 

(center panels) and interaction (right panels) effect from the interaction model (𝑙𝑜𝑔𝑖𝑡(𝑃𝑟𝑌=1)~𝐺𝑅𝑆 + 𝐸 + 𝐺𝑅𝑆 ×

𝐸) are compared against the corresponding inverse-variance weighted meta-analysis of univariate statistics. 

 

 
 

  



 

Table S1. Variable and effect estimates for SNPs by Soda consumption interaction on BMI 

 

 
Variable 

Effect estimates  Variable distribution 

Marginal 
model 

Interaction 
model 

 Mean Variance 

GRS 1.212 0.683  2.900 0.260 

Soda consumption  -0.134 -0.879  2.062 1.078 

Interaction - 0.257  - - 

Derivation was done using the Nurses’ Health Study (NHS) and Health Professional Follow-up Study (HPFS) data only. 

 

 

Table S2. Variable and effect estimates for SNPs by physical activity interaction on BMI 

 

 
Variable 

Effect estimates  Variable distribution 

Marginal 
model 

Interaction 
model 

 Mean Variance 

GRS 0.161 0.192  11.20 4.84 

Physical Activity -0.358 -0.212  2.50* 1.25* 

Interaction - -0.013  - - 
*
physical activity was defined following the Cambridge Physical Activity Index in four levels (1= inactive, 2= moderate inactive, 3= moderate 

active and 4= active). Mean and variance of the exposure was not available in the study and was approximated assuming equal probability 

across the four groups. 


