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Supplementary Figure 1: (a) Sample of cell lineage indicating how cell cycle lengths are calculated. Each
node (red square) represents the state of one cell at an instant t. A highlighted node (white square) corre-
sponds to the last state of a cell just before the detection of mitosis. The subset of bifurcation nodes form
a regular binary tree, while the number of intermediate nodes on one branch is variable and depends on the
distribution of cell cycle lengths. (b) The four cell populations identifiable at the 32-cell stage, from top
to bottom: 16 mesomeres (Light Blue), 8 macromeres (Red), 4 large micromeres (Magenta), and 4 small
micromeres (Violet).
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Supplementary Figure 2: Embryo-level dynamics before and after temporal and spatial rescaling. Starting
from the 32-cell stage, the global measures of five specimens e = 1, ...,5 are plotted over their respective
imaging periods. a) Number of cells Ne(t) in each embryo. Original periods in minutes post-fertilization
(mpf): 225-396 mpf (blue), 345-507 mpf (green), 260-588 mpf (orange), 300-575 mpf (cyan), and 260-
638 mpf (pink). b) Temporally rescaled number of cells in each embryo, Ne(αet + βe) (top curves), and
each cell population, Nk

e (αet + βe) (four groups of lower curves, from top to bottom: Mes, Mac, LMic,
SMic). The rescaled periods are: 240-398 mpf (blue), 357-539 mpf (green), 246-702 mpf (orange), 291-
619 mpf (cyan), and 265-531 mpf (pink). c) Affine transform parameters (αe,βe) used in the previous
top curves. d) Total cellular volumes We(t). e) Temporally and spatially rescaled total cellular volumes,
(γe)

3We(αet + βe) (top), and field cellular volumes (γe)
3W k

e (αet + βe) (same order as b), using the same
parameters (αe,βe) as before. f) Coefficients γe used in the previous top curves. g) Total cellular surface
areas Ze(t). h) Temporally and spatially rescaled total cellular surface areas, (γe)

2Ze(αet +βe) (top), and
field cellular surface areas (γe)

2Zk
e(αet +βe) (same order as b), using the same parameters (αe,βe) and γe

as before. i) Temporally rescaled total numbers of contacts Ce(αet + βe) and field numbers of contacts
Ck

e(αet +βe).
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Supplementary Figure 3: Mean and standard deviation bars representing the normal and log-normal ap-
proximations of the cell feature distributions in various cell groups Lg. For each feature (one per frame),
the cell groups g = (e,n,k) cover all four cell types k (except cell cycle length), one or several generations
n∈ [6,10] per type, and most of the five embryos e per generation-type combination (using the same colours
blue, green, orange, cyan, pink for each embryo as Supplementary Fig. 2 with additional bars (black, bold)
for the prototype).
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Supplementary Figure 4: Same as Supplementary Fig. 3 c to f without applying the log function to the
volume and surface area. This figure is intended to highlight the value 0.5 in the daughter/mother volume
ratio (here in c).
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Supplementary Figure 5: Top Panel (above the red line) - The 12 cell feature distributions (two per variable
type) with the highest p-value, i.e. the best cases of fit by normal or log-normal curves with respect to the
chi-squared test. Left to right, top to bottom: the two Xg (cell cycle length) and two Mg (division time)
distributions closest to normal curves; the two V g (average volume), two Sg (average surface area), two Ag

(daughter/mother volume ratio) and two Bg (daughter/mother surface area ratio) distributions closest to log-
normal curves. Titles indicate the embryo e, cell type k, generation n and p-value. Bottom Panel (below
the red line) - The 12 worst-fit cases (p-value < 0.01) of cell feature distributions, where the assumption
of normal or log-normal curves could not be retained with respect to the chi-squared goodness-of-fit test.
They fall into four n,k categories: 8, Mac; 8, Mes; 9, Mac; and 9, Mes. Most of them concern X (cell cycle
length) and M (division time). - See Supplementary Note 2.2.1
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Supplementary Figure 6: Histogram of all p-values obtained by chi-squared goodness-of-fit test on 124
distributions of cell features. The six variables considered here were Xg (cell cycle length), Mg (division
time), logV g (log average volume), logAg (log average surface area), logSg (log daughter/mother volume
ratio) and logBg (log daughter/mother surface area ratio) across the five embryos e, four cell types k, and
all generations n within the period during which the cell feature was observable. - See Supplementary Note
2.2.1
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Supplementary Figure 7: Estimated cell volume microdynamics ω̃g(u) in various groups Lg of types k =
1,2,3 and generations n = 6,7,8,9. The volume of each individual cell has been normalized by its averaged
volume and is considered as a function of percentage of elapsed cell cycle. The various individual cell
volume dynamics have been averaged in each cell groups. Thin lines correspond to individual embryos e
of the cohort E (one or several per group). Thick lines represent cohort averages 〈ω̃g(u)〉e∈E . The rows
from top to bottom correspond to the various cell types, Mesomeres, Macromeres, Large Micromeres and
the columns correspond to the cell generations (7 to 9 for Mes and Mac and 6 to 8 for LMic). More details
can be found in Supplementary Note 2.2.2.
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Supplementary Figure 8: Estimated cell surface area microdynamics φ̃g(u) in various groups Lg of types
k = 1,2,3 and generations n = 6,7,8,9. The surface area of each individual cell has been normalized by
its averaged surface area and is considered as a function of percentage of elapsed cell cycle. The various
individual cell surface area dynamics have been averaged in each cell groups. Thin lines correspond to
individual embryos e of the cohort E (one or several per group). Thick lines represent cohort averages
〈φ̃g(u)〉e∈E . As on the Supplementary Fig. 7, the rows from top to bottom correspond to the various cell
types, Mesomeres, Macromeres, Large Micromeres and the columns correspond to the cell generations (7
to 9 for Mes and Mac and 6 to 8 for LMic). More details can be found in Supplementary Note 2.2.2.

9



Supplementary Figure 9: Histogram of the coefficient of determination R2 = ρ̃2
X ,Y for the various pairs of

distributions X and Y displayed in Supplementary Table 3 and described in details in Supplementary Note
2.2.3. Only 20 values rank above 0.6 among 198 observed pairs of distributions.

Supplementary Figure 10: Histogram showing the results of the evaluation of the proximity of the model
to data using the normalized distance function ∆̂KL defined in equation 38. This evaluation is a comparison
of 48 distributions predicted by the multi-level probabilistic model and measured empirically. More details
can be found in Supplementary Note 2.3.4
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Supplementary Figure 11: Simulation of artificial cell lineages and comparison with real data. The three
rows correspond to embryos 1, 3, and 5. The three columns represent the total number of cells N(t), the
total cellular volume W (t) and surface area Z(t). Inside each chart, the top curves show the embryo-level
quantities (Ne, We, or Ze), while the four groups of lower curves show their type-specific components (Nk

e ,
W k

e , or Zk
e ), from top to bottom: Mes, Mac, LMic, SMic. In black: mean of 300 simulated cell lineages;

in gray: their standard deviation; in colour: measured values in the real specimen (all curves obtained by
temporal and spatial rescaling). Shaded areas: incomplete cycles, for which an accurate estimation was not
possible.
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Supplementary Figure 12: Representation of cells by cylindrical particles. Each cell i or j is defined by a
lateral radius Ri, a half-height R⊥i and a normal vector ~Ui (R j, R⊥j , ~U j respectively).
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Supplementary Figure 13: Comparison of the attraction-repulsion force used here with alternative classical
forces. The equilibrium distance is req

i j = ceq(Ri+R j) with Ri = 0.1 and R j = 0.15. The solid line represents

the attraction/repulsion potential ~F‖i j with wadh =wrep = 500. The dashed line represents a force derived from

the Morse potential: FM(r) = 2Dke−k(r−req
i j )− 2Dke−2k(r−req

i j ) with D = 0.265 and k = 10. The dot-dashed
line is a force derived from the Lennard-Jones potential: FL(r) = −24ε

σ
(2( r

σ
)−13− ( r

σ
)−7) with ε = 0.117

and σ = 2−1/6req
i j . Parameters were selected to make the equilibrium distance and maximum value of the

three curves approximately match on the plot.
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Supplementary Figure 14: Diagram of the planar rigidity force between neighbouring epithelial cells. Here,
cells i, j and k are represented in 2D, with their respective normal axes ~Ui (yellow arrow), ~U j (red arrow)
and ~Uk (blue arrow). The planar rigidity forces exerted between neighbour cells i and j, and between i and
k are aligned with the bisectors of the normal vectors ~ni j (orange), and ~nik (green) respectively. Forces are
represented by thicker arrows. The intensity of the force is less between i and k because the relative position
vectors~uik and~nik are nearly orthogonal. As a result of these forces, neighbour cells are always pulled back
to the lateral domain of each cell, thus maintaining the planarity of the tissue.
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Specimen Start End Duration ∆t Objective Size Voxels

Embryo 1 3h45m 6h39m 2h54m 1m59s 63x/0.9NA 246 × 246 × 90 0.48 × 0.48 × 0.96

Embryo 2 5h45m 9h03m 3h18m 2m13s 63x/0.9NA 246 × 246 × 100 0.48 × 0.48 × 0.96

Embryo 3 4h20m 10h05m 5h45m 3m27s 20x/0.95NA 280 × 280 × 86 0.55 × 0.55 × 1.09

Embryo 4 5h00m 9h46m 4h46m 3m40s 20x/0.95NA 269 × 269 × 88 0.53 × 0.53 × 1.05

Embryo 5 4h20m 11h20m 7h00m 3m00s 20x/0.95NA 266 × 266 × 82 0.52 × 0.52 × 1.05

Supplementary Table 1: Technical details of data acquisition for the specimens of the cohort. Imaging starting and ending times in hours post
fertilization. Timing prior rescaling. See Supplementary Fig. 2 for rescaled time. Volume in µm3. Voxel size in µm3. Objectives: Leica HCX APO
L 63x/0.9NA U-V-I water and Olympus XLUMPFL 20x/0.95NA water. Estimated temperature at the level of the specimen 20C from temperature
control in the room (18C).



Stage SMic LMic Mac Mes Average Time in hpf

32 cells 4 4 8 16 4.5

60 cells 4 8 16 32 5.2

108 cells 4 8 32 64 5.8

216 cells 8 16 64 128 7.2

Supplementary Table 2: Average correspondence between hpf and stages corresponding to plateaus in the
total number of cells as observed on Supplementary Fig. 2b
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daughter
i ∈Lg

mother
j ∈Lg−1

sister
i1 ∈Lg

sister
i2 ∈Lg

R2
min R2

max
#groups g such
that R2 > 0.6

xi m j 3e-3 0.51 0 of 23

xi1 > xi2 0.095 0.77 7 of 23

ai1 > ai2 1.4e-3 0.88 5 of 38

ai v j 1.9e-4 0.43 0 of 38

bi1 > bi2 0.02 0.81 8 of 38

bi s j 1.4e-5 0.39 0 of 38

Supplementary Table 3: Summary of the linear regressions for six pairs of features across 198 pairs of
distributions in 61 groups of cells. Details can be found in Supplementary Note 2.2.3.
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Cell group Lg with g = (e,n,k)

Cardinality |Lg|= 2|Lg−1|= 2n−n′ |Lg′ |

with g−1 = (e,n−1,k) and g′ = (e,n′ < n,k)

Division time Mg = Mg−1 +Xg = Mg′+∑
g
h=g′+1 Xh

Mg ∼N (µMg ,σMg) and Xg ∼N (µXg ,σXg)

P(Xg |Mg−1) = P(Xg)

µMg = µMg′ +∑
g
h=g′+1 µXh

σMg =
√
(σMg′ )

2 +∑
g
h=g′+1(σXh)

2

Average volume V g =V g−1Ag =V g′
(

∏
g
h=g′+1 Ah

)
V g ∼ logN (µV g

,σV g
) and Ag ∼ logN (µAg ,σAg)

P(Ag |V g−1) = P(Ag)

µVg = µV g′
+∑

g
h=g′+1 µAh

σVg =
√

(σV g′
)2 +∑

g
h=g′+1(σAh)

2

Average surface area Sg = Sg−1Bg = Sg′
(

∏
g
h=g′+1 Bh

)
Sg ∼ logN (µSg

,σSg
) and Bg ∼ logN (µBg ,σBg)

P(Bg | Sg−1) = P(Bg)

µSg = µSg′
+∑

g
h=g′+1 µBh

σSg =
√
(σSg′

)2 +∑
g
h=g′+1(σBh)

2

Supplementary Table 4: Summary of the relationships between the different random variables in the multi-
level probabilistic model. The random variables considered are the division time M, the cell cycle length X ,
the average volume V , the average surface area S, the daughter/mother volume ratio A, the daughter/mother
surface area ratio B. See details in Supplementary Note 2.3.
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Cells j ∈Lg−1 and i ∈Lg

i is one of j’s two daughters

Division time mi = m j + xi

m j is a realization of Mg−1

xi is a realization of Xg

Volume vi(t) = aiv j.ωg(u)

ai is a realization of Ag

v j is a realization of V g−1

ωg is the deterministic volume microdynamics

u is the percentage of elapsed cycle length of cell i

Surface area si(t) = bis j.φg(u)

bi is a realization of Bg

s j is a realization of Sg−1

φg is the deterministic surface area microdynamics

u is the percentage of elapsed cycle length of cell i

Supplementary Table 5: Instantiation of the model independently in each branch and group of the cell lin-
eage. The cell features considered are the division time m, the cell cycle length x, the average volume v, the
average surface area s, the daughter/mother volume ratio a and the daughter/mother surface ratio b, corre-
sponding random variables are denoted with uppercase letter (M, X , V , S, A, B respectively). The volume
and surface area are modulated in time by volume micro dynamics ω and surface area micro dynamics φ .
See details in Supplementary Note 2.3.
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Parameter Values Explored Increment
Values Shown

(Fig. 4, Supplementary Videos 4-7)

wadh,e [10, 1000] +25 [10, 785]

wadh,o [10, 1000] +25 [10, 785]

wrep 100 – 100

cmax 2 – 2

krig [6000, 16000] +1000 10000

αgab [0.9, 1.3] +0.02 1.0

λ0 3000 – 3000

Supplementary Table 6: Exploration range and increments, with chosen values, for the parameters of the
spatial model. wadh,e is the heterotypic adhesion coefficient, wadh,o is the homotypic adhesion coefficient,
wrep is the repulsion coefficient, cmax is used to define the maximum cell deformation in the surface plane,
these four coefficients are involved in the computation of the attraction-repulsion force. krig is the rigidity
coefficient used to compute the planar rigidity force. αgab is a coefficient used to define the neighbourhood of
each cell through a 3D generalization of the Gabriel criterion. λ0 is used to compute the damping coefficient,
required to compute the equation of motion. The full description of the spatial model can be found in
Supplementary Note 3.1
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Supplementary Video 1: Visualization of reconstructed embryo 3 visualized from 4.56 hpf (32-cell stage)
to 8.65 hpf (hatching blastula) with Mov-IT software: A) Raw nuclei, coloured dots are detected nuclear
centres (mesomeres in blue, macromeres in red, large micromeres in pink, small micromeres in purple).
Volume rendering of raw images from two-photon laser scanning microscopy with nuclear staining by H2B-
mCherry. Note that at the onset of imaging, membrane signal is leaking in the nucleus channel. Lateral view
animal to the top. B) Raw membranes, the coloured dots are the same as in A). Three orthoslices (xy
imaging plane, xz and xy planes orthogonal to the imaging plane) showing raw images from two-photon
laser scanning microscopy with membrane staining by farnesylated eGFP. The animal orientation can be
inferred from the organization of the cell populations. C) Surface rendering of segmented cell membranes.
(mesomeres in blue, macromeres in red, large micromeres in pink, small micromeres in purple). Lateral view
animal to the top. D) Same as C). The embryo is cut along a radial plane and shown from the blastocoel.
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Supplementary Video 2: Modelling of sea urchin prototypical early development with the MecaGen platform
and simulation with four different sets of mechanical parameters: A) Simulation of a monolayered, spherical
embryo with realistic cell population borders. This specimen falls into the best-fit domain. It was obtained
with the following parameters: wadh,o = 600, wadh,e = 110, wrep = 100, krig = 10000, αgab = 1, λ0 = 3000,
and cmax = 2. The embryo is cut along a radial plane and shown from the blastocoel. Black lines materialize
cell-cell contacts. B) Simulation of a monolayered, spherical embryo with nonrealistic cell population
borders. Although the global shape is correct, this simulated embryo shows cell population borders that
differ from the live specimens with nonrealistic cell mixing (pink area in Fig. 4c). It was obtained with
the following parameters: wadh,o = 100, wadh,e = 200, wrep = 100, krig = 10000, αgab = 1, λ0 = 3000, and
cmax = 2. The embryo is cut along a sagittal plane and shown from the blastocoel. Black lines materialize
cell-cell contacts. C) Simulation of a monolayered, aspherical embryo with nonrealistic cell population
borders. The simulated embryo still displays an epithelial monolayer but not the appropriate sphericity (in
addition to cell population borders that differ from the live specimens with nonrealistic cell mixing). Since
the embryo collapsed, it was not possible to define a radial plane. It is displayed in toto from the outside
with the whole scaffold of cell-cell contacts (black lines) and was obtained with the following parameters:
wadh,o = 400, wadh,e = 220, wrep = 100, krig = 10000, αgab = 1, λ0 = 3000, and cmax = 2. D) Simulation
of a multilayered, aspherical embryo with nonrealistic cell population borders. This simulated specimen
cumulates all three defects and crumpled upon itself. It was not possible to define a radial plane in this
case. The embryo is cut along a longitudinal plane and shown from the blastocoel. Black lines materialize
cell-cell contacts. It was obtained with the following parameters: wadh,o = 700, wadh,e = 700, wrep = 100,
krig = 10000, αgab = 1, λ0 = 3000, and cmax = 2.
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Supplementary Note 1 Digital embryo reconstruction

As anticipated in [1], we provide the first complete digital reconstruction of the sea urchin embryo’s early
development, comprising the position and shape of every cell over time. The methods and tools used here
are part of the BioEmergences platform developed in our laboratory [2]. Cell positions were detected at
the local maxima of cell nucleus images filtered by a difference of Gaussians (DoG), while cell shapes
were reconstructed from cell membrane images using the “subjective surface” algorithm (SubSurf) [3],
following earlier results [4]. To reconstruct cell trajectories, cell movements were tracked by minimizing
a heuristic functional with simulated annealing (SimAnn) [5]. The choice of parameters for DoG filtering
was supervised, and all cell positions and trajectories were manually checked and validated through our
dedicated Mov-IT software interface [6, 2].

Supplementary Note 1.1 Nucleus center detection

In order to detect cell positions, we assumed that cells could be identified by the spatial coordinates of
nuclear centres. Raw imaging data was preprocessed to simultaneously smooth images and preserve only
the spatial information relevant to the size of cell nuclei. Filtering was carried out by a convolution of the
original image with two Gaussian functions G1 and G2 of variances σ1 < σ2, and calculating the difference
G1−G2. The output was renormalized to be in the range [0,1]. Since a few spurious regions could still be
present in the image, we applied a simple threshold θ , setting all lower values to zero. Finally, cell positions
were identified with the local maxima of the resulting image. Considering the changes in size of cell nuclei
during the acquisition and the variations in intensity over time and among different datasets, we opted for
a supervised choice of parameters. The algorithm was run for σ1 = 1.2,1.4, ...,2.6 µm, σ2 = 12,14,16 µm
and θ = 0.01,0.02, ...,0.09. Our custom interface Mov-IT made it possible to superimpose raw data on the
detected cell positions for various parameter values. Parameters were manually chosen at a few time steps
selected along each time lapse, then intermediate values were interpolated linearly from them.

Supplementary Note 1.2 Cell tracking

The objective of cell tracking is to detect the invariant identity of each cell by relating its positions at two
consecutive time steps, from its birth at the last mitosis to its disappearance at the next mitosis. Starting
with the initial cell population, temporal links create together a lineage tree whose branches split at cell
divisions. Considering that sea urchin embryos were immobilized and cells did not move fast at the observed
early stages of development, our tracking strategy essentially relied on a nearest-neighbour criterion to link
detected nuclear centres. First, tree branches were constructed by connecting nearest cells on consecutive
images when that proximity criterion was reciprocal. Then, mitoses were detected by linking cells left over
without a predecessor to their closest neighbour at the previous time step. Finally, the resulting lineage tree
was refined via minimization of a functional E( f ). This energy term assumes that the embryo behaves like
an elastic mass, therefore cells that are neighbours at time t remain close to each other at time t +1:

E( f ) = ∑
(i, j)
‖(~r j−~ri)− (~r f ( j)−~r f (i))‖2, 1

where i, j represent the cells, f is the link between cells at time t and cells at time t +1, and~ri = (xi,yi,zi) is
the cell position. The minimization of the functional was performed by a simulated annealing algorithm [5],
searching for the lowest-energy configuration by randomly changing a link, removing/adding a link or re-
moving/adding a cell. Finally, we refined the automated tracking by removing cells with a very short cell
cycle (e.g. a few time steps), as they were most likely to be false positives.
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Supplementary Note 1.3 Digital specimen validation and correction

All cell positions and trajectories were checked by at least two experts through visual inspection comparing
the digital reconstruction with the raw data. All detectable errors (false positive and false negative nuclei,
false links, missing links) were corrected to build error-free lineages—hereafter called “gold standard”.
All five lineage trees were fully validated for all five datasets in this manner. Moreover, each cell was
unambiguously identified by a unique ID in our database. Both operations were a prerequisite to perform
the next steps comprising cell segmentation, which uses cell positions for initialization and cell IDs for
labelling, and data analysis.

Supplementary Note 1.4 Cell segmentation

Three-dimensional segmentation of in vivo imaging presents a difficult challenge, especially since fast and
deep two-photon laser scanning microscopy produces a low signal-to-noise ratio and incomplete membrane
contours, thus dedicated methods have to be used for this task. To this purpose, cell shapes were obtained by
applying a generalized version of the SubSurf method [4] for its ability to reconstruct missing boundaries,
making it particularly suitable for this type of segmentation. To remove the noise and smooth the images
while faithfully preserving edge information, the data was first filtered by geodesic mean curvature flow
(GMCF) [7]. Segmentation of cell membranes was then performed on the filtered data using the manually
validated cell positions as starting points. Each membrane was segmented independently on a region of
interest located around the initialization points and ranging from ±25µm to ±16µm in every direction
depending on the number of cells in the processed volume. Finally, the whole embryo shape was recomposed
from the union of the segmented cells and each region labelled according to the ID of the corresponding
cell centre. Information was exchanged between adjacent membranes to avoid overlapping. In particular,
superimposed regions were split depending on the distance from the nearest cell centre and the ID of the
obtained subregions set accordingly. Segmentation results were exported in two formats: voxel-based image
data to support the calculation of cell volumes and the detection of neighbour cells; and triangulated surfaces
to support the calculation of cell surface areas.

The GMCF and generalized SubSurf methods are briefly summarized in the next paragraphs. Nu-
merical implementation of both filtering and segmentation algorithms was performed via finite difference
schemes [8, 3]. Further details about the methods employed can be found in [7] and [4].

Supplementary Note 1.4.1 Image filtering

We model the 3D input image by a real positive function I0(x,y,z), in some spatial rectangular domain
Ω⊂ R3, and its low-level local features by an edge indicator function g (see below). According to GMCF,
a smooth-edge enhanced version of the original image can be obtained by extending the image function in
time, creating a family of “level sets” I(x,y,z, t), and solving the following partial differential equation:

∂tI = |∇I| ∇ ·
(

g(|∇Gσ ∗ I|) ∇I
|∇I|

)
2

where Gσ is a Gaussian kernel with a small variance σ . This is accompanied by the initial condition
I(x,y,z,0) = I0(x,y,z) and a null Neumann boundary condition (i.e. zero gradients) on the domain edges
∂Ω. Selecting a final time t = T , the solution I(x,y,z,T ) represents the filtered image I f . In the model,
the mean curvature motion of the level sets of function I is determined by the edge indicator function
g(s) = 1/(1+Ks2), K ≥ 0, applied to the image intensity gradient pre-smoothed by Gσ .
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Supplementary Note 1.4.2 Image segmentation

In the 3D case, the SubSurf method consists of minimizing the volume of a 3D manifold S embedded in a
4D Riemannian space with a metric constructed on the image features [4]. We consider the filtered image I f

and its low-level local features given by the same edge detector function g f (x,y,z) = g(I f (x,y,z)) as for the
GMCF. Let also the manifold be defined as S = (x,y,z,Φ), where Φ(x,y,z) is a positive distance function
defined in the image domain Ω. The generalized version of the SubSurf method leading to the minimization
of the volume of S can be expressed as a function of Φ as follows:

∂tΦ = µ g f H |∇Φ|
ε
+ν ∇g f ·∇Φ in Ω× ]0,τ[

Φ(x,y,z, t) = min(Φ0) in ∂Ω× ]0,τ[
Φ(x,y,z,0) = Φ0 for (x,y,z) ∈Ω,

3

where µ and ν are weight coefficients and τ is the value of the scale parameter t which corresponds to the

steady-state condition of the first equation. The notation |∇Φ|
ε
=

√
ε + |∇Φ|2 represents a regularization

of |∇Φ| [9] and H reads:

H =
(ε +Φ2

x +Φ2
y)Φzz +(ε +Φ2

x +Φ2
z )Φyy +(ε +Φ2

y +Φ2
z )Φxx

(ε +Φ2
x +Φ2

y +Φ2
z )

3/2 −2
ΦxΦzΦxz +ΦxΦyΦxy +ΦyΦzΦyz

(ε +Φ2
x +Φ2

y +Φ2
z )

3/2 . 4

where subscripts are shortcuts for derivatives: Φx = ∂Φ/∂x, Φxx = ∂ 2Φ/∂x2, etc.
The first term on the right-hand side of equation 3 (top row) represents a mean curvature flow weighted

by the edge indicator g f . The second term attracts the level sets of Φ in the direction of the image edges,
given by the velocity field −∇g f . Different behaviors can be identified locally in the image regions ac-
cording to one of these flows, and missing boundaries (the so-called “subjective contours”), which are a
continuation of existing edge fragments, are completed by geodesics. The use of different weights between
the regularization and the advective term (ν > µ) facilitates the control of the dynamic process, while the
parameter ε is used to shift the model from the mean curvature flow of the level sets (ε = 0) to the mean
curvature flow of the graph (ε = 1).
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Supplementary Note 2 Multi-level probabilistic model of the cell lineage

Supplementary Note 2.1 Multi-level measures and rescaling

Supplementary Note 2.1.1 Individual cell features

The digital reconstruction of entire sea urchin specimens allowed us to extract a variety of features at the
level of individual cells (Supplementary Note 1) [4]. For any cell i, we defined the following quantities
(Supplementary Fig. 1):

• its cell cycle length: xi, corresponding to the time between two consecutive divisions

• a mitosis time: mi, denoting the moment at which the cell i divides into two daughter cells

• its current volume: vi(t), with the average volume over its cell cycle length (using discrete time steps):

vi =
1
xi

∫ mi

mi−xi

vi(t)dt ' 1
xi

mi−1

∑
t=mi−xi

vi(t) 5

• its current surface area: si(t), with the average surface area over its cell cycle length:

si '
1
xi

mi−1

∑
t=mi−xi

si(t) 6

• a generation number: ni, denoting the number of past divisions on cell i’s lineage branch, which
includes itself and all its ancestors since fertilization

• a cell type: ki, taking one of four possible values: 1 for mesomeres (Mes), 2 for macromeres (Mac), 3
for large micromeres (LMic), and 4 for small micromeres (SMic) [10] (Supplementary Fig. 1b)

• its current degree: di(t), equal to the number of neighbours of cell i at time t, assuming that the spatial
distribution of cells can be represented by an undirected graph of cellular contacts, in which cells
correspond to nodes and cell-cell interactions to edges [11, 12].

Each cell i also has a mother identified by j (a shorthand notation for the function j(i) mapping any cell
index to its mother’s index), which is used in the definition of two additional features:

• a daughter/mother average volume ratio: ai = vi/v j

• a daughter/mother average surface ratio: bi = si/s j

and three relationships:

• the mitosis time of a cell is equal to the sum of its cell cycle length and the mitosis time of its mother:
mi = m j + xi

• the generation is incremented by one at each division: ni = n j +1

• starting from the 32-cell stage, each cell type is conserved across divisions throughout the period
considered here (formation of the blastula): ki = k j.
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Supplementary Note 2.1.2 Cell populations and global state variables

The cell lineage, denoted by L , is the set of all cells, past and present, that the embryo contained during a
given period of time. From there, various subsets were defined:

• the current embryo, the set of all cells alive at time t: L (t) = {i ∈L | mi− xi ≤ t < mi}

• cell populations, the sets of cells of a given type k across all generations: L k = {i ∈L | ki = k}

• current cell populations, the cell population at time t: L k(t) = {i ∈L (t) | ki = k}.

At the level of the entire embryo, and at each time step t, the global measures were:

• the number of cells, cardinality of the current embryo: N(t) = |L (t)|

• the total cellular volume, sum of all individual cell volumes: W (t) = ∑i∈L (t) vi(t)

• the total cellular surface area, sum of individual cell surface areas: Z(t) = ∑i∈L (t) si(t)

• the total number of contacts, sum of the local degrees: C(t) = ∑i∈L (t) di(t)

These quantities were also calculated inside each cell population k, replacing L (t) by L k(t) in the above
definitions and using the notations Nk(t), W k(t), Zk(t), and Ck(t).

Supplementary Note 2.1.3 Rescaled embryo dynamics

The number of cells, total cellular volume, and total cellular surface area were measured empirically in each
embryo of the cohort E , indexed by e ∈ [1,5] and denoted Ne(t), Nk

e (t), and so on. The evolution over time
of these variables was plotted concurrently (Supplementary Fig. 2a,d,g). We observed that the patterns of
evolution across the various specimens were similar but did not overlap: some were globally faster, some
slower; some were larger, other smaller. To filter out this variability and proceed to further interindividual
comparison, we applied temporal and spatial rescaling functions.

Temporal rescaling For each observed cell number Ne(t), we considered its inverse function te(N) equal
to the time at which embryo e contained a given number N of cells (symmetric of Supplementary Fig. 2a).
Since Ne(t) is a monotonically increasing function (no cell death during the period considered), so is te(N).
However, because of the relative synchrony among cell cycles, Ne can remain constant for several time
steps (plateaus in Supplementary Fig. 2a). Therefore, to obtain a single-valued function, we defined te(N) =
min{t | Ne(t) = N} over the size interval of e, [Ne,min,Ne,max] (if N was not part of the observed discrete
values, te(N) was interpolated). Then, to minimize the discrepancy between the observed time of an embryo,
te(N), and the mean time of the five specimens, 〈t〉(N), an affine transform was performed on the time axis
using a cost function:

Fe(α,β ) =
Ne,max

∑
N=Ne,min

(αte(N)+β −〈t〉(N))2 with 〈t〉(N) =
1
|EN | ∑

e∈EN

te(N), 7

where EN is the sublist of embryos e such that N ∈ [Ne,min,Ne,max] (including by interpolation). For each
embryo, the parameters adopted for the transform satisfied (αe,βe) = argminFe(α,β ). Finally, taking the
inverse again, we obtained five rescaled total numbers Ne(αet +βe) and four groups of five rescaled field
numbers Nk

e (αet +βe), which are plotted in Supplementary Fig. 2b. The five parameter pairs (αe,βe) are
shown in Supplementary Fig. 2c.
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Spatial rescaling Based on the same temporal rescaling, a linear transform was also performed along
the spatial dimensions to minimize the discrepancy between the temporally rescaled cellular volume of an
embryo, We(αet +βe) and its mean value over all specimens:

Ge(γ) =
(te,max−βe)/αe

∑
t=(te,min−βe)/αe

(γ3We(αet +βe)−〈W 〉(t))2 with 〈W 〉(t) = 1
|Et | ∑

e∈Et

We(αet +βe), 8

where Et is the sublist of embryos e such that (αet +βe) ∈ [te,min, te,max] (including by interpolation). For
each embryo, γe = argminGe(γ) was then defined as the optimal coefficient. The original volumes We(t) are
plotted in Supplementary Fig. 2d. The five rescaled total volumes (γe)

3We(αet +βe) and four groups of five
rescaled field volumes (γe)

3W k
e (αet +βe) each are plotted in Supplementary Fig. 2e, while coefficients γe

are shown in Supplementary Fig. 2f. Finally, we used the same coefficients squared for the rescaled cellular
surface areas, (γe)

2Ze(αet +βe) and (γe)
2Zk

e(αet +βe) (Supplementary Fig. 2h; the original curves Ze(t) are
shown in Supplementary Fig. 2g).

neighbourhoods The total numbers of contacts in each embryo and each cell population did not require
an extra spatial transform to highlight interindividual similarities. After carrying over the temporal rescaling
parameters found above, the curves Ce(αet+βe) and Ck

e(αet+βe) already presented a high degree of overlap
among embryos e ∈ [1,5] (Supplementary Fig. 2i). This is consistent with the fact that neighbourhood
relationships are topological features, thus independent from metric deformations.

Supplementary Note 2.1.4 Intermediate cell groups

Symmetries in the embryo, such as the rotational symmetry around the animal-vegetal (AV) axis, prevent
the identification and matching of individual cells from one specimen to another. Unique identification of
cells based on their morphological characteristics cannot be done without ambiguity either. To overcome
these issues, a generic coarse-grained level of observation was needed. We chose here to define new subsets
of L (adding to the list of Supplementary Note 2.1.2):

• generational cell groups, or simply “cell groups”, the subsets of generation-n cells of a given type k:
L n,k = {i ∈L | ni = n & ki = k}.

Note that L n,k is not the same as L k(t): the latter is a snapshot of cell population k at time t and therefore
may contain a mix of generations if some cells have divided more frequently than others. Conversely, cells
in the former group may have to be taken at different times. These sets offer two useful viewpoints on the
embryo, one focusing on its global state, the other on cell statistics. In any case, the greater n and t, the more
distant these two sets are likely to be.

At this intermediate scale, it became possible to identify and map cell groups L n,k
e across embryos. At

the lower level, cells belonging to the same group were expected to display similar individual features. At
the sixth generation, each embryo e contained a total of 32 cells composed of 16 Mes, 8 Mac, 4 LMic, and 4
SMic cells, which can be written: |L 6,1

e |= 16, |L 6,2
e |= 8, |L 6,3

e |= |L 6,4
e |= 4 for all e ∈ [1,5]. Since each

cell gives rise to two daughter cells at each cycle and there is no cell death, the number of cells of a given
type continued doubling, i.e. |L n,k

e |= 2n−6|L 6,k
e | for n≥ 6 during the period of interest.

The six cell features considered here are the cell cycle length xi, mitosis time mi, average cell volume
vi, average cell surface area si, and the daughter/mother ratios of average volume ai and surface area bi. The
dispersion of these features observed in each group L n,k

e of the empirical data is represented by distributions,
modelled by sequences of random variables. For example, (x1,x2, ...,xm) denotes the sequence of the values
that the first feature, cell cycle length, takes in the m cells of a given group L n,k

e . Each xi is the realization
of a random variable Xi pertaining to cell i. Cells being indistinguishable within the same group, their order
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in the sequence is irrelevant. This property is referred to as “exchangeability” of the sequence of random
variables and is formalized as follows: for any permutation π of the indices [1,m], the joint probability
distribution of these variables is the same:

P(Xπ(1),Xπ(2), ...,Xπ(m)) = P(X1,X2, ...,Xm). 9

This property leads to de Finetti’s theorem, which can be summarized by saying that an infinite sequence
of exchangeable random variables is a “mixture” of independent and identically distributed (i.i.d.) se-
quences [13, 14]. As for a finite exchangeable sequence, it can also be approximated by a mixture of
i.i.d. sequences [15]. One consequence of this theorem is that the following empirical measure Pm,Xg consti-
tutes a summary statistic for the probability density P of the X sequence:

Pm,Xg(I) =
1
m

m

∑
i=1

δXi(I), with δx(I) = 1 if × ∈ I and δx(I) = 0 if × /∈ I, 10

where I is an interval of values or union of intervals (i.e. an element of the “σ -algebra” on R) and δx is the
Dirac measure. If m could increase to ∞, Pm,Xg would converge asymptotically to the underlying theoretical
probability distribution P of the sequence of exchangeable random variables.

The motivation of the probabilistic model presented here and in the next section was to provide an
idealized representation of the dynamics of multicellular development relating the distributions observed in
each cell group with the global dynamics of the cell lineage. To simplify notations, let us define an embryo-
specific cell group index g = (e,n,k) so that L n,k

e can be equivalently written Lg. With this, our goal was
the following:

• link the distribution in each group Lg of cell cycle lengths: Xg ∼ {xi | i ∈Lg} and the distribution of
mitosis times: Mg ∼ {mi | i ∈Lg} to the evolution of the total number of cells in the embryo Ne(t)

• link the distribution in each group Lg of average volumes V g and the distribution of daughter/mother
volume ratios Ag to the evolution of the total cellular volume We(t)

• link the distribution in each group Lg of average surface areas Sg and the distribution of daugh-
ter/mother surface ratios Bg to the evolution of the total cellular surface area Ze(t).

Supplementary Note 2.2 Observation and approximation of multi-level statistics

From the empirical distributions of individual cell features, we derived parameterized representations ap-
proximating their probability distributions in each cell group. Combining cell features along the cell lineage
required considering simple models of inheritance. As explained below, we calculated correlations based on
an assumption of linearity in intercellular dependencies and, obtaining low values, concluded that the indi-
vidual features of a cell were largely independent from its mother’s or sister’s features. This independence
was then taken as a founding hypothesis of our model.

Supplementary Note 2.2.1 Estimation of cell feature distributions in cell groups

To interpret the empirical feature distributions, capture their evolution and predict the developmental dy-
namics, it was best to describe them in terms of parametric models. First, however, because of the finite
and relatively short duration of the period of observation, some groups Lg were incompletely represented in
the dataset. Therefore, a distribution of cell features in a group was considered to be significant only if the
number of observed cells constituted at least 95% of the full cardinality |Lg| calculated above. Moreover,
certain features, such as the volume vi and surface area si, required the observation of their evolution during
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whole cell cycles. Incomplete cell cycles were taken into account only if the mean period of observation
of individual cell dynamics in a group was at least 20 min. Based on these criteria, we retained 252 dis-
tributions of individual cell features across all cell groups Lg (corresponding to a rough average of 4× 3
significant distribution-generation pairs in each one of the 5×4 embryo-cell types).

Graphical assessment of these histograms led us to categorize them into two major types: normal dis-
tributions (i.e. Gaussian curves) for cell cycle lengths xi and mitosis times mi; and log-normal distributions
for average cell volumes vi, average cell surface areas si, daughter/mother volume ratios ai and surface area
ratios bi (where a random variable X is said to be log-normally distributed if the random variable Y = logX
is normally distributed).

We performed a chi-squared goodness-of-fit test on each distribution to validate our assessment. This
test evaluates the proximity of the empirical frequency with the theoretical one, i.e. whether the random
variables are i.i.d. under a normal distribution or a log-normal distribution. To this aim, we first calculated
the empirical mean and standard deviation of each random variable in each cell group Lg using a classical
maximum likelihood estimation [16]. For example, in the case of cell cycle lengths Xg these two quantities
are 

µXg ≈ µ̃Xg =
1

Ng
∑

i∈Lg

xi

σXg ≈ σ̃Xg =
√

1
Ng−1 ∑

i∈Lg

(xi− µ̃Xg)
2

11

where Ng = |Lg|. The same formulas were applied to variables Mg, logV g, logSg, logAg, or logBg, for each
one of the 252 available distributions, yielding parameters (µ̃Mg , σ̃Mg), ...,(µ̃Bg , σ̃Bg). All 252 (µ,σ) pairs
are plotted in Supplementary Fig. 3.

Then, based on the empirical mean and standard deviation, our categorization hypothesis was challenged
in each distribution by calculating a p-value corresponding to the probability to find a good fit with a normal
or log-normal curve. Taking again Xg as an example, the distribution of cell cycle lengths {x1,x2, ...,xm}
over the m cells of group Lg was categorized into a fixed number l of discrete bins, (x̂1, x̂2, ..., x̂l), where
x̂1 = min{xi} and x̂h+1− x̂h = ∆x̂ = (max{xi}−min{xi})/l for all h ∈ [1, l − 1]. In this histogram, the
observed distribution corresponds to the number of values falling in each bin and was given by the empirical
measure Pm,Xg(Ih) (equation 10), where Ih = [x̂h, x̂h +∆x̂) and Il is closed, while the expected distribution
was given by Pm,X̃g

(Ih), where X̃g is the theoretical normal distribution calculated from (µ̃Xg , σ̃Xg). The
chi-squared statistic computes the discrepancy between both distributions as follows:

χ
2
g =

l

∑
h=1

(Pm,Xg(Ih)−Pm,X̃g
(Ih))

2

Pm,X̃g
(Ih)

. 12

This statistic was assumed to follow a chi-squared distribution with κ = l−3 degrees of freedom [17] (the
number of frequencies, l, reduced by the number of parameters of the fitted distribution, µ and σ , and the
constraint ∑h Pm,Xg(Ih) = 1). This gave the p-value, which is the probability of observing a test statistic at
least as extreme, i.e. 1 minus the cumulative distribution function of χ2

g for κ degrees of freedom. Finally,
our Gaussian-fit model was deemed adequate for a given feature in a group Lg if its p-value was greater
than 0.05 (Supplementary Fig. 5).

Note that the chi-squared test of goodness-of-fit produces inaccurate results if the size of the sample
is too small—i.e., by convention, less than 5 elements in a bin [17]. Reducing the number of frequen-
cies l increases the number of elements in each bin, but also decreases the number of degrees of freedom
kappa, which must remain greater than 3 for the test to be applicable here. Based on these constraints, 128
distributions out of 252 had to be excluded from the evaluation.

For most of the remaining 124 distributions, the validity of our assumptions about their type (normal or
log-normal) could be retained. Only 20 of them had a p-value under 0.05, among which 12 were under 0.01
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(Supplementary Fig. 5). The complete ranges of p-values obtained were the following: [3.7e-8,0.42] for cell
cycle lengths xi, [3.6e-6,0.46] for mitosis times mi, [8.5e-3,0.89] for average cell volumes vi, [5e-3,0.96] for
average cell surface areas si, [0.06,0.84] for average volume ratios ai, and [1.3e-3,0.76] for average surface
area ratios bi. The histogram of all 124 p-values is plotted in Supplementary Fig. 6.

Ideally, the worst-fit cases could be used to subdivide cell groups Lg into smaller classes (e.g., oral
and aboral cells) reflecting the multimodal aspect of certain distributions, or to adopt different parametric
models (e.g., exponential instead of Gaussian curves). Given the small size of the cohort, however, and the
non-reproducibility of these outlier distributions in various specimens, it was difficult to rely on such devi-
ations to define new cell types or new models. Moreover, biological relevance of the inferred cell clusters
would have to be validated by correlation with the fate map and/or the gene expression in the form of a gene
expression “atlas” [18], which is out of the scope of this study. This is why we preferred keeping the sim-
plicity of normal and log-normal approximations as they captured the essential characteristics of statistical
distributions (their mean and variance) even in marginal cases. For now, we left out any potential additional
information for the sake of understandability and interpretability of the whole dataset. The description of
distribution shapes can be refined in future work by using a larger cohort of specimens.

Supplementary Note 2.2.2 Cell volume and surface area dynamics

The volume and surface area of a cell are not constant during its cell cycle length because of various con-
tractions and expansions. To highlight the fluctuations of the cellular geometry around its average, we define
two other cell quantities:

• the normalized volume: ωi(u) = vi(t)/vi

• the normalized surface: φi(u) = si(t)/si

where u∈ [0,1] represents the cell’s “normalized age”, defined as the percentage of elapsed cell cycle length:

t = m j +uxi = mi− (1−u)xi ⇔ u =
t−m j

xi
=

t−m j

mi−m j
13

(m j is the mother’s mitosis time). From there, the microdynamics of cell geometry can be described by
taking the empirical mean of these temporally realigned quantities within each group Lg (Supplementary
Figs. 7,8):

ω̃g(u) =
1

Ng
∑

i∈Lg

ωi(u) and φ̃g(u) =
1

Ng
∑

i∈Lg

φi(u), 14

making the assumption that the functions ωg and φg are essentially deterministic, i.e. the variations in volume
and surface rescaled in amplitude and time are the same for all cells i ∈ Lg (hence the notations ω̃g, φ̃g

instead of µ̃Ωg , µ̃Φg). Compared to the other six empirical means calculated previously (equation 11), the
particularity of these values is their dependency on time, which is rescaled to align the signals.

At the level of individual cells, by definition of ai and bi, the following relationships hold:

vi(t) = viωg(u) = aiv j.ωg(u) 15

si(t) = siφg(u) = bis j.φg(u). 16

These equations mean that the volume and surface area variations can be decomposed into a stochastic and
a deterministic component. The stochastic component, aiv j or bis j, concerns the evolution of the average
volume or surface area along the cell lineage, while the deterministic component, ωg or φg, modulates
the cell volume or surface area around its average. The domain of these functions is the interval [0,1],
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representing the percentage u of elapsed cell cycle (their value is 0 outside this interval), and their range is
comprised in [0.8,1.3]. Using equations 5,6, their integral is also normalized:

1 =
1
xi

∫ mi

mi−xi

vi(t)
vi

dt =
∫ 1

0
ωi(u)du ⇒

∫ 1

0
ωg = 1 17

1 =
1
xi

∫ mi

mi−xi

si(t)
si

dt =
∫ 1

0
φi(u)du ⇒

∫ 1

0
φg = 1. 18

Supplementary Note 2.2.3 Independence along the lineage

Having defined parametric representations (µ̃, σ̃) for each cell feature distribution within each cell group
Lg, we wanted to investigate the relationships among these variables. Since cells are genealogically related,
it was natural to hypothesize some degree of correlation between cells belonging to the same descent. With
the goal to find a reduced number of parameters describing the phenomenology of the process, we assumed
linear dependencies between the cell distributions of daughters and mothers, and among sisters. This is
written Y = λ +νX , where the scalar parameters λ and ν can be estimated by linear regression based on a
set of N realizations of the random variables X and Y : {(xi,yi)}i=1,...,N . The empirical optimal values λ̃ and
ν̃ are the ones that minimize the residual sum of squares over the samples:

SSres =
N

∑
i=1

(yi− (λ̃ + ν̃xi))
2 =

N

∑
i=1

ε
2
i , 19

where εi denotes the residual error terms such that yi = λ̃ + ν̃xi + εi and is assumed to be normally dis-
tributed around zero. Then, to characterize the accuracy of this linear estimation, we used the coefficient
of determination, R2, which measures the percentage of variation of one variable explained linearly by the
other [19, 16]. If we define the total sum of squares by

SStot =
N

∑
i=1

(yi− ỹ)2 with ỹ =
1
N

N

∑
i=1

yi, 20

where ỹ is the empirical mean of Y , then the percentage of variation that remains unexplained linearly is
given by the ratio SSres/SStot, and the coefficient of determination is equal to its complement:

R2 = 1− SSres

SStot
. 21

For a “simple” linear regression (i.e. one with a single explanatory variable), it can be shown that the coef-
ficient of determination is equal to the square of the estimated Pearson’s coefficient of correlation:

R2 = ρ̃
2
X ,Y , where ρX ,Y =

cov(X ,Y )
σX σY

=
µXY −µX µY

σX σY
. 22

The greater R2, the more X and Y tend to be linearly dependent, with a binary decision threshold generally
set at 0.6. Note that R2 does not measure nonlinear dependencies, thus can remain low even if X and Y are
strongly related through quadratic or logarithmic functions, for example.

Here, this coefficient was applied to six pairs of features calculated among the 252 distributions deemed
sufficiently represented in the dataset (Supplementary Note 2.2.1, Supplementary Fig. 3). In the following,
for a group index g = (e,n,k) we use the shorthand notation g− 1 = (e,n− 1,k) to refer to the previous-
generation cell groups of the same type in the same embryo.
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Daugther’s cell cycle length vs. mother’s mitosis time As above, we assumed a simple model of linear
dependency between the cell cycle length xi of a cell i ∈Lg and the mitosis time m j of its mother j ∈Lg−1:
xi = λ + νm j. The coefficients of determination R2 = ρ̃2

Mg−1,Xg
were computed between the distributions

Xg ∼ {xi | i ∈Lg} and Mg−1 ∼ {m j | j ∈Lg−1} at several generations n. For this calculation, we used the
23 groups Lg of Supplementary Fig. 3a in which all cell cycles were completely known, i.e. had observed
start and end mitosis times, and their corresponding 23 groups Lg−1. In the end, the values of R2 that we
obtained fell in the range [3e-3,0.51], which indicated only weak or inexistent linear dependencies.

Sisters’ cell cycle lengths For each pair of sister cells i1, i2 ∈ Lg, ordered such that xi1 > xi2 , we also
assumed xi1 = λ +νxi2 , where the longer cell cycle length was included in a set Xg,1 and the shorter one in
another set Xg,2. The coefficient of determination R2 = ρ̃2

Xg,1,Xg,2
was then computed in the same 23 groups

and the values obtained belonged to the interval [0.095,0.77], revealing some linear dependency among
sisters’ cell cycle lengths within certain groups. More precisely, R2 coefficients scored above 0.6 in the
following seven groups g = (e,n,k): (4,7,Mac), (5,7,Mac), (3,8,Mac), (4,8,Mac), (1,7,Mes), (3,7,Mes) and
(3,9,Mes). In the other 16 groups, there was no clear linear dependency.

Volume and surface area Concerning the volume and surface area, several models of dependency can
be explored. Usually, it is assumed that the volume of a mother is conserved in its two daughters through
mitosis, and when volumes are measured immediately prior to division and after division, this relation-
ship can even be used to assess segmentation accuracy [6]. In addition, as generations 6 to 10 are part of
cleavage stages, the global cellular volume is expected to remain constant while individual cell volumes
are decreasing by half at each generation, as confirmed on average by Supplementary Figs. 3, 4C. Thus
we may expect average volumes to verify: vi1 + vi2 = v j. Dividing by v j, this is equivalent to a linear re-
lationship ai1 = 1− ai2 between the average daugther/mother volume ratios of the sister cells. To verify if
there was such a dependency, we computed the coefficient of determination R2 = ρ̃2

Ag,1,Ag,2
as above between

pairs of sister cells i1, i2 ∈Lg ordered such that ai1 > ai2 . Over the 38 cell groups Lg of Supplementary
Fig. 3c in which all volumes could be confidently measured, the coefficients of determination belonged
to [1.4e-3,0.88], with 34 values below 0.61 and the other four values in [0.75,0.88] corresponding to cell
groups (3,7,SMic), (3,7,Mac), (4,8,Mac) and (1,7,Mes). However, the λ̃ and ν̃ parameters for these groups
were found in [−0.45,0.12] and [0.87,3.02] respectively, i.e. far from 1 and −1. Altogether, these results
contradicted the hypothesis of average cell volume conservation across mitosis through consecutive genera-
tions, as we observed a variation in the range of ±20% around 0.5 for the average daughter/mother volume
ratio.

Daughter’s volume (or surface area) ratio vs. mother’s volume (or surface area) We investigated
whether daughter cells compensated for the mother’s deviation from the average either in terms of volume
or in terms of surface area. Such compensation would mean that the average daughter/mother volume ratio ai

of a cell i∈Lg and the average volume v j of its mother j ∈Lg−1 were correlated. However, the coefficients
of determination R2 computed in the same 38 groups as above ranged in [1.9e-4,0.43], indicating no linear
relationship. The same tests were performed on surface area features, yielding similar negative results. All
relationships are summarized in Table 3 and the histogram of all the coefficients of determination evaluated
is shown on Supplementary Fig. 9.

However, although variability in volume and surface area at the individual cell level was not counterbal-
anced across consecutive generations, global uniformization could be observed at the macroscopic level, as
shown in Fig. 3k (main article) for the evolution of the total cellular volume.

Overall, given the weak values of R2 obtained for the above six features of individual features in the different
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cell groups (R2 was greater than 0.6 in only 20 cases out of 198 investigated pairs of distributions), we
adopted the viewpoint that the various random variables were independent between and within cell groups.
Although some of these correlation values may be ascribed to underlying deterministic factors responsible
for cell-to-cell variability [20], our goal in the present work was to find parameters that could summarize
relationships between random variables, hence the poor statistical significance of the linear regression test
led us to a global assumption of independence. The following section examines the relations between
probability laws in the different cell groups and how they are combined in the cell lineage.

Supplementary Note 2.3 Multi-level probabilistic model

In this stage, we used the parameterized description of the individual feature distributions (cell cycle length,
mitosis time, volume, surface area) obtained above in each cell group, along with the assumption of indepen-
dence among the different groups, to design a probabilistic model. As explained below, our model accurately
predicted the final distributions of individual cell features compared to inter-individual differences within
the cohort. It reproduced the embryo-level dynamics in each specimen (number of cells, total cellular vol-
ume, total cellular surface area), and also accounted for the propagation of intra-individual variability along
the cell lineage.

Supplementary Note 2.3.1 Proliferation dynamics

In the first step toward designing a probabilistic model of the dynamics and evolution of the cell lineage,
based on our data analysis, we stated the following relationships between the mitosis times and cell cycle
lengths: 

Mg = Mg−1 +Xg

Mg ∼N (µMg ,σMg)

Xg ∼N (µXg ,σXg)

P(Xg |Mg−1) = P(Xg)

23

where N (µ,σ) represents a normal distribution of mean µ and variance σ2 [16]. These equations imple-
ment the assumption of independence between Xg and Mg−1. They are also realized independently in each
branch of the cell lineage by the usual relationship mi = m j + xi (where cell j ∈Lg−1 is the mother of cell
i ∈Lg). From there, we could relate the parameters governing these distributions as follows:

µMg = µMg′ +
g
∑

h=g′+1
µXh

σMg =

√
(σMg′ )

2 +
g
∑

h=g′+1
(σXh)

2
24

where g′ = (e,n′,k) denotes the “initial” group, i.e. n′ < n is the first generation at which cells of type k can
be observed in embryo e, and we use the shorthand notation g′+1 = (e,n′+1,k). The last equation means
that the variability of mitosis times, represented by the variance of their Gaussian distribution, is based on
the sum of variabilities of cycle lengths in each preceding cell group along the lineage tree. Similarly, the
mean mitosis time is the sum of mean cell cycle lengths over the preceding groups.

Proof. Equation 24 can be derived from equation 23 by developing the recurrence relation between the
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random variables:

Mg = Mg−1 +Xg

= Mg−2 +Xg−1 +Xg 25

= Mg′+Xg′+1 + ...+Xg−1 +Xg

Recall that the observation window of the developing embryo in our data is limited. It begins at the earliest at
the 32-cell stage, i.e. at the 6th cell cycle (n′= 6) where cells can be found in each of the four subpopulations,
and ends at the latest at the 408-cell stage, i.e. cycle n = 10 for Mes and Mac cells, cycle n = 9 for LMic
cells, and cycle n = 7 for SMic cells. Since the recurrence could not be traced all the way back to the origin,
we provided a boundary condition for the initial distribution of mitosis times in the form of a Gaussian
distribution, as in equation 23: Mg′ ∼N (µMg′ ,σMg′ ). Then, the probability distribution of mitosis time Mg

was derived from the property that the density of the sum of two independent random variables is equal to
the convolution of their individual densities:

fMg = fMg−1+Xg = fMg−1 ∗ fXg

= fMg−2 ∗ fXg−1 ∗ fXg 26

= fMg′ ∗ fXg′+1
∗ ...∗ fXg−1 ∗ fXg

where fY denotes the probability density of Y and ∗ is the convolution product. In the case of Gaussian
distributions, the convolution of two distributions is another Gaussian whose mean and variance are the
sums of their respective components [21]:

fY = f (y | µ,σ) =
1

σ
√

2π
e−

(y−µ)2

2σ2 27

fY1 ∗ fY2 = f (y | µ1,σ1)∗ f (y | µ2,σ2) = f
(

y | µ1 +µ2,
√

σ2
1 +σ2

2

)
28

Since each distribution of cell cycle lengths is a Gaussian distribution, fXg = f (x | µXg ,σXg) and fMg′ =
f (m | µMg′ ,σMg′ ), we obtained equation 24 by combining equations 26 and 28:

fMg = f

m | µMg′ +
g

∑
g′+1

µXh ,

√√√√(σMg′ )
2 +

g

∑
g′+1

(σXh)
2
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This result guarantees that the knowledge of the distributions of cell cycle lengths in each cell group was
sufficient to characterize the distributions of mitosis times.

Supplementary Note 2.3.2 Cell volume and surface area dynamics

In a second step, we modelled the stochastic component of the volume variations as follows (Supplementary
Note 2.2.2): 

V g =V g−1Ag

V g ∼ logN (µV g
,σV g

)

Ag ∼ logN (µAg ,σAg)

P(Ag |V g−1) = P(Ag)

30

where Y ∼ logN (µ,σ) denotes a log-normal distribution, i.e. log(Y ) is normally distributed with mean µ

and variance σ2 [22, 16]. As above, these equations implement the assumption of independence between
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Ag and V g−1 and are realized independently by vi = v jai. From there, we also obtained:
µV g

= µV g′
+

g
∑

h=g′+1
µAh

σV g
=

√
(σV g′

)2 +
g
∑

h=g′+1
(σAh)

2
31

by a proof similar to the previous section, with the difference that we were dealing here with log-normal
distributions, hence the recurrence relationship was:

V g =V g′

(
g

∏
h=g′+1

Ah

)
⇔ log(V g) = log(V g′)+

g

∑
h=g′+1

log(Ah). 32

Finally, to obtain vi from vi, we used equation 15 with a deterministic function ωg (the “microdynamics”
model of the variation of volume occurring between two consecutive mitoses) estimated from the empirical
curves of Supplementary Fig. 7. Note that there is no simple probabilistic model for Vg directly, only for V g.

All the above equations are the same for surface areas, replacing V g, Ag, vi and ωg with Sg, Bg, si and
φg, respectively.

Supplementary Note 2.3.3 Model summary

The model is summarized in Supplementary Table 4, which describes the relationships between random
variables at the level of cell groups, and Supplementary Table 5, which recapitulates how the probabilistic
variables are instantiated in each branch of the lineage tree. Note that, just like there was no easy analytical
model for the non-renormalized volume and surface area random variables, Vg and Sg, it is also difficult or
impossible to give an analytical expression for the probability distributions of the embryo-level quantities
(defined in Supplementary Note 2.1.2 and measured in Supplementary Note 2.1.3): number of cells Nk(t),
total cellular volume W k(t), and total cellular surface area Zk(t). Although these quantities are themselves
random variables, there is no simple theoretical model for the macroscopic dynamics of cell populations.
They could be assessed, however, by numerical simulation via the generation of virtual cell lineages, as
explained in Supplementary Note 2.3.5 below.

Supplementary Note 2.3.4 Model evaluation

To assess the relevance of our analytical model, we evaluated the difference between, on the one hand,
the empirical distributions (Mg, V g, Sg) measured directly on the embryos and, on the other hand, their
counterparts (M∗g , V ∗g, S∗g) predicted by the model from the first group g′ and the sums of (Xh, Ah, Bh) over
the cycles. This was done in each “final” group g = g′′ = (e,n′′,k), i.e. where n′′ is the last generation at
which the random variable can be observed on a sufficient number of cells of type k in embryo e, and should
also verify n′′ > n′. For 5 embryos, 3 variables and 4 types, there is a total of 60 potential final groups, but
in practice only 48 satisfied this condition and were retained.

To this aim, we relied on the “Kullback-Leibler (KL) divergence”, which measures the discrepancy
between two probability densities p and q [23, 24]:

DKL(p || q) =
∫

p(x) log
p(x)
q(x)

dx. 33

With Gaussian distributions p = N (x | µp,σ
2
p) and q = N (x | µq,σ

2
q ), the KL divergence becomes:

DKL(p || q) =− log
σp

σq
+

1
2

(
σ2

p

σ2
q
+

(µp−µq)
2

σ2
q

−1

)
34
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and can be symmetrized into a “distance” as follows:

∆KL(p,q) =
1
2

(
DKL(p || q)+DKL(q || p)

)
35

=
1
4

(
σ2

p

σ2
q
+

σ2
q

σ2
p
+
( 1

σ2
p
+

1
σ2

q

)
(µp−µq)

2−2

)
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Therefore, we calculated ∆KL(Mg,M∗g) by plugging in the above formula the following parameter values:
µp = µMg and µq = µM∗g = µMg′ +

g
∑

h=g′+1
µXh

σp = σMg and σq = σM∗g =

√
(σMg′ )

2 +
g
∑

h=g′+1
(σXh)

2
37

where g = g′′, and same thing for ∆KL(V g,V
∗
g) and ∆KL(Sg,S

∗
g).

An absolute distance, however, cannot be interpreted if it is not compared to other typical interindivid-
ual distances within the cluster of groups. This is why we replaced ∆KL with a normalized version ∆̂KL
calculated relatively to each embryo of the cohort, for example in the case of Mg in specimen 1:

∆̂KL(Mg(1),M
∗
g(1)) =

∆KL(Mg(1),M∗g(1))
1

|E |−1 ∑
e∈E ,e 6=1

∆KL(Mg(1),Mg(e))
38

where g(1) = (1,n,k) and g(e) = (e,n,k). These normalized distances between the model and the data
were computed for division times, volumes and surface areas, in each cell population k and relatively to
each embryo e that verified n′′ > n′, i.e. displayed at least one measurable cycle. Results are summarized
in the histogram of Supplementary Fig. 10. Among the 48 eligible groups, 75% showed a close proximity
(∆̂KL < 0.5 in 36 cases) between measured and predicted parameter sets, 21% were still in good agreement
(0.5≤ ∆̂KL < 1.5 in 10 cases), and 4% fell far away (∆̂KL > 3 for V and S in the Mes cells of embryo 5).
Therefore, except for these two outliers, our probabilistic model accurately predicted the dynamics of sea
urchin development.

Supplementary Note 2.3.5 Simulation of artificial cell lineages

Based on the above model, realistic virtual cell lineages were generated and their statistics compared to the
real data. Starting from the 32-cell stage (16 Mes, 8 Mac, 4 LMic, 4 SMic cells), a cell lineage was com-
puted by letting each cell divide into two and implementing the relationships between microscopic features
(Supplementary Table 5), based on the empirical and estimated values of the parameters (Supplementary
Note 2.2.1). This used the temporally and spatially rescaled datasets of the specimens according to the
coefficients calculated previously (Supplementary Note 2.1.3).

For each embryo, 300 realizations of the cell lineage were produced by varying the random generator’s
seed. As Supplementary Fig. 1 illustrates, all cell lineages shared the same binary tree topology (if taking
into account only the bifurcation nodes), whereas branches could be of variable lengths (along the temporal
axis) depending on mitosis times. Another difference between embryos resided in their respective windows
of observation, i.e. the specific intervals [n′,n′′] during which there were enough observable cells of type k.

Comparison between simulated specimens and empirical values is shown in Supplementary Fig. 11
on three macrosopic quantities: total number of cells N(t), total cellular volume W (t), and total cellular
surface area Z(t). Given the finite window of observation, the last cell cycles were often incomplete. As a
consequence, the volume and surface area microdynamics, ωg and φg (representing the deterministic “carrier
waves” in equations 15,16) could not be correctly estimated (shaded areas).
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Supplementary Note 2.4 Prototype

In sum, our probabilistic model at the coarse-grained level of cell groups Lg provides an invariant frame-
work relating individual cell features to embryo-level dynamics. The whole cohort can be described by the
same system of equations (based on normal distributions), while cell statistics allows us to extract specific
parameter values for each variable of interest in each group.

In this final step, we wanted to obtain a unified representation, or prototype, of the sea urchin blastula’s
normal development. To this aim, individual measurements were aggregated over the embryo index e using
the geometrical concept of centroid of a set of points, which generalizes the notion of average in high-
dimensional spaces such as probability distributions. The mathematical field of “information geometry”
is especially relevant to treat these spaces, in particular equip them with a distance such as the “Bregman
divergence” or the KL divergence [23, 25]. Here, we kept with our use of the latter to compute centroid
distributions for each generation-type pair (n,k). For example, in the case of variable X :

Xg(0) = argmin
X

(
1
|E | ∑e∈E

∆KL(X ,Xg(e))

)
, 39

where g(0) = (0,n,k) and 0 denotes the prototype’s index. Extending the assumption of normal (or log-
normal) distributions to the prototype, we write Xg(0)∼N (µXg(0) ,σXg(0)), and therefore the prototype’s mean
and variance parameters can be found by solving the following minimization problem:

(µXg(0) ,σXg(0)) = arg min
(µ,σ)

(
1

4|E | ∑e∈E

σ2

σ2
Xg

+
σ2

Xg

σ2 +
( 1

σ2 +
1

σ2
Xg

)
(µ−µXg)

2−2

)
. 40

Numerical results for the usual six variables, based on their empirical parameters in each cell group Lg,
are plotted in Supplementary Fig. 3. In addition, the prototypical volume and surface area microdynamics,
which are deterministic functions, are simply obtained by averaging the group-specific variables over the
cohort (Supplementary Figs. 7 and 8, in bold):

ω̃g(0)(u) = 〈ω̃g(u)〉e∈E =
1
|E | ∑e∈E

ω̃g(u) 41

φ̃g(0)(u) = 〈φ̃g(u)〉e∈E =
1
|E | ∑e∈E

φ̃g(u). 42

Finally, as it was done for each embryo, 300 realizations of the cell lineage were also produced for the
prototype by varying the random generator’s seed, then compared with the empirical values (Fig. 3j-l).
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Supplementary Note 3 Spatial modelling

Based on the above digital reconstruction and probabilistic model, the last stage of our study consisted of
a spatially explicit computational model and simulation of the sea urchin embryo, based on the MecaGen
platform [26],[17].

Supplementary Note 3.1 Biomechanical model

Supplementary Note 3.1.1 Equation of motion

Newton’s second law states that the acceleration~a of a body is proportional to the sum of the forces ~F applied
to it. The proportionality factor is the inverse of the mass of the body, a quantity assumed to remain constant
over time: ~a = ~F/m. In particle-based physics, for each particle characterized by a mass m, acceleration ~a,
location ~X , velocity~v, and radius R, forces are a function of the last three quantities, and Newton’s law reads

m~a = ~F(~X ,~v,R). 43

At the scale of the biochemical world, however, this classical formulation does not reflect the emergent and
rather counterintuitive phenomena that cells exhibit individually and collectively. Cells are so small and
their interactions so “sticky” that the physics of their motion is radically different from the one to which we
are accustomed at our scale. The main difference resides in the disappearance of inertial forces [27] and
its consequence is that in a “low Reynolds number” environment, applied forces produce a velocity, not an
acceleration. Therefore, displacement is proportional to instantaneous forces and inversely proportional to
a damping coefficient λ :

~v = ~F/λ 44

Generalizing to a multicellular system, the motion of each cell indexed by i is governed by its interactions
with all other cells j belonging to its neighbourhood denoted by Ni, according to

λi~vi = ∑
j∈Ni

~Fi j 45

Supplementary Note 3.1.2 Cell properties

Each cell is represented by a single cylindrical particle, i.e. its relaxed shape is considered isotropic in the
surface plane. The cylinder axis ~U is orthogonal to the epithelial surface. The radius R of the cylinder delim-
its the distance occupied by each cell in the surface plane, and its half-height denoted by R⊥ characterizes
the depth of the tissue. Throughout this study, we assume R⊥ homogeneous and constant across the embryo:
for each cell i and at any time t, R⊥i (t) = R⊥0 . Therefore, the relation between a cell’s current radius and
volume Vi(t) reads:

Ri(t) =

√
Vi(t)
2πR⊥0

46

Supplementary Note 3.1.3 Spatial neighbourhood

A cell sustains forces exerted by the neighbouring cells in contact with it. At any point in time, the embryo is
described by a set of cylindrical particles i, each of them characterized by a location ~Xi = (xi,yi,zi), a radius
Ri, a half-height R⊥i and an axis ~Ui. We need to infer from these intrinsic parameters the neighbourhood links
between cells. To this goal, we followed a two-step strategy: first, a preselection of potential neighbours
that obey certain metric criteria, then a refinement of this list according to topological features. After that,
we specify how the cell axis is updated from the new list.
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Metric selection Two cells of radius Ri, R j and locations ~Xi, ~X j are considered neighbours according to a
metric criterion if and only if their relative distance is less than the sum of their radii Ri +R j multiplied by
a constant factor cmax. Thus the metric neighbourhood of cell i is defined as follows:

N m
i =

{
j ∈ S :

∥∥∥~Xi−~X j

∥∥∥≤ cmax(Ri +R j)
}

47

Denoting the distance between the two cells by ri j and the cutoff value by rmax
i j , it means that j is a metric

neighbour of i if and only if ri j ≤ rmax
i j . The radius rmax

i j sets the maximum distance of the cell deformation in
the surface plane, i.e. the spheroidal domain of space inside which cells can potentially interact. We assume
that this maximum distance is reached when cells deform by a factor cmax = 2.0.

Topological selection A purely metric neighbourhood is not viable in our multicellular context as it often
leads to cell volumes collapsing during simulation when the adhesion between interacting cells is high.
This is why we filter the set N m

i via a topological criteria to obtain a reduced set N t
i . To do this, a 3D

Delaunay triangulation could be employed but it is computationally too slow because it involves heavy
data structures composed of multiple tetrahedra. Our own solution is inspired by a similar neighbourhood
model, the Gabriel graph. In 2D, whereas the Delaunay triangulation imposes that no node be found inside
the circumcircle of any triangle, the Gabriel graph method requires that no node be found inside the circle
whose diameter is a valid neighbourhood edge.

Here, we propose to generalize the Gabriel criterion to the 3D case directly and add a parameter to
control the size of the circle: two cells (i, j) are considered neighbours if no other cell k of the embryo is
located inside the sphere whose origin is the centre of segment i j, which is (~Xi+~X j)/2, and whose diameter
is αgab‖~Xi−~X j‖, where :

N t
i =

{
j ∈N m

i : ∀k ∈N m
i ,

∥∥∥∥~Xk−
1
2
(~Xi +~X j)

∥∥∥∥≥ αgab

2

∥∥∥~Xi−~X j

∥∥∥} 48

To our knowledge, the term Gabriel graph has not been formally defined in 3D. However, when it happens
to be mentioned [28], triangles are used instead of segments to define circumspheres. This makes sense, as
in n dimensions, the Delaunay triangulation uses n-simplices for its basic units (triangles in 2D, tetrahedra
in 3D) while the Gabriel graph uses (n−1)-simplices (edges in 2D, triangles in 3D). Here, however, we will
continue using edges in 3D while still referring to our method as a Gabriel graph. Note that in the 2D case,
the Gabriel graph is a subgraph of the Delaunay triangulation. Every pair of neighbours in a Gabriel graph
is also a pair of neighbours according to the Delaunay criteria.

Cell axis Once the topological list of neighbours is determined, the surface orientation of the monolayered
sea urchin can be expressed at each cell location by averaging the outward normal vectors of the n triangles
formed by n topological neighbours (Fig. 4a). These triangles are obtained by sorting the list of neighbours
in counterclockwise order around the current axis ~Ui. Let’s denote by ak with k = 0...n− 1 the neighbour
indices in the sorted list. The surrounding triangles are XiXak Xak+1 with k = 0...n− 2 and XiXan−1Xa0 . The
updated cell axis is calculated by summing the surrounding outward vector axes:

~Ui←
n−2

∑
k=0

(~Xak −~Xi)× (~Xak+1−~Xi)

‖(~Xak −~Xi)× (~Xak+1−~Xi)‖
+

(~Xan−1−~Xi)× (~Xa0−~Xi)

‖(~Xan−1−~Xi)× (~Xa0−~Xi)‖
49

The cell axis is then normalized:
~Ui←

~Ui

‖~Ui‖
50
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Supplementary Note 3.1.4 Forces

The interaction force ~Fi j exerted by cell j over cell i leads the swarm of cells toward an equilibrium state. It
is the sum of two components:

• an attraction-repulsion interaction force ~F‖i j , which maintains the integrity of the cell’s volume and
controls both the stiffness and the adhesion of the interaction in the direction of the surface plane, and

• a planarity conservation interaction force ~F⊥i j , which maintains the planarity or “monolayeredness”
of the epithelium; this force can be modulated via a planar rigidity coefficient.

Moreover, the damping coefficient λi is proportional to the surface of the cylindrical cell: λi = λ0Si with
Si = 2πRi(Ri +2R⊥i ). Therefore, the equation of motion used in this model becomes:

~vi =
1

λ0Si
∑

j∈Ni

(
~F‖i j +~F⊥i j

)
51

Attraction-repulsion force This force is derived from an attractive/repulsive interaction potential between
two neighbouring cells i, j, and it is colinear with the neighbourhood vector ~ui j = (~Xi − ~X j)/‖~Xi − ~X j‖
(here, from j to i). The rationale of this potential is to maximize the contact surface area between any two
neighbours in the swarm. For every pair of neighbouring cells (i, j) we focus on the attraction-repulsion
interaction potential E‖i j from which ~F‖i j is derived, and model it from three juxtaposed domains:

• a repulsion domain (decreasing E) at distances shorter than a certain equilibrium distance defined by
req

i j = ceq
i Ri + ceq

j R j, where in the most general case ceq
i is a coefficient that can vary from cell to cell

• an attraction domain (increasing E) at distances greater than req
i j

• a neutral domain (constant E) beyond the maximum limit of the interaction field rmax
i j = cmax(Ri+R j)

Coefficient ceq
i is established explicitly in this study by considering that the equilibrium state of the swarm

is reached when the cells form the densest packing in the 2D plane, i.e. the hexagonal lattice if disks are
identical. The ratio of the surface occupied by the disks to the surface containing the disks is equal to the
ratio of the surface of a disk to the surface of an hexagon (its Voronoi domain), i.e. π/(2

√
3)' 0.9068997....

Therefore, in the perfect uniform arrangement here, the equilibrium distance between any cells (i, j) of equal
radii Ri = R j = R is constant and reads

req
i j = 2ceqR, with ceq =

(
π

2
√

3

)1/2

' 0.9523128... 52

We now generalize the notion of equilibrium distance to pairs of unequally sized neighbour cells. In this
case, the common radius of equilibrium depends on individual contributions from each cell, which is simply
proportional to their radius, keeping the same constant coefficient ceq as above:

req
i j = ceqRi + ceqR j = ceq(Ri +R j) 53

Given these boundary conditions, we consider here the simplest form of schematic mechanical model that
can realize both the short-range repulsion and long-range attraction parts, namely: spring-like forces derived
from an elastic potential. It means that forces ~F‖ are a linear function, and potentials E‖ a quadratic function
of (r− req

i j ).
Mechanical interactions between neighbouring cells have been extensively studied in biophysics, yet
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due the multiprotein and polymeric nature of the cytoskeleton, together with the membrane’s flexibility
and adhesiveness, it remains an extremely elusive topic and difficult to summarize by a definitive set of
equations. Roughly, one consensus hypothesis is that a major driving mechanism can be characterized
by intercellular surface tension. The two main components of this tension are cellular adhesion, which
tends to lower it, and cellular cortical tension, which acts antagonistically. The balance between these two
components determines the ultimate behavior of the interaction, i.e. attractive or repulsive.

Another fundamental mechanism must also be taken into account: volume preservation in cells. As we
made the assumption that cells are cylindrical and cell interactions in the plane can be decoupled into two
individual, additive contributions, we assume here that the volume conservation principle plays a role in the
repulsive part of the potential only. This allow us to introduce a correction in the form of a discontinuity
in the force derivative at the distance of equilibrium req

i j . We will also globally refer as “adhesion” to the
cumulated effect of true surface adhesion and its antagonist, cortical tension.

Accordingly, to modulate the intensity of adhesion, the expression of ~F‖ is split into two parts, one
below and one above the equilibrium distance req

i j , corresponding to two different stiffness coefficients w. A
low (resp. high) adhesion coefficient w will induce a weak (resp. strong) attraction:

~F‖,lini j =

{
−wrep(ri j− req

i j ).~ui j if ri j < req
i j

−wadh(ri j− req
i j ).~ui j if ri j ≥ req

i j
54

Cells i, j start to adhere only when their relative distance becomes less than rmax
i j . As the intensity of the

attraction can not be suddenly maximal at that point, a half-bell shape between req
i j and rmax

i j is better suited

to model a more realistic cellular interaction. We obtain this shape by multiplying the linear force ~F‖,lini j
by a term A(ri j,Ri,R j) scaling as the area of the surface between i and j. We decided to use a monomial
of degree 2 to make it scale like a surface. If the distance between two double-size neighbouring cells is
doubled, the area of the surface of contact should quadruple:

A(ri j,Ri,R j) =


(

ri j− rmax
i j

)2
if ri j < rmax

i j

0 if ri j ≥ rmax
i j

, where rmax
i j = cmax(Ri +R j) 55

In the whole interval [0,rmax
i j ], the depth of the well is controlled by a repulsion coefficient wrep (until req

i j )
and an adhesion coefficient wadh (beyond req

i j ; see Fig. 4b). Thus the final expression of the nonlinear version
of the relaxation force that takes into account the contact surface area reads:

~F‖i j = Ai j.~F
‖,lin

i j =


−wrep(ri j− rmax

i j )2(ri j− req
i j ).~ui j if ri j < req

i j

−wadh(ri j− rmax
i j )2(ri j− req

i j ).~ui j if ri j ≥ req
i j and ri j < rmax

i j
~0 if ri j ≥ rmax

i j

56

Finally, to compare our custom attraction/repulsion force ~F‖i j with classical potentials, we show their super-
imposed plots in Supplementary Fig. 13.

Planar rigidity force Attraction-repulsion forces are not sufficient to ensure that the spatial configuration
of the embryo will remain locally “planar”, i.e. monolayered, during simulation, spherical. Indeed, such
forces are colinear to the neighbourhood vectors ~ui j, causing the epithelium to eventually agglomerate into
a multilayered tissue. To model a monolayered epithelial sheet, we introduce a specific planar rigidity force
(Supplementary Fig. 14), which aims at maintaining each neighbour cell in the lateral region, orthogonally
to the normal vector. Between two neighbour cells i and j, this force is aligned with the bisector of their
normal vectors: ~ni j = (~Ui+~U j)/‖~Ui+~U j‖, and is proportional to their distance, the dot product between~ui j

and~ni j, and a planar rigidity coefficient, krig:
~F⊥i j =−krigri j (~ui j.~ni j)~ni j 57
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Supplementary Note 3.1.5 Mitoses

Mitoses are triggered when the cell cycle is complete, i.e. when the amount of time since the last mitosis
is equal to the randomly generated cell cycle length (Supplementary Note 2.3.5). When that event occurs,
a division axis ~Mm is randomly selected in the local tangential plane of the tissue. Based on the dividing
cell’s normal axis ~Um, the local tangential plane is defined by a couple of orthonormal vectors (~U ′m,~U

′′
m) as

follows:
~U ′m = 1√

(Ux
m)

2+(Uy
m)2

(−Uy
m,Ux

m, 0)

~U ′′m = ~Um×~U ′m
58

The random division axis ~Mm is generated in the tangential plane by drawing an angle α uniformly from
[0,2π] and setting:

~Mm = cos(α)~U ′m + sin(α)~U ′′m 59

As mentioned in Supplementary Note 3.1.2, the apicobasal radii of the daughter cells is assumed equal to
their mother’s: R⊥d1

= R⊥d2
= R⊥m = R⊥0 , and can be inferred from their respective volume. The daughters are

positioned at a distance proportional to the mother’s radius along the division axis:

~Xd1 = ~Xm +0.15Rm ~Mm

~Xd2 = ~Xm−0.15Rm ~Mm
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an their axes are identical to the mother’s: ~Ud1 = ~Ud2 = ~Um.

Supplementary Note 3.2 Comparison to experimental data

Supplementary Note 3.1 described how we combined the prototypical cell lineage, derived from the data,
and the biomechanical model, which includes several free parameters. The values of these free parameters
leading to the most realistic spatial embedding of the prototypical cell lineage can be obtained by finding
the best fit between the simulations and the original data. To this end, we designed a metric based on the
topology of the cells in the embryo (Ds) and two objective functions characterizing certain properties of the
simulated embryos only (Ss and Ps; see below). The resulting parameter space exploration is described in
Supplementary Note 3.2.3.

Supplementary Note 3.2.1 Metric

The topology of the cells in an embryo can be represented by the network of cell-cell contacts [11]. The
vertices of the network are the nuclei and the edges of the network are the junctions between cells. For any
cell i ∈L at a given time t, we denote by Ni(t) its neighbourhood, defined as the set of cells that are one
edge away from i. With this, the number of neighbours that a cell of a given population k shares within
another population l is the basis for the definition of the border between these two populations at a time t:

Bk→l(t) =
{

i ∈L k(t) : ∃ j ∈Ni(t), such that j ∈L l(t)
}

61

and the number of neighbours of a cell i at this border:

bk→l
i (t) =

∣∣{ j ∈Ni(t) such that j ∈L l(t)}
∣∣ 62

To evaluate a spatial simulation, we compared the characteristics of its borders with that of the measured
embryo.
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Distance between distributions Given two empirical probability distributions p and q, considered on the
bins X , such that ∑x∈X p(x) = 1, we define the following measure of similarity [29]:

d(p,q) =
1
2 ∑

x∈X

(√
p(x)−

√
q(x)

)2
63

which is always positive, equal to 1 when the two distributions do not overlap and 0 when they are equal.

Histogram resampling To overcome the problem of having different time samplings in the various em-
bryos, we used a common time interval across all specimens and for the spatial simulation, ranging from
240 min post fertilization (mpf) to 702 mpf, with a sample every 3 min. We interpolated the value of the
histograms used for the comparison at each time point of this time interval.

Metric We used the distribution over i of the numbers of neighbours bk→l
i that a cell i shares at a border

to compare simulations and digitally reconstruct empirical embryos using the distance defined above, av-
eraged over the different time points, populations, and embryos. The comparison protocol is described in
algorithm 1, where hk→l

e (t) and hk→l
s (t) denote the distributions of bk→l

i (t) in an embryo e and a simulation
s respectively. It leads to a metric Ds whose value is comprised between 0 (best fit) and 1 (worst fit).

Given a simulated embryo s:
for each specimen e of the cohort do

for each ordered pair (k→ l) of populations do
for each time t of the common time interval do

compute the distance between the two distributions:
dk→l

e,s (t) = d
(
hk→l

e (t),hk→l
s (t)

)
end
compute the average over the entire time interval:
Dk→l

e,s = 〈dk→l
e,s (t)〉t

end
compute the average over all population pairs in e:
De,s = 〈Dk→l

e,s 〉k→l

end
compute the average over the whole cohort:
Ds = 〈De,s〉e∈E

Algorithm 1: Comparison protocol between simulations and measured embryos

Supplementary Note 3.2.2 Objective functions

In addition to the metric introduced above, we measured intrinsic features of the simulated embryos via
objective functions. These functions are defined for a given time step and subsequently averaged over the
entire time interval.

Sphericity objective function Ss An important criteria to evaluate the model is the shape of the simulated
embryos. For that purpose, we designed Ss to be the ratio of the standard deviation over the average of the
set of distances between the cell positions ~Xi and the embryo centre ~X0 = 〈~Xi〉i. This function has a low
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value for a small standard deviation and a large average, and is null in the case of a spherical embryo:

Ss =
σ

µ
, where µ =

1
|L | ∑

i∈L
‖~Xi−~X0‖ and σ =

√
1
|L | ∑

i∈L

(
‖~Xi−~X0‖−µ

)2
64

Planarity objective function Ps For each cell, this function characterizes the unicity of the epithelium
layer by measuring the ratio of cells belonging to the surrounding apicobasal neighbourhood. The neigh-
bourhood Ni is split into two complementary sets, one covering the lateral domain N

‖
i , the other the apical

domain N ⊥
i :

N
‖

i =
{

j ∈Ni :−~ui j ·~Ui < η

}
65

N ⊥
i =

{
j ∈Ni :−~ui j ·~Ui ≥ η

}
66

where η is a threshold value controlling the partition between the two sets, here η = cos(π/4). The planarity
objective function is then written:

Ps =
1
|L | ∑

i∈L

|N ⊥
i |
|Ni|

67

For a monolayered epithelium, Ps = 0, otherwise its value increases as cells agglomerate into a 3D tissue.

Supplementary Note 3.2.3 Validation in parameter space

The purpose of this exploration study is to identify the parameter sets that produce a realistic spatial folding
of the sea urchin embryo during its development. The validation criteria are the sphericity of the global
embryo shape, measured by Ss, the maintenance of the monolayered epithelium, measured by Ps, and the
similarity of the interpopulation border shapes, measured by Ds. Each criterion is explored separately and
its optimal parametric region identified (main article, Fig. 4e-g). The common parameter space here is four-
dimensional: it comprises the planar rigidity coefficient krig, the Gabriel criteria coefficient αgab and the two
adhesion coefficients specifically controlling the attractive part of the relaxation force ~F‖i j: wadh,o between
homotypic cells and wadh,e between heterotypic cells. The other free parameters of the model (namely wrep,
λ0, and cmax) are set to constant values (Supplementary Table 6). In Fig. 4 and Supplementary Videos 4-7,
krig and αgab are also set to constant values, while Fig. 4c-g shows only a restricted two-dimensional region
of the explored domain in the (wadh,o, wadh,e) plane. Finally, the time increment ∆t between two simulated
time steps is 6 seconds.

Note concerning the force amplitude coefficients wadh,e, wadh,o, wrep and krig: these coefficients are all
divided by the damping coefficient λ0 in the master equation of motion. Thus, simulations will be strictly
equivalent if all these parameters are multiplied by the same factor.

For the spatial simulation, an initial spatial state of the cells was needed in order to begin the simulation
at the 32-cell stage: we chose the measured initial state of one of the five embryos of the cohort.

Supplementary Software 1 Supplementary Software 1

The compressed folder ”prototype.zip” contains all the MATLAB files necessary to perform and visualize
the complete statistical analysis of the cell lineage and to generate the prototype. It has been tested with
Matlab R2011b and Matlab R2015a. A tutorial is provided in the file README.pdf contained in the folder.
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