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S1 Derivation and analysis of the motif-based spectral clus-
tering method

We now cover the background and theory for deriving and understanding the method presented

in the main text. We will start by reviewing the graph Laplacian and cut and volume measures

for sets of vertices in a graph. We then define network motifs in Section S1.2 and generalizes the

notions of cut and volume to motifs. Our new theory is presented in Section S1.6 and then we

summarize some extensions of the method. Finally, we relate our method to existing methods

for directed graph clustering and hypergraph partitioning.

S1.1 Review of the graph Laplacian for weighted, undirected graphs

Consider a weighted, undirected graph G = (V,E), with |V | = n. Further assume that G has no

isolated nodes. Let W encode the weights, of the graph, i.e., Wij = Wji = weight of edge (i, j).

The diagonal degree matrix D is defined as Dii =
Pn

j=1

Wij , and the graph Laplacian is defined

as L = D �W . We now relate these matrices to the conductance of a set S, �G(S):

�G(S) = cut(G)S, ¯S/min(vol(G)S, vol(G)

¯S), (S3)

cut(G)S, ¯S =

X

i2S, j2 ¯S

Wij, (S4)

vol(G)S =

X

i2S

Dii (S5)

Here, ¯S = V \S. (Note that conductance is a symmetric measure in S and ¯S, i.e., �G(S) =

�G(
¯S).) Conceptually, the cut and volume measures are defined as follows:

cut(G)S, ¯S = weighted sum of weights of edges that are cut (S6)

vol(G)S = weighted number of edge end points in S (S7)

Since we have assumed G has no isolated nodes, vol(G)S > 0. If G is disconnected, then for

any connected component C, �G(C) = 0. Thus, we usually consider breaking G into connected
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components as a pre-processing step for algorithms that try to find low-conductance sets.

We now relate the cut metric to a quadratic form on L. Later, we will derive a similar form

for a motif cut measure. Note that for any vector y 2 Rn,

yTLy =

X

(i,j)2E

wij(yi � yj)
2. (S8)

Now, define x to be an indicator vector for a set of nodes S i.e., xi = 1 if node i is in S and

xi = 0 if node i is in ¯S. Note that if an edge (i, j) is cut, then xi and xj take different values

and (xi � xj)
2

= 1; otherwise, (xi � xj)
2

= 0. Thus,

xTLx = cut(G)S, ¯S. (S9)

S1.2 Definition of network motifs

We now define network motifs as used in our work. We note that there are alternative definitions

in the literature (1). We consider motifs to be a pattern of edges on a small number of nodes (see

Figure S4). Formally, we define a motif on k nodes by a tuple (B,A), where B is a k⇥k binary

matrix and A ⇢ {1, 2, . . . , k} is a set of anchor nodes. The matrix B encodes the edge pattern

between the k nodes, and A labels a relevant subset of nodes for defining motif conductance.

In many cases, A is the entire set of nodes. Let �A be a selection function that takes the subset

of a k-tuple indexed by A, and let set(·) be the operator that takes an (ordered) tuple to an

(unordered) set. Specifically,

set((v
1

, v
2

, . . . , vk)) = {v
1

, v
2

, . . . , vk}.

The set of motifs in an unweighted (possibly directed) graph with adjacency matrix A, denoted

M(B,A), is defined by

M(B,A) = {(set(v), set(�A(v))) | v 2 V k, v
1

, . . . , vk distinct, Av = B}, (S10)
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Figure S4: A: Illustration of network motifs used throughout the main text and supplementary
material. The motif Medge is used to represent equivalence to undirected the graph. B: Diagram
of motif definitions. The motif is defined by a binary matrix B and an anchor set of nodes.
The figure shows an anchored version of motif M

2

with anchors on the nodes that form the
bi-directional edge. There are two instances of the motif in the graph on the right. Note that
({a, b, d}, {a, b}) is not included in the set of motif instances because the induced subgraph on
the nodes a, b, and d is not isomorphic to the graph defined by B.

where Av is the k ⇥ k adjacency matrix on the subgraph induced by the k nodes of the ordered

vector v. Figure S4 illustrates these definitions. The set operator is a convenient way to avoid

duplicates when defining M(B,A) for motifs exhibiting symmetries. Henceforth, we will just

use (v,�A(v)) to denote (set(v), set(�A(v))) when discussing elements of M(B,A). Further-

more, we call any (v,�A(v)) 2 M(B,A) a motif instance. When B and A are arbitrary or

clear from context, we will simply denote the motif set by M .

We call motifs where �A(v) = v simple motifs and motifs where �A(v) 6= v anchored

motifs. Motif analysis in the literature has mostly analyzed simple motifs (30). However, the

anchored motif provides us with a more general framework, and we use an anchored motif for
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the analysis of the transportation reachability network.

Often, a distinction is made between a functional and a structural motif (31) (or a subgraph

and an induced subgraph (32)) to distinguish whether a motif specifies simply the existence

of a set of edges (functional motif or subgraph) or the existence and non-existence of edges

(structural motif or induced subgraph). By the definition in Equation S10, we refer to structural

motifs in this work. Note that functional motifs consist of a set of structural motifs. Our cluster-

ing framework allows for the simultaneous consideration of several motifs (see Section S1.9),

so we have not lost any generality in our definitions.

S1.3 Definition of motif conductance

Recall that the key definitions for defining conductance are the notions of cut and volume. For

an unweighted graph, these are

�G(S, ¯S) = cut(G)S, ¯S/min(vol(G)S, vol(G)

¯S), (S11)

cut(G)S, ¯S = number of edges cut, (S12)

vol(G)S = number of edge end points in S. (S13)

Our conceptual definition of motif conductance simply replaces an edge with a motif instance

of type M :

�G(S) = cutM(M)S, ¯S/min(volM(G)S, volM(G)

¯S), (S14)

cutM(G)S, ¯S = number of motif instances cut, (S15)

volM(G)S = number of motif instance end points in S. (S16)

We say that a motif instance is cut if there is at least one anchor node in S and at least one
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anchor node in ¯S. We can formalize this when given a motif set M as in Equation S10:

cutM(G)S, ¯S =

X

(v,�A(v))2M

1(9 i, j 2 �A(v) | i 2 S, j 2 ¯S), (S17)

volM(G)S =

X

(v,�A(v))2M

X

i2�A(v)

1(i 2 S), (S18)

where 1(s) is the truth-value indicator function on s, i.e., 1(s) takes the value 1 if the statement

s is true and 0 otherwise. Note that Equation S17 makes explicit use of the anchor set A. The

motif cut measure only counts an instance of a motif as cut if the anchor nodes are separated,

and the motif volume counts the number of anchored nodes in the set. However, two nodes

in an achor set may a part of several motif instances. Specifically, following the definition in

Equation S10, there may be many different v with the same �A(v), and the nodes in �A(v) still

get counted proportional to the number of motif instances.

S1.4 Definition of the motif adjacency matrix and motif Laplacian

Given an unweighted, directed graph and a motif set M , we conceptually define the motif

adjacency matrix by

(WM)ij = number of motif instances in M where i and j participate in the motif. (S19)

Or, formally,

(WM)ij =

X

(v,�A(v))2M

1({i, j} ⇢ �A(v)), (S20)

for i 6= j. Note that weight is added to (WM)ij only if i and j appear in the anchor set.

This is important for the transportation reachability network analyzed in the main text and in

Section S6, where weight is added between cities i and j based on the number of intermediary

cities that can be traversed between them.

Next, we define the motif diagonal degree matrix by (DM)ii =

Pn
j=1

(WM)ij and the

motif Laplacian as LM = DM � WM . Finally, the normalized motif Laplacian is LM =
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D�1/2
M LMD�1/2

M = I �D�1/2
M WMD�1/2

M . The theory in the next section will examine quadratic

forms LM and derive the main clustering method that uses an eigenvector of LM .

S1.5 Algorithm for finding a single cluster

We are now ready to describe the algorithm for finding a single cluster in a graph. The algorithm

finds a partition of the nodes into S and ¯S. The motif conductance is symmetric in the sense

that �G(S) = �G(
¯S), so either set of nodes (S or ¯S) could be interpreted as a cluster. How-

ever, in practice, it is common that one set is substantially smaller than the other. We consider

this smaller set to represent a module in the network. The algorithm is based on the Fiedler

partition (33) of the motif weighted adjacency matrix and is presented below in Algorithm 1.1

Algorithm 1: Motif-based clustering algorithm for finding a single cluster.
Input: Directed, unweighted graph G and motif M
Output: Motif-based cluster (subset of nodes in G)
(WM)ij  number of instances of M that contain nodes i and j.
GM  weighted graph induced WM

DM  diagonal matrix with (DM)ii =
P

j(WM)ij

z  eigenvector of second smallest eigenvalue for LM = I �D�1/2
M WMD�1/2

M

�i  to be index of D�1/2
M z with ith smallest value

/* Sweep over all prefixes of � */
S  argminl �GM (Sl), where Sl = {�

1

, . . . , �l}
if |S| < | ¯S| then

return S
else

return ¯S

It is often informative to look at all conductance values found from the sweep procedure.

We refer to a plot of �GM (Sl) versus l as a sweep profile plot. In the following subection, we

show that when the motif has three nodes, �GM (Sl) = �Sl
(). In this case, the sweep profile

shows how motif conductance varies with the size of the sets in Algorithm 1.

In the following subsection, we show that when the motif M has three nodes, the cluster
1An implementation of Algorithm 1 is available in SNAP. See http://snap.stanford.edu/

higher-order/.
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satisfies �G(S)  4

p
�⇤, where �⇤ is the smallest motif conductance over all sets of nodes. In

other words, the cluster is nearly optimal. Later, we extend this algorithm to allow for signed,

colored, and weighted motifs and to simultaneously finding multiple clusters.

S1.6 Motif Cheeger inequality for network motifs with three nodes

We now derive the motif Cheeger inequality for simple three-node motifs, or, in general, motifs

with three anchor nodes. The crux of this result is deriving a relationship between the motif con-

ductance function and the weighted motif adjacency matrix, from which the Cheeger inequality

is essentially a corollary. For the rest of this section, we will use the following notation. Given

an unweighted, directed G and a motif M , the corresponding weighted graph defined by Equa-

tion S20 is denoted by GM .

The following Lemma relates the motif volume to the volume in the weighted graph. This

lemma applies to any anchor set A consisting of at least two nodes. For our main result, we will

apply the lemma assuming |A| = 3. However, we will apply the lemma more generally when

discussing four node motifs in Section S1.7.

Lemma 1. Let G = (V,E) be a directed, unweighted graph and let GM be the weighted graph

for a motif on k nodes and |A| � 2 anchor nodes. Then for any S ⇢ V ,

volM(G)S =

1

|A|� 1

vol(GM)S

Proof. Consider an instance (v,�A(v)) of a motif. Let (u
1

, . . . , u|A|) = �A(v). By Equa-

tion S20, (WM)u1,j is incremented by one for j = u
2

, . . . , u|A|. Since (DM)u1,u1 =

P

j (WM)u1,j ,

the motif end point u
1

is counted |A|� 1 times.
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Figure S5: Illustrations of the quadratic forms on indicator functions for set assignment. Here,
the blue nodes have assignment to set S and the green nodes have assignment to set ¯S. The
quadratic function gives the penalty for cutting that motif. A: Illustration of Equation S21. The
quadratic form is proportional to the indicator on whether or not the motif is cut. B: Illustration
of Equation S22. The quadratic form is equal to zero when all nodes are in the same set.
However, the form penalizes 2/2 splits more than 3/1 splits.

The following lemma states that the truth value for determining whether three binary vari-

ables in {�1, 1} are not all equal is a quadratic function of the variables (see Figure S5). Be-

cause this function is quadratic, we will be able to relate motif cuts on three nodes to a quadratic

form on the motif Laplacian.
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Lemma 2. Let xi, xj, xk 2 {�1, 1}. Then

4 · 1(xi, xj, xk not all the same) = x2

i + x2

j + x2

k � xixj � xjxk � xkxi.

It will be easier to derive our results with binary indicator variables taking values in {�1, 1}.

However, in terms of the quadratic form on the Laplacian, we have already seen how indicator

vectors taking values in {0, 1} relate to the cut value (Equation S9). The following lemma

shows that the {0, 1} and {�1, 1} indicator vectors are equivalent, up to a constant, for defining

the cut measure in terms of the Laplacian.

Lemma 3. Let z 2 {0, 1}n and define x by xi = 1 if zi = 1 and xi = �1 if zi = 0. Then for

any graph Laplacian L = D �W , 4zTLz = xTLx.

Proof.

xTLx =

X

(i,j)2E

Wij(xi � xj)
2

=

X

(i,j)2E

Wij4(zi � zj)
2

= 4zTLz.

The next lemma contains the essential result that relates motif cuts in the original graph

G to weighted edge cuts in GM . In particular, the lemma shows that the motif cut measure

is proportional to the cut on the weighted graph defined in Equation S19 when there are three

anchor nodes.

Lemma 4. Let G = (V,E) be a directed, unweighted graph and let GM be the weighted graph

for a motif with |A| = 3. Then for any S ⇢ V ,

cutM(G)S =

1

2

cut(GM)S
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Proof. Let x 2 {�1, 1}n be an indicator vector of the node set S.

4 · cutM(G)S =

X

(v,{i,j,k})2M

4 · 1(xi, xj, xk not all the same)

=

X

(v,{i,j,k})2M

�

x2

i + x2

j + x2

k

�

� (xixj + xjxk + xkxi)

=

1

2

xTDMx� 1

2

xTWMx

=

1

2

xTLMx

= 2 · cut(GM)S.

The first equality follows from the definition of cut motifs (Equation S17). The second equality

follows from Lemma 2. The third equality follows from Lemma 1 and Equation S20. The fourth

equality follows from the definition of LM . The fifth equality follows from Lemma 3.

We are now ready to prove our main result, namely that motif conductance on the orig-

inal graph G is equivalent to conductance on the weighted graph GM when there are three

anchor nodes. The result is a consequence of the volume and cut relationships provided by

Lemmas 1 and 4.

Theorem 5. Let G = (V,E) be a directed, unweighted graph and let WM be the weighted

adjacency matrix for any motif with |A| = 3. Then for any S ⇢ V ,

�G(S) = �GM (S)

In other words, when the number of anchor nodes is 3, the motif conductance is equal to the

conductance on the weighted graph defined by Equation S19.

Proof. When |A| = 3, the motif cut and motif volume are both equal to half the motif cut and

motif volume measures by Lemmas 1 and 4.
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For any motif with three anchor nodes, conductance on the weighted graph is equal to the

motif conductance. Because of this, we can use results from spectral graph theory for weighted

graphs (33) and re-interpret the results in terms of motif conductance. In particular, we get the

following “motif Cheeger inequality”.

Theorem 6. Motif Cheeger Inequality. Suppose we use Algorithm 1 to find a low-motif con-

ductance set S. Let �⇤ = minS �G(S) be the optimal motif conductance over any set of nodes

S. Then

1. �G(S)  4

p
�⇤ and

2. �⇤ � �
2

/2

Proof. The result follows from Theorem 5 and the standard Cheeger ineqaulity (33).

The first part of the result says that the set of nodes S is within a quadratic factor of optimal.

This provides the mathematical guarantees that our procedure finds a good cluster in a graph,

if one exists. The second result provides a lower bound on the optimal motif conductance in

terms of the eigenvalue. We use this bound in our analysis of a food web (see Section S7.1) to

show that certain motifs do not provide good clusters, regardless of the procedure to select S.

S1.7 Discussion of motif Cheeger inequality for network motifs with four
or more nodes

Analogs of the indicator function in Lemma 2 for four or more variables are not quadratic.

Subsequently, for motifs with |A| > 3, we no longer get the motif Cheeger inequalities guaran-

teed by Theorem 6. That being said, solutions found by motif-based partitioning approximate a

related value of conductance. We now provide the details.

We begin with a lemma that shows a functional form for four binary variables taking values

in {�1, 1} to not all be equal. We see that it is quartic, not quadratic.
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Lemma 7. Let xi, xj, xk, xl 2 {�1, 1}. Then the indicator function on all four elements not

being equal is

8 · 1(xi, xj, xk, xl not all the same) (S21)

= (7� xixj � xixk � xixl � xjxk � xjxl � xkxl � xixjxkxl) .

We almost have a quadratic form, if not for the quartic term xixjxkxl. However, we could

use the following related quadratic form:

6� xixj � xixk � xixl � xjxk � xjxl � xkxl

=

8

<

:

0 xi, xj, xk, xl are all the same
6 exactly three of xi, xj, xk, xl are the same
8 exactly two of xi, xj, xk, xl are �1.

(S22)

The quadratic still takes value 0 if all four entries are the same, and takes a non-zero value

otherwise. However, the quadratic takes a larger value if exactly two of the entries are �1.

Figure S5 illustrates this idea. From this, we can provide an analogous statement to Lemma 4

for motifs with |A| = 4.

Lemma 8. Let G = (V,E) be a directed, unweighted graph and let GM be the weighted graph

for a motif with |A| = 4. Then for any S ⇢ V ,

cutM(G)S =

1

3

cut(GM)S �
X

(v,{i,j,k,l})2M

1

3

· 1(exactly two of i, j, k, l in S)

S15



Proof. Let x 2 {�1, 1}n be an indicator vector of the node set S.

6 · cutM(G)S +

X

(v,{i,j,k,l})2M

2 · 1(exactly two of i, j, k, l in S)

=

X

(v,{i,j,k,l})2M

6� xixj � xixk � xixl � xjxk � xjxl � xkxl

=

X

(v,{i,j,k,l})2M

3

2

�

x2

i + x2

j + x2

k + x2

l

�

� (xixj + xixk + xixl + xjxk + xjxl + xkxl)

=

1

2

xTDMx� 1

2

xTWMx

=

1

2

xTLMx

= 2 · cut(GM)S.

The first equality follows from Equations S17 and S22. The third equality follows from Lemma 1.

The fourth equality follows from the definition of LM . The fifth equality follows from Lemma 3.

With four anchor nodes, the motif cut in G is slightly different than the weighted cut in the

weighted graph GM . However, Lemma 1 says that the motif volume in G is still the same as the

weighted volume in GM . We use this to derive the following result.

Theorem 9. Let G = (V,E) be a directed, unweighted graph and let WM be the weighted

adjacency matrix for any motif with |A| = 4. Then for any S ⇢ V ,

�G(S) = �GM (S)�
P

(v,{i,j,k,l})2M 1(exactly two of i, j, k, l in S)

vol(GM)S

In other words, when there are four anchor nodes, the weighting scheme in Equation S19 models

the exact conductance with an additional penalty for splitting the four anchor nodes into two

groups of two.

Proof. This follows from Lemmas 1 and 8.
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To summarize, we still get a Cheeger inequality from the weighted graph, but it is in terms

of a penalized version of the motif conductance �G(S). However, the penalty makes sense—if

the group of four nodes is “more split” (2 and 2 as opposed to 3 and 1), the penalty is larger.

When |A| > 4, we can derive similar penalized approximations to �G(S).

S1.8 Methods for simultaneously finding multiple clusters

For clustering a network into k > 2 clusters based on motifs, we could recursively cut the graph

using the sweep procedure with some stopping criterion (20). For example, we could continue

to cut the largest remaining cluster until the graph is partitioned into some pre-specified number

of clusters. We refer to this method as recursive bi-partitioning.

In addition, we can use the following method of Ng et al. (19).
Algorithm 2: Motif-based clustering algorithm for finding several clusters.

Input: Directed, unweighted graph G, motif M , number of clusters k
Output: k disjoint motif-based clusters
(WM)ij  number of instances of M that contain nodes i and j.
DM  diagonal matrix with (DM)ii =

P

j(WM)ij

z
1

, . . . , zk  eigenvectors of k smallest eigenvalues for LM = I �D�1/2
M WMD�1/2

M

Yij  zij/
q

Pk
j=1

z2ij
Embed node i into Rk by taking the ith row of the matrix Y
Run k-means clustering on the embedded nodes

This method does not have the same Cheeger-like guarantee on quality. However, recent

theory shows that by replacing k-means with a different clustering algorithm, there is a perfor-

mance guarantee (34). While this provides motivation, we use k-means for its simplicity and

empirical success.

S1.9 Extensions of the method for simultaneously analyzing several net-
work motifs

All of our results carry through when considering several motifs simultaneously. In particular,

suppose we are interested in clustering based on motif sets M
1

, . . . ,Mq for q different motifs.
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Further suppose that we want to weight the impact of some motifs more than other motifs. Let

WMj be the weighted adjacency matrix for motif Mj , j = 1, . . . , q, and let ↵j � 0 be the weight

of motif Mj , then we can form the weighted adjacency matrix

WM =

q
X

j=1

↵jWMj . (S23)

Now, the cut and volume measures are simply weighted sums by linearity. Suppose that the

Mj all have three anchor nodes and let GM be the weighted graph corresponding to WM . Then

cut(GM)S =

q
X

j=1

↵jcutMj(G,S), vol(GM)S =

q
X

j=1

↵jvolMj(G,S),

and Theorem 6 applies to a weighted motif conductance equal to
Pq

j=1

↵jcutMj(G,S)

min

⇣

Pq
j=1

↵jvolMj(G,S),
Pq

j=1

↵jvolMj(G,S)
⌘ .

S1.10 Extensions of the method to signed, colored, and weighted motifs

Our results easily generalize for signed networks. We only have to generalize Equation S10

by allowing the adjacency matrix B to be signed. Extending the method for motifs where the

edges or nodes are “colored” or “labeled” is similar. If the edges are colored, then we again just

allow the adjacency matrix B to capture this information. If the nodes in the motif are colored,

we only count motif instances with the specified pattern.

We can also generalize the notions of motif cut and motif volume for “weighted motifs”,

i.e., each motif has an associated nonnegative weight. Let !
(

v,�A(v)) be the weight of a motif

instance. Our cut and volume metrics are then

cutM(G)S, ¯S =

X

(v,�A(v))2M

!
(

v,�A(v)) 1(9 i, j 2 �A(v) | i 2 S, j 2 ¯S),

volM(G)S =

X

(v,�A(v))2M

!
(

v,�A(v))
X

i2�A(v)

1(i 2 S).
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Subsequently, we adjust the motif adjacency matrix as follows:

(WM)ij =

X

(v,�A(v))2M

!
(v,�A(v)) 1({i, j} ⇢ �A(v)) (S24)

S1.11 Connections to directed graph partitioning

Our framework also provides a way to analyze methods for clustering directed graphs. Exist-

ing principled generalizations of undirected graph partitioning to directed graph partitioning

proceed from graph circulations (35) or random walks (36) and are difficult to interpret. Our

motif-based clustering framework provides a simple, rigorous framework for directed graph

partitioning. For example, consider the common heuristic of clustering the symmetrized graph

W = A + AT , where A is the (directed) adjacency matrix (37). Following Theorem 5,

conductance-minimizing methods for partitioning W are actually trying to minimize a weighted

sum of motif-based conductances for the directed edge motif and the bi-directional edge motif:

B
1

=



0 1

0 0

�

, B
2

=



0 1

1 0

�

,

where both motifs are simple (A = {1, 2}). If W
1

and W
2

are the motif adjacency matrices for

B
1

and B
2

, then A + AT
= W = W

1

+ 2W
2

. This weighting scheme gives a weight of two to

bi-directional edges in the original graph and a weight of one to uni-directional edges.

An alternative strategy for clustering a directed graph is to simply remove the direction on

all edges, treating bi-directional and uni-directional edges the same. The resulting adjacency

matrix is equivalent to the motif adjacency matrix for the bi-directional and uni-directional

edges (without any relative weighting). Formally, W = W
1

+W
2

. We refer to this “motif” as

Medge (Figure S4), which will later provide a convenient notation when discussing both motif-

based clustering and edge-based clustering.
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S1.12 Connections to hypergraph partitioning

Finally, we contextualize our method in the context of existing literature on hypergraph par-

titioning. The problem of partitioning a graph based on relationships between more than two

nodes has been studied in hypergraph partitioning (38), and we can interpret motifs as hy-

peredges in a graph. In contrast to existing hypergraph partitioning problems, we induce the

hyperedges from motifs rather than take the hyperedges as given a priori. The goal with our

analysis of the Florida Bay food web, for example, was to find which hyperedge sets (induced

by a motif) provide a good clustering of the network (see Section S7.1).

In general, our motif-based spectral clustering methodology falls into the area of encoding

a hypergraph partitioning problem by a graph partitioning problem (39, 40). With simple mo-

tifs on k nodes, the motif Laplacian LM formed from WM (Equation S20) is a special case

of the Rodrı́guez Laplacian (39, 41) for k-regular hypergraphs. The motif Cheeger inequality

we proved (Theorem 6) explains why this Laplacian is appropriate for 3-regular hypergraphs.

Specifically, it respects the standard cut and volume metrics for graph partitioning.

S2 Computational complexity and scalability of the method

We now analyze the computation of the higher-order clustering method. We first provide a

theoretical analysis of the computational complexity, which depends on motif. After, we empir-

ically analyze the time to find clusters for triangular motifs on a variety of real-world networks,

ranging in size from a few hundred thousand edges to nearly two billion edges. Finally, we

show that we can practically compute the motif adjacency matrix for motifs up to size 9 on a

number of real-world networks.
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S2.1 Analysis of computational complexity

We now analyze the computational complexity of the algorithm presented in Theorem 6. Over-

all, the complexity of the algorithm is governed by the computations of the motif adjacency

matrix WM , an eigenvector, and the sweep cut procedure. For simplicity, we assume that we

can access edges in a graph in O(1) time and access and modify matrix entries in O(1) time.

Let m and n denote the number of edges in the graph. Theoretically, the eigenvector can be

computed in O((m + n)(log n)O(1)

) time using fast Laplacian solvers (42). For the sweep cut,

it takes O(n log n) to sort the indices given the eigenvector using a standard sorting algorithm

such is merge sort. Computing motif conductance for each set Sr in the sweep also takes linear

term. In pratice, the sweep cut step takes a small fraction of the total running time of the al-

gorithm. For the remainder of the analysis, we consider the more nuanced issue of the time to

compute WM .

The computational time to form WM is bounded by the time to find all instances of the motif

in the graph. Naively, for a motif on k nodes, we can compute WM in ⇥(nk
) time by checking

each k-tuple of nodes. Furthermore, there are cases where there are ⇥(nk
) motif instances in

the graph, e.g., there are ⇥(n3

) triangles in a complete graph. However, since most real-world

networks are sparse, we instead focus on the complexity of algorithms in terms of the number of

edges and the maximum degree in the graph. For this case, there are several efficient practical

algorithms for real networks with available software (43–47).

Theoretically, motif counting is efficient. Here we consider four classes of motifs: (1)

triangles, (2) wedges (connected, non-triangle three-node motifs), (3) four-node motifs, and (4)

k-cliques. Let m be the number of edges in a graph. Latapy analyzed a number of algorithms

for listing all triangles in an undirected network, including an algorithm that has computational

complexity ⇥(m1.5
) (48). For a directed graph G, we can use the following algorithm: (1) form

a new graph Gundir by removing the direction from all edges in G (2) find all triangles in Gundir,
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(3) for every triangle in Gundir, check which directed triangle motif it is in G. Since step 1 is

linear and we can perform the check in step 3 in O(1) time, the same ⇥(m1.5
) complexity holds

for directed networks. This analysis holds regardless of the structure of the networks. However,

additional properties of the network can lead to improved algorithms. For example, in networks

with a power law degree sequence with exponent greater than 7/2, Berry et al. provide a

randomized algorithm with expected running time ⇥(m) (49). In the case of a bounded degree

graph, enumerating over all nodes and checking all pairs of neighbors takes time ⇥(nd2
max

),

where d
max

is the maximum degree in the graph. We note that with triangular motifs, the

number of non-zeros in WM is less than the number of non-zeros in the original adjacency

matrix. Thus, we do not have to worry about additional storage requirements.

Next, we consider wedges (open triangles). We can list all wedges by looking at every pair

of neighbors of every node. This algorithm has ⇥(nd2
max

) computational complexity, where n is

the number of nodes and d
max

is again the maximum degree in the graph (a more precise bound

is ⇥(

P

j d
2

j), where dj is the degree of node j.) If the graph is sparse, the motif adjacency

matrix will have more non-zeros than the original adjacency matrix, so additional storage is

required. Specifically, there is fill-in for all two-hop neighbors, so the motif adjacency matrix

has O(

P

j d
2

j) non-zeros. This is impractical for large real-world networks but manageable for

modestly sized networks.

Marcus and Shavitt present an algorithm for listing all four-node motifs in an undirected

graph in O(m2

) time (50). We can employ the same edge direction check as for triangles to

extend this result to directed graphs. Chiba and Nishizeki develop an algorithm for finding

a representation of all quadrangles (motif on four nodes that contains a four-node cycle as a

subgraph) in O(am) time and O(m) space, where a is the arboricity of the graph (51). The ar-

boricity of any connected graph is bounded by O(m1/2
), so this algorithm runs in time O(m3/2

).

Chiba and Nishizeki present an algorithms for k-clique enumeration that also depends on

S22



the arboricity of the graph. Specifically, they provide an algorithm for enumerating all k-cliques

in O(kak�2m) time, where a is the arboricity of the graph. This algorithm achieves the ⇥(m3/2
)

bound for arbitrary graphs. (We note that the triangle listing sub-case is similar in spirit to the

algorithm proposed by Schank and Wagner (52)). For four-node cliques, the algorithm runs in

time O(m2

) time, which matches the complexity of Marcus and Shavitt (50).

We note that we could also employ approximation algorithms to estimate the weights in the

motif adjacency matrix (53). Such methods balance computation time and accuracy. Finally,

we note that the computation of WM and the computation of the eigenvector are suitable for

parallel computation. There are already distributed algorithms for triangle enumeration (54),

and the (parallel) eigenvector computation of a sparse matrix is a classical problem in scientific

computing (55, 56).

S2.2 Experimental results on triangular motifs

In this section, we demonstrate that our method scales to real-world networks with billions

of edges. We tested the scalability of our method on 16 large directed graphs from a va-

riety of real-world applications. These networks range from a couple hundred thousand to

two billion edges and from 10 thousand to over 50 million nodes. Table S1 lists short de-

scriptions of these networks. The wiki-RfA, email-EuAll, cit-HepPh, web-NotreDame, ama-

zon0601, wiki-Talk, ego-Gplus, soc-Pokec, and soc-LiveJournal1 networks were downloaded

from the SNAP collection at http://snap.stanford.edu/data/ (57). The uk-2014-

tpd, uk-2014-host, enwiki-2013, uk-2002, arabic-2005, twitter-2010, and sk-2005 networks

were downloaded from the Laboratory for Web Algorithmics collection at http://law.di.

unimi.it/datasets.php (58–61). Links to all datasets are available on our project web-

site: http://snap.stanford.edu/higher-order/.

Recall that Algorithm 1 consists of two major computational components:
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1. Form the weighted graph WM .

2. Compute the eigenvector z of second smallest eigenvalue of the matrix LM .

After computing the eigenvector, we sort the vertices and loop over prefix sets to find the lowest

motif conductance set. We consider these final steps as part of the eigenvector computation for

our performance experiments.

For each network in Table S1, we ran the method for all directed triangular motifs (M
1

–

M
7

). To compute WM , we used a standard algorithm that meets the O(m3/2
) bound (48, 52)

with some additional pre-processing based on the motif. Specifically, the algorithm is:

1. Take motif type M and graph G as input.

2. (Pre-processing.) If M is M
1

or M
5

, remove all bi-directional edges in G since these

motifs only contain uni-directional edges. If M is M
4

, remove all uni-directional edges

in G as this motif only contains bi-directional edges.

3. Form the undirected graph Gundir by removing the direction of all edges in G.

4. Let du be the degree of node u Gundir. Order the nodes in Gundir by increasing degree,

breaking ties arbitrarily. Denote this ordering by  .

5. For every edge undirected edge {u, v} in Gundir, if  u <  v, add directed edge (u, v) to

Gdir; otherwise, add directed edge (v, u) to Gdir.

6. For every node in u in Gdir and every pair of directed edges (u, v) and (u, w), check to

see if u, v, and w form motif M in G. If they do, check if the triangle forms motif M in

G and update WM accordingly.

The algorithm runs in time ⇥(m3/2
) time in the worst case, and is also known as an effective

heuristic for real-world networks (49). After, we find the largest connected component of the
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graph corresponding to the motif adjacency matrix WM , form the motif normalized Laplacian

LM of the largest component, and compute the eigenvector of second smallest eigenvalue of

LM . To compute the eigenvector, we use MATLAB’s eigs routine with tolerance 1e-4 and the

“smallest algebraic” option for the eigenvalue type.

Table S2 lists the time to compute WM and the time to compute the eigenvector for each

network. We omitted the time to read the graph from disk because this time strongly depends

on how the graph is compressed. All experiments ran on a 40-core server with four 2.4 GHz

Intel Xeon E7-4870 processors. All computations of WM were in serial and the computations

of the eigenvectors were in parallel.

Over all networks and all motifs, the longest computation of WM (including pre-processing

time) was for M
2

on the sk-2005 network and took roughly 52.8 hours. The longest eigenvector

computation was for M
6

on the sk-2005 network, and took about 1.62 hours. We note that WM

only needs to be computed once per network, regardless of the eventual number of clusters that

are extracted. Also, the computation of WM can easily be accelerated by parallel computing (the

enumeration of motifs can be done in parallel over nodes, for example) or by more sophisticated

algorithms (49). In this work, we perform the computation of WM in serial in order to better

understand the scalability.

In theory, the triangle enumeration time is O(m1.5
). We fit a linear regression of the log of

the computation time of the last step of the enumeration algorithm to the regressor log(m) and

a constant term:

log(time) ⇠ a log(m) + b (S25)

If the computations truly took cm1.5 for some constant c, then the regression coefficient for

log(m) would be 1.5. Because of the pre-processing of the algorithm, the number of edges

m depends on the motif. For example, with motifs M
1

and M
5

, we only count the number of

uni-directional edges. The pre-processing time, which is linear in the total number of edges,
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is not included in the time. The regression coefficient for log(m) (a in Equation S25) was

found to be smaller 1.5 for each motif (Table S3). The largest regression coefficient was 1.31

for M
3

(with 95% confidence interval 1.31 ± 0.19). We also performed a regression over the

aggregate times of the motifs, and the regression coefficient was 1.17 (with 95% confidence

interval 1.17 ± 0.09). We conclude that on real-world datasets, the algorithm for computing

WM performs much better than the worst-case guarantees.

Table S1: Summary of networks used in scalability experiments with triangular motifs. The
total number of edges is the sum of the number of unidirectional edges and twice the number of
bidirectional edges.

Name description # nodes # edges
total unidir. bidir.

wiki-RfA Adminship voting on Wikipedia 10.8K 189K 175K 7.00K
email-EuAll Emails in a research institution 265K 419K 310K 54.5K
cit-HepPh Citations for papers on arXiv HEP-PH 34.5K 422K 420K 657
web-NotreDame Hyperlinks on nd.edu domain 326K 1.47M 711K 380K
amazon0601 Product co-purchasing on Amazon 403K 3.39M 1.50M 944K
wiki-Talk Wikipedia users interactions 2.39M 5.02M 4.30M 362K
ego-Gplus Circles on Google+ 108K 13.7M 10.8M 1.44M
uk-2014-tpd top private domain links on .uk web 1.77M 16.9M 13.7M 1.58M
soc-Pokec Pokec friendships 1.63M 30.6M 14.0M 8.32M
uk-2014-host Host links on .uk web 4.77M 46.8M 33.7M 6.55M
soc-LiveJournal1 LiveJournal friendships 4.85M 68.5M 17.2M 25.6M
enwiki-2013 Hyperlinks on English Wikipedia 4.21M 101M 82.6M 9.37M
uk-2002 Hyperlinks on .uk web 18.5M 292M 231M 30.5M
arabic-2005 Hyperlinks on arabic-language web pages 22.7M 631M 477M 77.3M
twitter-2010 Twitter followers 41.7M 1.47B 937M 266M
sk-2005 Hyperlinks on .sk web 50.6M 1.93B 1.69B 120M
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Table S2: Time to compute the motif adjacency matrix WM and the second eigenvector of the
motif normalized Laplacian LM in seconds for each directed triangular motif.

Motif adjacency matrix WM Second eigenvector of LM

Network M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
1

M
2

M
3

M
4

M
5

M
6

M
7

wiki-RfA 1.19e+00 2.67e+00 1.71e+00 2.06e-02 1.79e+00 2.42e+00 2.35e+00 1.14e-01 2.12e-01 1.22e-01 2.12e-01 2.12e-01 2.94e-01 2.93e-01
email-EuAll 4.74e-01 8.29e-01 6.26e-01 2.46e-01 5.02e-01 5.40e-01 5.41e-01 2.29e-01 1.62e-01 2.43e-01 1.62e-01 1.62e-01 2.35e-01 1.92e-01
cit-HepPh 7.65e+00 3.36e+00 2.73e+00 6.22e+00 8.20e+00 3.29e+00 3.35e+00 2.11e+00 2.10e+00 2.11e+00 2.10e+00 2.10e+00 2.24e+00 2.30e+00
web-NotreDame 9.42e-01 2.39e+01 2.33e+01 2.30e+00 1.17e+00 8.29e+00 8.40e+00 1.86e-01 3.62e-01 5.97e-01 3.62e-01 3.62e-01 9.61e-01 2.06e+00
amazon0601 2.35e+00 8.66e+00 6.91e+00 1.82e+00 2.94e+00 5.47e+00 5.73e+00 1.23e-01 6.96e-01 4.62e+00 6.96e-01 6.96e-01 4.97e+00 4.53e+00
wiki-Talk 1.07e+01 3.00e+01 2.20e+01 3.11e+00 1.35e+01 2.09e+01 2.10e+01 1.28e+00 2.40e+00 2.51e+00 2.40e+00 2.40e+00 2.54e+00 4.52e+00
ego-Gplus 8.55e+02 2.42e+03 1.73e+03 2.08e+01 1.63e+03 2.07e+03 2.17e+03 4.42e+00 1.68e+01 2.11e+01 1.68e+01 1.68e+01 2.57e+01 4.42e+01
uk-2014-tpd 8.10e+01 5.31e+02 4.07e+02 2.56e+01 1.15e+02 3.04e+02 2.85e+02 3.59e+00 9.66e+00 9.92e+00 4.35e+00 9.66e+00 2.10e+01 2.16e+01
soc-Pokec 4.17e+01 1.34e+02 1.21e+02 3.04e+01 4.88e+01 1.00e+02 1.04e+02 1.96e+00 1.75e+01 3.91e+01 1.75e+01 1.75e+01 2.39e+01 2.45e+01
uk-2014-host 9.98e+02 4.68e+03 2.76e+03 8.90e+01 1.32e+03 2.89e+03 2.99e+03 1.81e+01 4.38e+01 6.80e+01 2.04e+01 4.38e+01 8.28e+01 8.73e+01
soc-LiveJournal1 9.08e+01 7.66e+02 6.24e+02 1.24e+02 1.24e+02 4.41e+02 4.49e+02 2.32e+00 2.20e+01 1.06e+02 2.20e+01 2.20e+01 4.49e+01 6.13e+01
enwiki-2013 8.36e+02 9.62e+02 7.09e+02 3.13e+01 9.77e+02 8.19e+02 8.38e+02 2.18e+01 7.58e+01 8.45e+01 7.58e+01 7.58e+01 2.14e+02 1.48e+02
uk-2002 1.47e+03 8.59e+03 5.17e+03 2.45e+02 1.73e+03 4.53e+03 5.29e+03 1.66e+01 8.65e+01 2.52e+02 8.65e+01 8.65e+01 7.87e+02 5.32e+02
arabic-2005 6.51e+03 7.64e+04 6.05e+04 6.08e+03 8.39e+03 3.59e+04 3.69e+04 1.98e+01 1.64e+02 4.80e+02 3.26e+02 1.64e+02 1.95e+03 1.40e+03
twitter-2010 1.21e+04 1.38e+05 1.31e+05 3.33e+04 1.99e+04 8.03e+04 7.65e+04 2.23e+02 1.23e+03 1.95e+03 1.23e+03 1.23e+03 2.22e+03 2.18e+03
sk-2005 5.52e+04 1.63e+05 1.29e+05 1.55e+04 5.23e+04 9.64e+04 8.42e+04 5.73e+01 2.94e+02 7.98e+02 2.94e+02 2.94e+02 5.83e+03 3.81e+03

Table S3: The 95% confidence interval (CI) for the regression coefficient of the regressor
log(m) in a linear model for predicting the time to compute WM , based on the computational
results for the networks in Table S1. The algorithm runs is guranteed to run in time O(m3/2

).
“Combined” refers to the regression coefficient when considering all of the times.

Motif
M

1

M
2

M
3

M
4

M
5

M
6

M
7

Combined

95% CI 1.20± 0.19 1.30± 0.20 1.31± 0.19 0.90± 0.31 1.20± 0.20 1.27± 1.21 1.27± 0.21 1.17± 0.09
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S2.3 Experimental results on k-cliques

On smaller graphs, we can compute larger motifs. To illustrate the computation time, we formed

the motif adjacency matrix W based on the k-cliques motif for k = 4, . . . , 9. We implemented

the k-clique enumeration algorithm by Chiba and Nishizeki with the additional pre-processing

of computing the (k � 1)-core of the graph. (This pre-processing improves the running time

in practice but does not affect the asymptotic complexity.) The motif adjacency matrices for

k-cliques are sparser than the adjacency matrix of the original graph. Thus, we do not worry

about spatial complexity for these motifs.

We ran the algorithm on nine real-world networks, ranging from roughly four thousande

nodes and 88 thousand edges to over two million nodes and around five million edges (see

Table S4.) Each network contained at least one 9-clique and hence at least one k-clique for k <

9. All networks were downloaded from the SNAP collection at http://snap.stanford.

edu/data/ (57). All computations ran on the same server as for the triangular motifs and

again there was no parallelism. We terminated computations after two hours. For five of the nine

networks, the time to compute WM for the k-clique motif was under two hours for k = 4, . . . , 9

(Table S5). And for each network, the computation finished within two hours for k = 4, 5, 6.

The smallest network (in terms of number of nodes and number of edges) was the Facebook

ego network, where it took just under two hours to comptue WM for the 6-clique motif and over

two hours for the 7-clique motif. This network has around 80,000 edges. On the other hand, for

the YouTube network, which contains nearly 3 million edges, we could compute WM for the

9-clique motif in under a minute.

We conclude that it is possible to use our frameworks with motifs much larger than the

three-node motifs on which we performed many of our experiments. However, the number of

edges is not that correlated with the running time to compute WM . This makes sense becuse the

Chiba and Nishizeki algorithm complexity is O(ak�2m), where a is the arboricity of the graph.
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Hence, the dependence on the number of edges is always linear.

Table S4: Summary of networks used in scalability experiments with k-clique motifs. For each
graph, we consider all edges as undirected.

Network description # nodes # edges

ego-Facebook Facebook friendships 4.04K 88.2K
wiki-RfA Adminship voting on Wikipedia 10.8K 182K
ca-AstroPh author co-authorship 18.8K 198K
email-EuAll Emails in a research institution 265K 364K
cit-HepPh paper citations 34.5K 421K
soc-Slashdot0811 Slashdot user interactions 77.4K 469K
com-DBLP author co-authorship 317K 1.05M
com-Youtube User friendships 1.13M 2.99M
wiki-Talk Wikipedia users interactions 2.39M 4.66M

Table S5: Time to compute WM for k-clique motifs (seconds). Only computations that finished
within two hours are listed.

Number of nodes in clique (k)
Network 4 5 6 7 8 9

ego-Facebook 14 317 6816 – – –
wiki-RfA 6 22 63 134 218 286
ca-AstroPh 5 35 285 2164 – –
email-EuAll 1 2 4 5 6 6
cit-HepPh 3 6 11 18 30 36
soc-Slashdot0811 3 12 55 282 1018 2836
com-DBLP 9 129 3234 – – –
com-Youtube 12 17 25 33 35 33
wiki-Talk 64 466 2898 – – –
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S3 Matrix-based interpretation of the motif-weighted adja-
cency matrix

For several motifs, the motif adjacency matrix WM (Equation S19) has a simple formula in

terms of the adjacency matrix of the original, directed, unweighted graph, G. Let A be the

adjacency matrix for G and let U and B be the adjacency matrix of the unidirectional and

bidirectional links of G. Formally, B = A�AT and U = A�B, where � denotes the Hadamard

(entry-wise) product. Table S6 lists the formula of WM for motifs M
1

, M
2

, M
3

, M
4

, M
5

, M
6

,

and M
7

(see Figure S4) in terms of the matrices U and B. The central computational kernel in

these computations is (X · Y ) � Z. When X , Y , and Z are sparse, efficient parallel algorithms

have been developed and analyzed (62). If the adjacency matrix is sparse, then computing WM

for these motifs falls into this framework.

Table S6: Matrix-based formulations of the weighted motif adjacency matrix WM (Equa-
tion S19) for all triangular three-node simple motifs. P �Q denotes the Hadamard (entry-wise)
products of matrices P and Q. If A is the adjacency matrix of a directed, unweighted graph G,
then B = A � AT and U = A� B. Note that in all cases, WM is symmetric.

Motif Matrix computations WM =

M
1

C = (U · U) � UT C + CT

M
2

C = (B · U) � UT
+ (U · B) � UT

+ (U · U) �B C + CT

M
3

C = (B · B) � U + (B · U) �B + (U · B) �B C + CT

M
4

C = (B · B) �B C
M

5

C = (U · U) � U + (U · UT
) � U + (UT · U) � U C + CT

M
6

C = (U · B) � U + (B · UT
) � UT

+ (UT · U) �B C
M

7

C = (UT · B) � UT
+ (B · U) � U + (U · UT

) �B C

With these matrix formulations, implementing the motif-based spectral partitioning algo-

rithm for modestly sized graphs is straightforward. However, these computations become

slower than standard fast triangle enumeration algorithms when the networks are large and

sparse. Nevertheless, the matrix formulations provide a simple and elegant computational
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1 f u n c t i o n [ S , Sbar , c o n d u c t a n c e s ] = M o t i f S p e c t r a l P a r t i t i o n M 6 (A)
2 % S p e c t r a l p a r t i t i o n i n g f o r m o t i f M 6
3

4 B = sp on es (A & A ’ ) ; % b i d i r e c t i o n a l l i n k s
5 U = A � B ; % u n i d i r e c t i o n a l l i n k s
6

7 % Form m o t i f a d j a c e n c y m a t r i x . For d i f f e r e n t m o t i f s , r e p l a c e t h i s l i n e
8 % wi th a n o t h e r m a t r i x f o r m u l a t i o n .
9 W = (B ⇤ U’ ) .⇤ U’ + (U ⇤ B) .⇤ U + (U’ ⇤ U) . ⇤ B ;

10

11 % Compute e i g e n v e c t o r o f m o t i f n o r m a l i z e d L a p l a c i a n
12 D s q r t = d i a g ( sum (W) ) ˆ ( � 1 / 2 ) ;
13 Ln = speye ( s i z e (W, 1 ) ) � D s q r t ⇤ W ⇤ D s q r t ;
14 [ Z , lambdas ] = e i g s ( Ln , 2 , ’ s a ’ ) ;
15 % Matlab ’ s e i g s i s somet imes o u t o f o r d e r
16 [ ˜ , e i g o r d e r ] = s o r t ( d i a g ( lambdas ) ) ;
17 y = D s q r t ⇤ Z ( : , e i g o r d e r ( end ) ) ;
18

19 % L i n e a r t ime sweep p r o c e d u r e
20 [ ˜ , o r d e r ] = s o r t ( y ) ;
21 C = A( o r d e r , o r d e r ) ;
22 C sums = f u l l ( sum (C , 2 ) ) ;
23 volumes = cumsum ( C sums ) ;
24 v o l u m e s o t h e r = f u l l ( sum ( sum (A ) ) ) ⇤ ones ( l e n g t h ( o r d e r ) , 1 ) � volumes ;
25 c o n d u c t a n c e s = cumsum ( C sums � 2 ⇤ sum ( t r i l (C) , 2 ) ) . / min ( volumes , v o l u m e s o t h e r ) ;
26 [ ˜ , s p l i t ] = min ( c o n d u c t a n c e s ) ;
27 S = o r d e r ( 1 : s p l i t ) ;
28 Sbar = o r d e r ( ( s p l i t + 1 ) : end ) ;

Figure S6: MATLAB implementation of the motif-based spectral partitioning algorithm for
motif M

6

. For other motifs, line 9 can be replaced with the formulations from Table S6.

method for the motif adjacency matrix WM . To demonstrate, Figure S6 provides a complete

MATLAB implementation of Algorithm 1 for M
6

(Figure S4). The entire algorithm including

comments comrpises 28 lines of code.

An alternative matrix formulation comes from a motif-node adjacency matrix. Let M(B,A)

be a motif set and number the instances of the motif 1, . . . , |M |, so that (vi,�A(vi)) is the ith

motif. Define the |M |⇥n motif-node adjacency matrix AM by (AM)ij = 1(j 2 �A(vi)). Then

(WM)ij = (AT
MAM)ij, i 6= j. (S26)
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This provides a convenient algebraic formulation for defining the weighted motif adjacency

matrix. However, in practice, we do not use this formulation for any computations.

S4 Alternative clustering algorithms for evaluation

For our experiments, we compare our spectral motif-based custering to the following methods:

• Standard, edge-based spectral clustering, which is a special case of motif-based cluster-

ing. In particular, the motifs

B
1

=



0 1

1 0

�

, B
2

=



0 1

0 0

�

, A = {1, 2} (S27)

correspond to removing directionality from a directed graph. We refer to the union of

these two motifs as Medge.

• Infomap, which is based on the map equation (63). Software for Infomap was down-

loaded from http://mapequation.org/code.html. We run the algorithm the

algorithm for directed links when the network under consideration is directed.

• The Louvain method (64). Software for the Louvain method was downloaded from

https://perso.uclouvain.be/vincent.blondel/research/louvain.

html We use the “oriented” version of the Louvain method for directed graphs.

Infomap and the Louvain method are purely clustering methods in the sense that they take

as input the graph and produce as output a set of labels for the nodes in the graph. In contrast

to the spectral methods, we do not have control over the number of clusters. Also, only the

spectral methods provide embeddings of the nodes into euclidean space, which is useful for

visualization. Thus, for our analysis of the transportation reachiability network in Section S6,

we only compare spectral methods.
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S5 Details and comparison against existing methods for the
C. elegans network

We now provide more details on the cluster found for the C. elegans network of frontal neu-

rons (29). In this network, the nodes are neurons and the edges are synapses. The net-

work data was downloaded from http://www.biological-networks.org/pubs/

suppl/celegans131.zip.

S5.1 Connected components of the motif adjacency matrices

We again first onsider the connected components of the motif adjacency matrices as a pre-

processing step. For our analysis, we consider use Mbifan, M
8

, and Medge (Figure S4). The

original network has 131 nodes and 764 edges. The largest connected component of the motif

adjacency matrix for motif Mbifan contains 112 nodes. The remaining 19 nodes are isolated

and correspond to the neurons AFDL, AIAR, AINR, ASGL/R, ASIL/R, ASJL/R, ASKL/R,

AVL, AWAL, AWCR, RID, RMFL, SIADR, and SIBDL/R. The largest connected component

of the motif adjacency matrix for motif M
8

contains 127 nodes. The remaining 4 nodes are

isolated and correspond to the neurons ASJL/R and SIBDL/R. The original network is weakly

connected, so the motif adjacency matrix for Medge is connected.

S5.2 Comparison of bi-fan motif cluster to clusters found by existing meth-
ods

We found the motif-based clusters for motifs Mbifan, M
8

, and Medge by running Algorithm 1 on

the largest connected component of the motif adjacency matrix. Sweep profile plots (�S() as a

function of S from the sweep in Algorithm 1) are shown in Figure S7 and show that the size

of the Mbifan returned by Algorithm 1 cluster is smaller than the clusters for M
8

and Medge. In

fact, the motif-based clusters for M
8

and Medge essentially bisect the graph, containing 63 of
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Figure S7: Sweep profile plot (�S() as a function of S from the sweep in Algorithm 1) for Mbifan

(green) M
8

(dark blue), and Medge (light blue).

127 and 64 of 131 nodes, respectively. Of the 63 nodes in the M
8

-based cluster, only 2 are in

the edge-based cluster, so these partitions give roughly the same information.

Next, we compare the clusters found by existing methods to the Mbifan-based cluster found

by Algorithm 1. We will show that existing methods do not find the same group of nodes.

Let Sbifan be the Mbifan-based cluster, which consists of 20 nodes. The nodes correspond to the

following neurons: IL1DL/VL, IL2DL/DR/VL/VR/L/R, OLQDL/R, RIH, RIPL/R, RMEL/R/V,

and URADL/DR/VL/VR. The partitions based on M
8

and Medge provide two sets of nodes each.

For the subsequent analysis, we consider the set with the largest number of overlapping nodes

with Sbifan. Call these sets SM8 and Sedge. We also consider the cluster found by Infomap and

the Louvain method with the largest overlap with Sbifan. Call these sets SI and SL.

To compare the most similar clusters found by other methods to Sbifan, we look at two

metrics. First, how many neurons in Sbifan are in a cluster found by existing methods (in other

words, the overlap). A cluster consisting of all nodes in the graph would trivially have 100%

overlap with Sbifan but loses all precision in the cluster identification. Thus, we also consider the
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sizes of the clusters. These metrics are summarized as follows:

|Sbifan \ SM8 | = 20, |SM8 | = 68

|Sbifan \ Sedge| = 20, |Sedge| = 64

|Sbifan \ SL| = 13, |SL| = 27

|Sbifan \ SI | = 19, |SI | = 114

We see that Sbifan is a subset of SM8 and Sedge and has substantial overlap with SI . However,

Sbifan is by far the smallest of all of these sets. We conclude that existing methods do not capture

the same information as motif Mbifan.

To further investigate the structure found by existing methods, we show the clusters Sedge

and SM8 in Figure S8. From the figure, we see that spectral clustering based on edges or motif

M
8

simply finds a spatially coherent cluster, rather than the control structure formed by the

nodes in Sbifan.
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Figure S8: Illustration of motif-based clusters with true two-dimensional spatial dimensions of
the frontal neurons of C. elegans. A: The Mbifan-based cluster consists of the labeled dark blue
nodes. B: Partitioning the graph based on motif M

8

, where the labeled dark blue nodes are
the nodes on the side of the partition with largest overlap of the nodes in A. C: Partitioning
the graph based on edges, where the labeled dark blue nodes are the nodes on the side of the
partition with largest overlap of the nodes in A. Note that the partitions in Figures B and C
capture the cluster in Figure A, but also contain many other nodes. Essentially, the partitions in
B and C are just capturing spatial information.
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S6 Details and comparison against existing methods for the
transportation reachability network

The nodes in the transportation reachability network are airports in the United States and

Canada. There is an edge from city i to city j if the estimated travel time from i to j is less than

some threshold (23). The network is not symmetric. The network with estimated travel times

was downloaded from

http://www.psi.toronto.edu/affinitypropagation/TravelRouting.mat

and http://www.psi.toronto.edu/affinitypropagation/TravelRoutingCityNames.

txt. We collected the latitude, longitude, and metropolitan populations of the cities using

WolframAlpha and Wikipedia. All of the data is available on our project web page: http:

//snap.stanford.edu/higher-order/.

S6.1 Methods for spectral embeddings

We compared the motif-based spectral embedding of the transportation reachability network to

spectral embeddings from other connectivity matrices. For this analysis, we ignore the travel

times times and only consider the topology of the network. The two-dimensional spectral em-

bedding for a graph defined by a (weighted) adjacency matrix W 2 Rn⇥n comes from Algo-

rithm 2:

1. Form the normalized Laplacian L = I �D�1/2WD�1/2, where D is the diagonal degree

matrix with Dii =
P

j Wij .

2. Compute the first 3 eigenvectors z
1

, z
2

, z
3

of smallest eigenvalues for L (z
1

has the small-

est eigenvalue).

3. Form the normalized matrix Y 2 Rn⇥3 by Yij = zij/
q

P

3

j=1

z2ij .
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4. Define the primary and secondary spectral coordinates of node i to be Yi2 and Yi3, respec-

tively.

We consider the following three matrices W .

1. Motif: The sum of the motif adjacency matrix (Equation S20) for three different anchored

motifs:

B
1

=

2

4

0 1 1

1 0 1

1 1 0

3

5 , B
2

=

2

4

0 1 1

1 0 1

0 1 0

3

5 , B
3

=

2

4

0 1 0

1 0 1

0 1 0

3

5 , A = {1, 3}. (S28)

If S is the matrix of bidirectional links in the graph (Sij = 1 if and only if Aij = Aji = 1),

then the motif adjacency matrix for these motifs is WM = S2. The resulting embedding

is shown in Figure 4C of the main text.

2. Undirected: The adjacency matrix is formed by ignoring edge direction. This is the

standard spectral embedding. The resulting embedding is shown in Figure 4D of the

main text.

3. Undirected complement: The adjacency matrix is formed by taking the complement of

the undirected adjacency matrix. This matrix tends to connect non-hubs to each other.

The networks represented by each adjacency matrices are all connected.

S6.2 Comparison of motif-based embedding to other embeddings

We computed 99% confidence intervals for the Pearson correlation of the primary spectral co-

ordinate with the metropolitan population of the city using the Pearson correlation coefficient.

Table S7 lists the confidence intervals. (Since eigenvectors are only unique up to sign, the con-

fidence intervals are symmetric about 0. We list the interval with the largest positive end point
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Table S7: Summary of Pearson correlations for spectral embeddings of the transportation reach-
ability network. We list the 99% confidence interval for the Pearson correlation coefficient.

Primary spectral coordinate Secondary spectral coordinate
and metropolitan population and longitude

Embedding 99% confidence interval 99% confidence interval

Motif 0.43 ± 0.09 0.59 ± 0.08
Undirected 0.11 ± 0.12 0.39 ± 0.11
Undirected complement 0.31 ± 0.11 0.10 ± 0.12

under this permutation to be consistent across embeddings.) The motif-based primary spectral

coordinate has the strongest correlation with the city populations.

We repeated the computations for the correlation between the secondary spectral coordinate

and the longitude of the city. Again, the motif-based clustering has the strongest correlation.

Furthermore, the lower end of the confidence interval for the motif-based embedding was above

the higher end of the confidence interval for the other three embeddings.

Finally, in order to visualize these relationships, we computed Loess regressions of city

metropolitan population and longitude against the primary and secondary spectral coordinates

for each of the embeddings (Figure S9). The sign of the eigenvector used in each regression

was chosen to match correlation shown in Figures 3C and 3D in the main text (primary spectral

coordinate positively correlated with population and secondary spectral coordinate negatively

correlated with longitude). The Loess regressions visualize the stronger correlation of the motif-

based spectral coordinates with the metropolitan popuatlion and longitude.

We conclude that the embedding provided by the motif adjacency matrix more strongly

captures the hub nature of airports and West-East geography of the network. To gain further in-

sight into the relationship of the primary spectral coordinate’s relationship with the hub airports,

we visualize the adjacency matrix in Figure S10, where the nodes are ordered by the spectral

ordering. We see a clear relationship between the spectral ordering and the connectivity.
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Figure S9: Loess regressions of city metropolitan population against the primary spectral co-
ordinate (top) and longitude against secondary spectral coordinate (bottom) for the motif (left),
undirected (middle), and undirected complement (right) adjacency matrices.

Figure S10: Visualization of transportation reachability network. Nodes are ordered by the
spectral ordering provided by the motif adjacency matrix. A black dot means no edge exists in
the network. For the edges in the network, lighter colors mean longer estimated travel times.
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S7 Additional case studies

We next use motif-based clustering to analyze several additional networks. Our main goal is to

show that motif-based clusters find markedly different structures in many real-world networks

compared to edge-based clusters. For the case of a transcription regulation network of yeast,

we also show that motif-based clustering more accurately finds known functional modules com-

pared to existing methods. On the English Wikipedia article network and the Twitter network,

we identify motifs that find anomalous clusters. On the Stanford web graph and in collabora-

tion networks, we use motifs that have previously been studied in the literature and see how

they reveal organizational structure in the networks.

S7.1 Motif M6 in the Florida Bay food web

We now apply the higher-order clustering framework on the Florida Bay ecosystem food web (65).

The dataset was downloaded from http://vlado.fmf.uni-lj.si/pub/networks/

data/bio/foodweb/Florida.paj. In this network, the nodes are compartments (roughly,

organisms and species) and the edges represent directed carbon exchange (in many cases, this

means that species j eats species i). Motifs model energy flow patterns between several species.

S7.1.1 Identifying higher-order modular organization

In this case study, we use the framework to identify higher-order modular organization of net-

works. We focus on three motifs: M
5

corresponds to a hierarchical flow of energy where species

i and j are energy sources (prey) for species k, and i is also an energy source for j; M
6

models

two species that prey on each other and then compete to feed on a common third species; and

M
8

describes a single species serving as an energy source for two non-interacting species. Mo-

tif M
5

is considered a building block for food webs (66, 67), and the prevalence of motif M
6

is

predicted by a certain niche model (68).
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The framework reveals that low motif conductance (high-quality) clusters only exist for mo-

tif M
6

(motif conductance 0.12), whereas clusters based on motifs M
5

or M
8

have high motif

conductance (see Figure S11). In fact, the motif Cheeger inequality (Theorem 6) guarantees

that clustering based on motif M
5

or M
8

will always have larger motif conductance that cluster-

ing based on M
6

. The inequality says that the motif conductance for any cluster in a connected

motif adjacency matrix is at least half of the second smallest eigenvalue of the motif-normalized

Laplacian. However, finding the cluster with optimal conductance is still computationally in-

feasible in general (28).

The lower bounds using the largest connected component of the motif adjacency matrix

for motifs M
5

, M
6

, and M
8

were 0.2195, 0.0335, and 0.2191, and the clusters found by the

Algorithm 1 had motif conductances of 0.4414, 0.1200, and 0.4145. Thus, the cluster S found

by the algorithm for M
6

has smaller motif M
6

-conductance (0.12) than any possible cluster’s

motif-M
5

or motif-M
8

conductance. To state this formally, let C be the cluster found by the

algorithm for motif M
6

and let HM be the largest connected component of motif adjacency

matrix for motif M . Then

�M6(HM6 , C)  min

n

min

S
�M5(HM5 , S), min

S
�M8(HM8 , S)

o

. (S29)

This means that, in terms of motif conductance, any cluster based on motifs M
5

or M
8

is worse

than the cluser found by the algorithm in Theorem 6 for motif M
6

. We note that the same

conclusions hold for edge-based clustering. For motif Medge, the lower bound on conductance

was 0.2194 and the cluster found by the algorithm had conductance 0.4083.

Interestingly, motif M
5

is considered

S7.1.2 Analysis of higher-order modular organization

Subsequently, we used motif M
6

to cluster the food web, revealing four clusters (Figure S11).

Three represent well-known aquatic layers: (i) the pelagic system; (ii) the benthic predators
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of eels, toadfish, and crabs; (iii) the sea-floor ecosystem of macroinvertebrates. The fourth

cluster identifies microfauna supported by particulate organic carbon in water and free bacteria.

Table S9 lists the nodes in each cluster.

We also measured how well the motif-based clusters correlate to known ground truth 

system subgroup classifications of the nodes (65). These classes are microbial, zooplankton, 

and sediment organism microfauna; detritus; pelagic, demersal, and benthic fishes; demseral, 

seagrass, and algae producers; and macroinvertebrates (Table S9).2 We also consider a set of 

labels which does not include the subclassification for microfauna and producers. In this case, 

the labels are microfauna; detritus; pelagic, demersal, and benthic fishes; producers; and 

macroinvertebrates.
To quantify how well the clusters found by motif-based clustering reflect the ground truth

labels, we used several standard evaluation criteria: adjusted rand index, F1 score, normal-

ized mutual information, and purity (69). We compared these results to the clusters of several

methods using the same evaluation criteria. In total, we evaluated six methods:
1. Motif-based clustering with the embedding + k-means algorithm (Algorithm 2) with 500 

iterations of k-means.

2. Motif-based clustering with recursive bi-partitioning (repeated application of Algorithm 1 

on the largest remaining compoennt). The process continues to cut the largest cluster until 

there are 4 total.

3. Edge-based clustering with the embedding + k-means algorithm, again with 500 iterations

of k-means.

4. Edge-based clustering with recursive bi-partitioning with the same partitioning process.

5. The Infomap algorithm.
2The classifications are also available on our project web page: http://snap.stanford.edu/

higher-order/.
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6. The Louvain method.

For the first four algorithms, we control the number of clusters, which we set to 4. For the

last two algorithms, we cannot control the number of clusters. However, both methods found 4

clusters.

Table S10 shows that the motif-based clustering by embedding + k-means had the best

performance for each classification criterion on both classifications. We conclude that the or-

ganization of compartments in the Florida Bay foodweb are better described motif M
6

than by

edges.

S7.1.3 Connected components of the motif adjacency matrices

Finally, we discuss the discuss the preprocessing step of our method, where we compute com-

puted connected components of the motif adjacency matrices. The original network has 128

nodes and 2106 edges. The largest connected component of the motif adjacency matrix for mo-

tif M
5

contains 127 of the 128 nodes. The node corresponding to the compartment of “roots”

is the only node not in the largest connected component. The two largest connected compo-

nents of the motif adjacency matrix for motif M
6

contain 12 and 50 nodes. The remaining 66

nodes are isolated. Table S8 lists the nodes in each component. We note that the group of 12

nodes corresponds to the green cluster in Figure S11. The motif adjacency matrix for M
8

is

connected. The original network is weakly connected, so the motif adjacency matrix for Medge

is also connected.
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A C

B D

Figure S11: Higher-order organization of the Florida Bay food web. A: Sweep profile plot
(�S() as a function of S from the sweep in Algorithm 1) for different motifs on the Florida
Bay ecosystem food web (65). A priori it is not clear whether the network is organized based
on a given motif. For example, motifs M

5

(green) and M
8

(blue) do not reveal any higher-
order organization (motif conductance has high values). However, the downward spikes of the
red curve show that M

6

reveals rich higher-order modular structure (7). Ecologically, motif
M

6

corresponds to two species mutually feeding on each other and also preying on a common
third species. B: Clustering of the food web based on motif M

6

. (For illustration, edges not
participating in at least one instance of the motif are omitted.) The clustering reveals three
known aquatic layers: pelagic fishes (yellow), benthic fishes and crabs (red), and sea-floor
macroinvertebrates (blue) as well as a cluster of microfauna and detritus (green). Our framework
identifies these modules with higher accuracy (84%) than existing methods (65–69%). C: A
higher-order cluster (yellow nodes in (B)) shows how motif M

6

occurs in the pelagic layer. The
needlefish and other pelagic fishes eat each other while several other fishes are prey for these
two species. D: Another higher-order cluster (green nodes in (B)) shows how motif M

6

occurs
between microorganisms. Here, several microfauna decompose into Particulate Organic Carbon
in the water (water POC) but also consume water POC. Free bacteria serves as an energy source
for both the microfauna and water POC. S45



Table S8: Connected components of the Florida Bay foodweb motif adjacency matrix for motif
M

6

. There are 50 nodes in component 1, 12 nodes in component 2, and 66 isolated nodes.

Two largest components Isolated nodes
Compartment (node) Component index Compartment (node)

Benthic Phytoplankton 1 Barracuda
Thalassia 1 2 µm Spherical Phytoplankt
Halodule 1 Synedococcus
Syringodium 1 Oscillatoria
Drift Algae 1 Small Diatoms (<20 µm)
Epiphytes 1 Big Diatoms (>20 µm)
Predatory Gastropods 1 Dinoflagellates
Detritivorous Polychaetes 1 Other Phytoplankton
Predatory Polychaetes 1 Roots
Suspension Feeding Polych 1 Coral
Macrobenthos 1 Epiphytic Gastropods
Benthic Crustaceans 1 Thor Floridanus
Detritivorous Amphipods 1 Lobster
Herbivorous Amphipods 1 Stone Crab
Isopods 1 Sharks
Herbivorous Shrimp 1 Rays
Predatory Shrimp 1 Tarpon
Pink Shrimp 1 Bonefish
Benthic Flagellates 1 Other Killifish
Benthic Ciliates 1 Snook
Meiofauna 1 Sailfin Molly
Other Cnidaridae 1 Hawksbill Turtle
Silverside 1 Dolphin
Echinoderma 1 Other Horsefish
Bivalves 1 Gulf Pipefish
Detritivorous Gastropods 1 Dwarf Seahorse
Detritivorous Crabs 1 Grouper
Omnivorous Crabs 1 Jacks
Predatory Crabs 1 Pompano
Callinectes sapidus (blue crab) 1 Other Snapper
Mullet 1 Gray Snapper
Blennies 1 Mojarra
Code Goby 1 Grunt
Clown Goby 1 Porgy
Flatfish 1 Pinfish
Sardines 1 Scianids
Anchovy 1 Spotted Seatrout
Bay Anchovy 1 Red Drum
Lizardfish 1 Spadefish
Catfish 1 Parrotfish
Eels 1 Mackerel
Toadfish 1 Filefishes
Brotalus 1 Puffer
Halfbeaks 1 Loon
Needlefish 1 Greeb
Goldspotted killifish 1 Pelican
Rainwater killifish 1 Comorant
Other Pelagic Fishes 1 Big Herons and Egrets
Other Demersal Fishes 1 Small Herons and Egrets
Benthic Particulate Organic Carbon (Benthic POC) 1 Ibis
Free Bacteria 2 Roseate Spoonbill
Water Flagellates 2 Herbivorous Ducks
Water Cilitaes 2 Omnivorous Ducks
Acartia Tonsa 2 Predatory Ducks
Oithona nana 2 Raptors
Paracalanus 2 Gruiformes
Other Copepoda 2 Small Shorebirds
Meroplankton 2 Gulls and Terns
Other Zooplankton 2 Kingfisher
Sponges 2 Crocodiles
Water Particulate Organic Carbon (Water POC) 2 Loggerhead Turtle
Input 2 Green Turtle

Manatee
Dissolved Organic Carbon (DOC)
Output
Respiration
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Table S9: Ecological classification of nodes in the Florida Bay foodweb. Colors correspond to
the colors in the clustering of Figure S11.

Compartment (node) Classification 1 Classification 2 Assignment

Free Bacteria Microbial microfauna Microfauna Green
Water Flagellates Microbial microfauna Microfauna Green
Water Cilitaes Microbial microfauna Microfauna Green
Acartia Tonsa Zooplankton microfauna Microfauna Green
Oithona nana Zooplankton microfauna Microfauna Green
Paracalanus Zooplankton microfauna Microfauna Green
Other Copepoda Zooplankton microfauna Microfauna Green
Meroplankton Zooplankton microfauna Microfauna Green
Other Zooplankton Zooplankton microfauna Microfauna Green
Sponges Macroinvertebrates Macroinvertebrates Green
Water POC Detritus Detritus Green
Input Detritus Detritus Green
Sardines Pelagic Fishes Pelagic Fishes Yellow
Anchovy Pelagic Fishes Pelagic Fishes Yellow
Bay Anchovy Pelagic Fishes Pelagic Fishes Yellow
Halfbeaks Pelagic Fishes Pelagic Fishes Yellow
Needlefish Pelagic Fishes Pelagic Fishes Yellow
Goldspotted killifish Fishes Demersal Fishes Demersal Yellow
Rainwater killifish Fishes Demersal Fishes Demersal Yellow
Silverside Pelagic Fishes Pelagic Fishes Yellow
Other Pelagic Fishes Pelagic Fishes Pelagic Fishes Yellow
Detritivorous Crabs Macroinvertebrates Macroinvertebrates Red
Predatory Crabs Macroinvertebrates Macroinvertebrates Red
Callinectus sapidus Macroinvertebrates Macroinvertebrates Red
Lizardfish Benthic Fishes Benthic Fishes Red
Eels Fishes Demersal Fishes Demersal Red
Code Goby Benthic Fishes Benthic Fishes Red
Clown Goby Benthic Fishes Benthic Fishes Red
Herbivorous Shrimp Macroinvertebrates Macroinvertebrates Red
Benthic Phytoplankton Producer Demersal Producer Blue
Thalassia Producer Seagrass Producer Blue
Halodule Producer Seagrass Producer Blue
Syringodium Producer Seagrass Producer Blue
Drift Algae Producer Algae Producer Blue
Epiphytes Producer Algae Producer Blue
Benthic Flagellates Sediment Organism microfauna Microfauna Blue
Benthic Ciliates Sediment Organism microfauna Microfauna Blue
Meiofauna Sediment Organism microfauna Microfauna Blue
Other Cnidaridae Macroinvertebrates Macroinvertebrates Blue
Echinoderma Macroinvertebrates Macroinvertebrates Blue
Bivalves Macroinvertebrates Macroinvertebrates Blue
Detritivorous Gastropods Macroinvertebrates Macroinvertebrates Blue
Predatory Gastropods Macroinvertebrates Macroinvertebrates Blue
Detritivorous Polychaetes Macroinvertebrates Macroinvertebrates Blue
Predatory Polychaetes Macroinvertebrates Macroinvertebrates Blue
Suspension Feeding Polych Macroinvertebrates Macroinvertebrates Blue
Macrobenthos Macroinvertebrates Macroinvertebrates Blue
Benthic Crustaceans Macroinvertebrates Macroinvertebrates Blue
Detritivorous Amphipods Macroinvertebrates Macroinvertebrates Blue
Herbivorous Amphipods Macroinvertebrates Macroinvertebrates Blue
Isopods Macroinvertebrates Macroinvertebrates Blue
Predatory Shrimp Macroinvertebrates Macroinvertebrates Blue
Pink Shrimp Macroinvertebrates Macroinvertebrates Blue
Omnivorous Crabs Macroinvertebrates Macroinvertebrates Blue
Catfish Benthic Fishes Benthic Fishes Blue
Mullet Pelagic Fishes Pelagic Fishes Blue
Benthic POC Detritus Detritus Blue
Toadfish Benthic Fishes Benthic Fishes Blue
Brotalus Fishes Demersal Fishes Demersal Blue
Blennies Benthic Fishes Benthic Fishes Blue
Flatfish Benthic Fishes Benthic Fishes Blue
Other Demersal Fishes Fishes Demersal Fishes Demersal Blue
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Table S10: Comparison of motif-based algorithms against other methods in finding ground truth
structure in the Florida Bay food web (65). Performance for identifying the two classifications
provided in Table S9 was evaluated based on Adjusted Rand Index (ARI), F1 score, Normalized
Mutual Information (NMI), and Purity. In all cases, the motif-based methods have the best
performance.

Evaluation Motif embedding Motif recursive Edge embedding Edge recursive Infomap Louvain
+ k-means bi-partitioning + k-means bi-partitioning

C
la

ss
ifi

ca
tio

n
1 ARI 0.3005 0.2156 0.1564 0.1226 0.1423 0.2207

F1 0.4437 0.3853 0.3180 0.2888 0.3100 0.4068
NMI 0.5040 0.4468 0.4112 0.3879 0.4035 0.3879
Purity 0.8387 0.7903 0.6935 0.6452 0.6774 0.6452

C
la

ss
ifi

ca
tio

n
2 ARI 0.3265 0.2356 0.1814 0.1190 0.1592 0.2229

F1 0.4802 0.4214 0.3550 0.3035 0.3416 0.4340
NMI 0.4822 0.4185 0.3533 0.3034 0.3471 0.3034
Purity 0.7903 0.7419 0.6290 0.5484 0.6129 0.5484

S7.2 Coherent feedforward loops in the S. cerevisiae transcriptional reg-
ulation network

In this network, each node is an operon (a group of genes in a mRNA molecule), and a directed

edge from operon i to operon j means that i is regulated by a transcriptional factor encoded by

j (30). Edges are directed and signed. A positive sign represents activation and a negative sign

represents repression. The network data was downloaded from http://www.weizmann.

ac.il/mcb/UriAlon/sites/mcb.UriAlon/files/uploads/NMpaper/yeastdata.

mat and http://www.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon/files/

uploads/DownloadableData/list_of_ffls.pdf.

For this case study, we examine the coherent feedforward loop motif (see Figure S12), which

act as sign-sensitive delay elements in transcriptional regulation networks (2, 9). Formally, the

feedforward loop is represented by the following signed motifs
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Table S11: Connected components of size greater than one for the motif adjacency matrix in
the S. cerevisiae network for the coherent feedforward loop.

Size operons

18 ALPHA1, CLN1, CLN2, GAL11, HO, MCM1, MFALPHA1, PHO5, SIN3,
SPT16, STA1, STA2, STE3, STE6, SWI1, SWI4/SWI6, TUP1, SNF2/SWI1

9 HXT11, HXT9, IPT1, PDR1, PDR3, PDR5, SNQ2, YOR1, YRR1
9 GCN4, ILV1, ILV2, ILV5, LEU3, LEU4, MET16, MET17, MET4
6 CHO1, CHO2, INO2, INO2/INO4, OPI3, UME6
6 DAL80, DAL80/GZF3, GAP1, GAT1, GLN1, GLN3
5 CYC1, GAL1, GAL4, MIG1, HAP2/3/4/5
3 ADH2, CCR4, SPT6
3 CDC19, RAP1, REB1
3 DIT1, IME1, RIM101

These motifs have the same edge pattern and only differ in sign. All of the motifs are simple

(A = {1, 2, 3}). For our analysis, we consider all coherent feedforward loops that are subgraphs

on the induced subgraph of any three nodes. However, there is only one instance where the

coherent feedforward loop itself is a subgraph but not an induced subgraph on three nodes.

Specifically, the induced subgraph by DAL80, GAT1, and GLN3 contains a bi-directional edge

between DAL80 and GAT1, unidirectional edges from DAL80 and GAT1 to GLN3.

S7.2.1 Connected components of the adjacency matrices

Again, we analyze the component structure of the motif adjacency matrix as a pre-processing

step. The original network consists of 690 nodes and 1082 edges, and its largest weakly con-

nected component consists of 664 nodes and 1066 edges. Every coherent feedforward loop in

the network resides in the largest weakly connected component, so we subsequently consider

this sub-network in the following analysis. Of the 664 nodes in the network, only 62 participate

in a coherent feedforward loop. Forming the motif adjacency matrix results in nine connected

components, of sizes 18, 9, 9, 6, 6, 5, 3, 3, and 3. The operons for the connected components

consisting of more than one node is listed in Table S11.
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S7.2.2 Comparison against existing methods

We note that, although the original network is connected, the motif adjacency matrix corre-

sponds to a disconnected graph. This already reveals much of the structure in the network

(Figure S12). Indeed, this “shattering” of the graph into components for the feedforward loop

has previously been observed in transcriptional regulation networks (70). We additionally used

Algorithm 1 to partition the largest connected component of the motif adjacency matrix (con-

sisting of 18 nodes). This revealed the cluster {CLN2, CLN1, SWI4/SWI6, SPT16, HO}, which

contains three coherent feedforward loops (Figure S12). All three instances of the motif cor-

respond to the function “cell cycle and mating type switch”. The motifs in this cluster are the

only feedforward loops for which the function is described in Reference (9). Using the same

procedure on the undirected version of the induced subgraph of the 18 nodes (i.e., using mo-

tif Medge) results in the cluster {CLN1, CLN2, SPT16, SWI4/SWI6 }. This cluster breaks the

coherent feedforward loop formed by HO, SWI4/SWI6, and SPT16.

We also evaluated our method based on the classification of motif functionality (9).3 In total,

there are 12 different functionalities and 29 instances of labeled coherent feedforward loops. We

considered the motif-based clustering of the graph to be the connected components of the motif

adjacency matrix with the additional partition of the largest connected component. To form an

edge-based clustering, we used the embedding + k-means algorithm on the undirected graph

(i.e., motif Medge) with k = 12 clusters. We also clustered the graph using Infomap and the

Louvain method. Table S12 summarizes the results. We see that the motif-based clustering

coherently labels all 29 motifs in the sense that the three nodes in every instance of a labeled

motif is placed in the same cluster. The edge-based spectral, Infomap, and Louvain clustering

coherently labeled 25, 23, and 23 motifs, respectively.
3The functionalities may be downloaded from our project web page: http://snap.stanford.edu/

higher-order/.
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We measured the accuracy of each clustering method as the rand index (69) on the coher-

ently labeled motifs, multiplied by the fraction of coherently labeled motifs. The motif-based

clustering had the highest accuracy. We conclude that motif-based clustering provides an advan-

tage over edge-based clustering methods in identifying functionalities of coherent feedforward

loops in the the S. cerevisiae transcriptional regulation network.
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A C

B

D

Figure S12: Higher-order organization of the S. cerevisiae transcriptional regulation network.
A: The four higher-order structures used by our higher-order clustering method, which can
model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
delay elements in transcriptional regulation networks (2). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
which were previously studied individually (9). The higher-order clustering framework identi-
fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
Two higher-order clusters from (B). In these clusters, all edges have positive sign. The func-
tionality of the motifs in the modules correspond to drug resistance (C) or cell cycle and mating
type match (D). The clustering suggests that coherent feedforward loops function together as a
single processing unit rather than as independent elements.
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Table S12: Classification of coherent feedforward loop motifs by several clustering methods.
In a given motif instance, we say that it is coherently labeled if the nodes comprising the motif
are in the same cluster. If a motif is not coherently labeled, a “-1” is listed. The accuracy is the
rand index on the labels and motif functionality on coherently labeled motifs, multiplied by the
fraction of coherently labeled motifs.

Motif nodes Function Class label
Motif-based Edge-based Infomap Louvain

GAL11 ALPHA1 MFALPHA1 pheromone response 1 1 -1 -1
GCN4 MET4 MET16 Metionine biosynthesis 2 2 1 -1
GCN4 MET4 MET17 Metionine biosynthesis 2 2 1 -1
GCN4 LEU3 ILV1 Leucine and branched amino acid biosynthesis 2 2 1 1
GCN4 LEU3 ILV2 Leucine and branched amino acid biosynthesis 2 2 1 1
GCN4 LEU3 ILV5 Leucine and branched amino acid biosynthesis 2 2 1 1
GCN4 LEU3 LEU4 Leucine and branched amino acid biosynthesis 2 2 1 1
GLN3 GAT1 GAP1 Nitrogen utilization 3 3 1 2
GLN3 GAT1 DAL80 Nitrogen utilization 3 3 1 2
GLN3 GAT1 DAL80/GZF3 Glutamate synthetase 3 3 1 2
GLN3 GAT1 GLN1 Glutamate synthetase 3 3 1 2
MIG1 HAP2/3/4/5 CYC1 formation of apocytochromes 4 4 -1 -1
MIG1 GAL4 GAL1 Galactokinase 4 -1 -1 -1
PDR1 YRR1 SNQ2 Drug resistance 5 5 2 3
PDR1 YRR1 YOR1 Drug resistance 5 5 2 3
PDR1 PDR3 HXT11 Drug resistance 5 5 2 3
PDR1 PDR3 HXT9 Drug resistance 5 5 2 3
PDR1 PDR3 PDR5 Drug resistance 5 5 2 3
PDR1 PDR3 IPT1 Drug resistance 5 5 2 3
PDR1 PDR3 SNQ2 Drug resistance 5 5 2 3
PDR1 PDR3 YOR1 Drug resistance 5 5 2 3
RIM101 IME1 DIT1 sporulation-specific 6 6 3 4
SPT16 SWI4/SWI6 CLN1 Cell cycle and mating type switch 7 -1 4 5
SPT16 SWI4/SWI6 CLN2 Cell cycle and mating type switch 7 -1 -1 5
SPT16 SWI4/SWI6 HO Cell cycle and mating type switch 7 -1 -1 -1
TUP1 ALPHA1 MFALPHA1 Mating factor alpha 1 1 -1 5
UME6 INO2/INO4 CHO1 Phospholipid biosynthesis 8 6 5 4
UME6 INO2/INO4 CHO2 Phospholipid biosynthesis 8 6 5 4
UME6 INO2/INO4 OPI3 Phospholipid biosynthesis 8 6 5 4

Frac. coherently labeled 29 / 29 25 / 29 23 / 29 23 / 29
Accuracy 0.97 0.82 0.68 0.76

S7.3 Motif M6 in the English Wikipedia article network

The English Wikipedia network (58–60) consists of 4.21 million nodes (representing articles)

and 101.31 million edges, where an edge from node i to node j means that there is a hyperlink

from the ith article to the jth article. The network data was downloaded from http://law.

di.unimi.it/webdata/enwiki-2013/.

We used Algorithm 1 to find a motif-based cluster for motif M
6

and Medge (the algorithm

was run on the largest connected component of the motif adjacency matrix). The clusters are

shown in Figure S13. The nodes in the motif-based cluster are cities and barangays (small
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administrative divisions) in the Philippines. The cluster has a set of nodes with many outgoing

links that form the source node in motif M
6

. In total, the cluster consists of 22 nodes and 338

edges. The linking pattern appears anomalous and suggests that perhaps the pages uplinking

should receive reciprocated links. On the other hand, the edge-based cluster is much larger

cluster and does not have too much structure. The cluster consists of several high-degree nodes

and their neighbors.
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Figure S13: Clusters from the English Wikipedia hyperlink network (58–60). A–C: Motif-
based cluster (A) for motif M

6

(B). The cluster consists of cities and small administrative di-
visions in the Philippines. The green nodes have many bi-direction links with each other and
many incoming links from orange nodes at the bottom of the figure. The spy plot illustrates this
network structure (C). D–F: Cluster (D) for undirected edges (E). The cluster has a few very
high-degree nodes, as evidenced by the spy plot (F).
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S7.4 Motif M6 in the Twitter follower network

We also analyzed the complete 2010 Twitter follower graph (59, 60, 71). The graph consists

41.65 million nodes (users) and 1.47 billion edges, where an edge from node i to node j signifies

that user i is followed by user j on the social network. The network data was downloaded from

http://law.di.unimi.it/webdata/twitter-2010/.

We used Algorithm 1 to find a motif-based cluster for motif M
6

(the algorithm was run

on the largest connected component of the motif adjacency matrix). The cluster contains 151

nodes and consists of two disconnected components. Here, we consider the smaller of the two

components, which consists of 38 nodes. We also found an edge-based cluster on the undirected

graph (using Algorithm 1 with motif Medge). This cluster consists of 44 nodes.

Figure S14 illustrates the motif-based and edge-based clusters. Both clusters capture anoma-

lies in the graph. The motif-based cluster consists of holding accounts for a photography com-

pany. The nodes that form bi-directional links have completed profiles (contain a profile pic-

ture) while several nodes with incomplete profiles (without a profile picture) are followed by

the completed accounts. The edge-based cluster is a near clique, where the user screen names

all begin with “LC ”. We suspect that the similar usernames are either true social communities,

holding accounts, or bots. (For the most part, their tweets are protected, so we could not verify

if any of these scenarios are true). Interestingly, both M
6

and Medge find anomalous clusters.

However, their structures are quite different. We conclude that M
6

can lead to the detection of

new anomalous clusters in social networks.
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Figure S14: Clusters in the 2010 Twitter follower network (59, 60, 71). A–C: Motif-based
cluster (A) for motif M

6

(B). All accounts are holding accounts for a photography company.
The green nodes correspond to accounts that have completed profiles, while the orange accounts
have incomplete profiles. The spy plot illustrates how the cluster is formed around this motif
(C). D–F: Cluster (D) for edge-based clustering (E). The cluster consists of a near-clique (F)
where all users have the prefix “LC ”.
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S7.5 Motif M7 in the Stanford web graph

The Stanford web graph (7, 57) consists of 281,903 nodes and 2,312,497 edges, where an edge

from node i to node j means that there is a hyperlink from the ith web page to the jth web page.

Here, all of the web pages come from the Stanford domain. The network data was downloaded

from http://snap.stanford.edu/data/web-Stanford.html.

We used Algorithm 1 to find a motif-based cluster for motif M
7

, a motif that is over-

expressed in web graphs (1). An illustration of the cluster and an edge-based cluster (i.e.,

using Algorithm 1 with Medge) are in Figure S15. Interestingly, both clusters exhibits a core-

periphery structure, albeit markedly different ones. The motif-based cluster contains several

core nodes with large in-degree. Such core nodes comprise the sink node in motif M
7

. On the

periphery are several clusters within which are many bi-directional links (as illustrated by the

spy plot in Figure S15). The nodes in these clusters then up-link to the core nodes. This type

of organizational unit suggests an explanation for why motif M
7

is over-expressed: clusters of

similar pages tend to uplink to more central pages. The edge-based cluster also has a few nodes

with large in-degree, serving as a small core. On the periphery are the neighbors of these nodes,

which themselves tend not to be connected (as illustrated by the spy plot).
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Figure S15: Clusters in the Stanford web graph (7). A–C: Motif-based cluster (A) for motif M
7

(B). The cluster has a core group of nodes with many incoming links (serving as the sink node
in M

7

; shown in orange) and several periphery groups that are tied together (the bi-directional
link in M

7

; shown in green) and also up-link to the core. This is evident from the spy plot (C).
D–F: Cluster (C) for undirected edges (B). The cluster contains a few high-degree nodes and
their neighbors, and the neighbors tend to not be connected, as illustrated by the splot (F).
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S7.6 Semi-cliques in collaboration networks

We used Algorithm 1 to identify clusters of a four-node motif (the semi-clique) that has been

studied in conjunction with researcher productivity in collaboration networks (72) (see Fig-

ure S16). We found a motif-based cluster in two different collaboration networks. Each one is

derived from co-authorship in papers submitted to the arXiv under a certain category; here, we

analyze the ”High Energy Physics–Theory” (HepTh) and ”Condensed Matter Physics” (Cond-

Mat) categories (57,73). The HepTh network has 23,133 nodes and 93,497 edges and the Cond-

Mat network has 9,877 nodes and 25,998 edges. The HepTh network data was downloaded

from http://snap.stanford.edu/data/ca-HepTh.html and the CondMat net-

work data was downloaded from http://snap.stanford.edu/data/ca-CondMat.

html.

Figure S16 shows the two clusters for each of the collaboration networks. In both networks,

the motif-based cluster consists of a core group of nodes and similarly-sized groups on the

periphery. The core group of nodes correspond to the nodes of degree 3 in the motif and the pe-

riphery group nodes correspond to the nodes of degree 2. One explanation for this organization

is that there is a small small group of authors that writes papers with different research groups.

Alternatively, the co-authorship could come from a single research group, where senior authors

are included on all of the papers and junior authors on a subset of the papers.

On the other hand, the edge-based clusters (i.e., result of Algorithm 1 for Medge) are a clique

in the HepTh netowork and a clique with a few dangling nodes in the CondMat network. The

dense clusters are quite different from the sparser clusters based on the semi-clique. Such dense

clusters are not that surprising. For example, a clique could arise from a single paper published

by a group of authors.
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Figure S16: Clusters in co-authorship networks (73). A–E: Best motif-based cluster for the
semi-clique motif (E) in the High Energy Physics–Theory collaboration network (A) and the
Condensed Matter Physics collaboration network (C). Corresponding spy plots are shown in
(B) and (D). F–I: Best edge-based (I) cluster in the High Energy Physics–Theory collaboration
network (F) and the Condensed Matter Physics collaboration network (H). Corresponding spy
plots are shown in (G) and (I).
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S8 Data availability

All data is available at our project web site at http://snap.stanford.edu/higher-order/.

The web site includes links to datasets used for experiments throughout the supplementary ma-

terial (7, 57, 59–61, 74–83).
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