

Supplementary Figure 1. IncARSR is upregulated in T-ICs and predicts poor prognosis

(a) Gene set enrichment analysis using three stem cell-like gene signatures. NES, normalized enrichment score. (b) Western blot analysis of indicated proteins in enriched T-Ics from primary RCC cells. (c) qRT-PCR analysis of indicated mRNAs in RCC adherent, spheres and re-adherent cells (n = 3). (d) qRT-PCR analysis of lncARSR in MACS sorted CD105⁺ (left) or CD133⁺ (right) RCC cells relative to negative cells (n = 3). (e) qRT-PCR analysis of lncARSR in RCC adherent, spheres and re-adherent cells (n = 3). (c-e) Data are represented as mean \pm s.d.; *p < 0.05, **p < 0.01 and ***p < 0.001; two-tailed Student's *t*-test. (f) Representative images of lncARSR expression detected by RNA ISH (in situ hybridization) in cohort 2. Scale bar = 50 µm. (g) Comparison of lncARSR levels in well or poorly differentiated RCC tissues in cohorts 1 (left, p = 0.013, Mann–Whitney *U*-test) and cohort 2 (right, p < 0.001, Mann–Whitney *U*-test). The horizontal lines in the box plots represent the median, the boxes represent the interquartile range, and the whiskers represent the 2.5th and 97.5th percentiles.

Supplementary Figure 2. IncARSR is required for the maintenance of renal T-ICs

(a) Left: qRT-PCR analysis of lncARSR expression in lncARSR-knockdown and control RCC cells (n = 3). Right: qRT-PCR analysis of lncARSR expression in lncARSR-knockdown and control primary RCC cells (n = 3). Data are represented as mean \pm s.d.; *p < 0.05 and **p < 0.01; two-tailed Student's *t*-test. (b) Spheres formation assay of lncARSR-knockdown and control RCC cells (n = 3). The number of primary, secondary and tertiary passaged spheres was counted after 7 days (left). Representative images of spheres are shown (right). Scale bar = 200 µm. (c) qRT-PCR analysis of indicated mRNAs in lncARSR-knockdown and control RCC spheres (n = 3). Data are represented as mean \pm s.d.; *p < 0.05 and **p < 0.01; two-tailed Student's *t*-test. (d) Subcutaneous xenograft assay of 1×10^4 RCC cells derived from lncARSR-knockdown and control xenografts for 2 months (n = 4 per group).

Supplementary Figure 3. IncARSR promotes renal T-ICs expansion

(a) Left: qRT-PCR analysis of lncARSR expression in lncARSR-overexpressing and control RCC cells (n = 3). Right: qRT-PCR analysis of lncARSR expression in lncARSR-overexpressing and control primary RCC cells (n = 3). (b) Spheres formation assay of lncARSR-overexpressing and control RCC cells (n = 3). The number of spheres was counted after 7 days (left). Representative images of spheres are shown (right). Scale bar = 200 µm. (c) qRT-PCR analysis of indicated mRNAs in lncARSR-overexpressing and control RCC cells (n = 3). (d) In vitro limiting dilution assay of lncARSR-overexpressing and control RCC cells. The results were shown as natural logarithm of the proportion of T-ICs. (a, c and d) Data are represented as mean \pm s.d.; *p < 0.05, **p < 0.01 and ***p < 0.001; two-tailed Student's *t*-test.

Supplementary Figure 4. IncARSR physically interacts with YAP

(a) qRT-PCR analysis of Dicer expression in RCC cells transfected with Dicer siRNA after 48h (n = 3). (b) qRT-PCR analysis of indicated RNAs in RCC cells transfected with lncARSR plasmid and Dicer siRNA (n = 3). (c) Verification of interference efficiency of siRNA for indicated mRNAs in RCC spheres by qRT-PCR (n = 3). (d) Spheres formation assay of RCC spheres transfected with indicated siRNAs (n = 3). The number of spheres was counted after 7 days (left). Representative images of spheres are shown (right). Scale bar = 200 µm. (a-d) Data are represented as mean \pm s.d.; *p < 0.05, **p < 0.01 and ***p < 0.001; two-tailed Student's *t*-test. (e) Western blot analysis of indicated proteins in RNA pull-down precipitates retrieved by biotin-labeled lncARSR or antisense RNA from the cytoplasmic lysates of A498 spheres. (f) Secondary structure prediction of 5' segment of lncARSR and its antisense sequence based on minimum free energy (MFE) and partition function (http://rna.tbi.univie.ac.at/). Color scale indicates the prediction confidence for each base with red indicating strong confidence.

Data are shown as means \pm s.d. *p < 0.05; **p < 0.01; and ***p < 0.001.

Supplementary Figure 5. YAP is responsible for lncARSR-mediated T-IC properties

(a) Western blot analysis of YAP in YAP-knockdown and control A498 spheres. (b) Flow cytometric analysis of the proportion of CD105+ (left) or CD133+ (right) cells in YAP-knockdown and control RCC cells (n = 3). (c) Western blot analysis of YAP in YAP-5SA-overexpressing and control A498 cells. (d) Flow cytometric analysis of the proportion of CD105+ (left) or CD133+ (right) cells in YAP-5SA-overexpressing and control RCC cells (n = 3). (e) Spheres formation assay of A498 spheres transfected with indicated plasmids (n = 3). The number of spheres was counted after 7 days (left). Representative images of spheres are shown (right). Scale bar = 200 µm. (f) qRT-PCR analysis of Oct4 and Sox2 in A498 spheres transfected with indicated plasmids after 48h (n = 3). (b, d-f) Data are represented as mean \pm s.d.; *p < 0.05 and **p < 0.01; two-tailed Student's *t*-test.

Supplementary Figure 6. IncARSR blocks LATS1-mediated YAP phosphorylation

(a) qRT-PCR analysis of lncARSR expression in lncARSR-knockdown and control RCC cells (n = 3). Data are represented as mean \pm s.d.; *p < 0.05 and **p < 0.01; two-tailed Student's t-test. (b) Coimmunoprecipitation of YAP and LATS1 in lysates of lncARSR-knockdown and control 771 spheres. GAPDH acted as a loading control. (c) Coimmunoprecipitation of YAP and LATS1 in lysates of lncARSR-overexpressing and control 771 cells. GAPDH acted as a loading control. (d) Western blot analysis of YAP in lncARSR-knockdown and control RCC spheres. (e) Western blot analysis of YAP in RCC cells with lncARSR overexpression or 5' segment (nucleotides 1-310) overexpression. (f) Western blot analysis of YAP in subcellular fractions of IncARSR-knockdown and control RCC spheres. GAPDH and Histone H3 acted as cytoplasm and nucleus marker respectively. (g) Western blot analysis of YAP in subcellular fractions of RCC cells with lncARSR overexpression or 5' segment (nucleotides 1-310) overexpression. GAPDH and Histone H3 acted as cytoplasm and nucleus marker respectively. (h) qRT-PCR analysis of indicated mRNAs in lncARSR-overexpressing and control A498 cells (n = 3). Data are represented as mean \pm s.d.; *p < 0.05 and **p < 0.01; two-tailed Student's *t*-test. (i) Western blot analysis of LATS1 and LATS2 in A498 cells transfected with LATS siRNA mix after 48h.

Supplementary Figure 7. YAP/TEAD complex transactivates lncARSR

(a) RNA FISH analysis of lncARSR and immunofluorescence detection of YAP in A498 cells transfected with Flag-YAP-5SA plasmid or Flag-YAP-5SA Δ C plasmid after 48h. Scale bars = 10 µm. (b) Verification of interference efficiency of TEADs siRNA for indicated mRNAs in RCC spheres by qRT-PCR (n = 3). (c) qRT-PCR analysis of lncARSR in RCC spheres transfected with indicated siRNA after 48h (n = 3). (b and c) Data are represented as mean \pm s.d.; **p < 0.01; two-tailed Student's *t*-test.

Supplementary Figure 8. Combining IncARSR and YAP exhibits improved prognostic value

(a) Representative images of different nuclear YAP staining intensity in RCC tissues

in Cohort 2. Scale bar = $50 \mu m$.

Variablas	Cohort 1	Cohort 2
vai lables	(<i>n</i> = 105)	(<i>n</i> = 205)
Gender (%)		
Male	65 (61.9)	139 (67.8)
Female	40 (38.1)	66 (32.2)
Age (%)		
<u>≤</u> 60	69 (65.7)	133 (64.9)
> 60	36 (34.3)	72 (35.1)
Tumor size (%)		
≤4 cm	45 (42.9)	86 (41.9)
>4 cm	60 (57.1)	119 (58.1)
Furman grade (%)		
I and II	60 (57.1)	155 (75.6)
III and IV	45 (42.9)	50 (24.4)
TNM stage (%)		
I and II	62 (87.6)	142 (69.3)
III and IV	43 (12.4)	63 (30.7)
Tumor thrombus (%)		
No	95 (90.5)	186 (90.7)
Yes	10 (9.5)	19 (9.3)
Distant metastasis (%)		
No	92 (87.6)	173 (84.4)
Yes	13 (12.4)	32 (15.6)

Supplementary Table 1. Clinical Characteristics of RCC Patients

Characteristics in Conort 1					
Variables	Low lncARSR ($n = 53$)	High lncARSR ($n = 52$)	<i>p</i> -value		
Gender			1.000		
Male	30	30			
Female	23	22			
Age			0.838		
≤60	34	35			
> 60	19	17			
Tumor size			0.238		
≤4cm	26	19			
>4cm	27	33			
Furman grade			0.031		
I / II	36	24			
III/VI	17	28			
TNM stage			0.010		
I / II	38	24			
III/VI	15	28			
Tumor thrombus			0.052		
No	51	44			
Yes	2	8			
Distant metastasis			0.042		
No	50	42			
Yes	3	10			

Supplementary Table 2. Correlation of IncARSR Levels and Clinical Characteristics in Cohort 1

Supplementary Table 3. Correlation of IncARSR Levels and Clinical Characteristics in Cohort 2

Variables	Low lncARSR ($n = 103$)	High lncARSR ($n = 102$)	<i>p</i> -value
Gender			0.296
Male	66	73	
Female	37	29	
Age			0.661
≤ 60	65	68	
> 60	38	34	
Tumor size			0.888
≤4cm	44	42	
>4cm	59	60	
Furman grade			0.023
I / II	85	70	
III/VI	18	32	
TNM stage			0.010
I / II	80	62	
III/VI	23	40	
Tumor thrombus			0.008
No	99	87	
Yes	4	15	
Distant metastasis			0.002
No	95	78	
Yes	8	24	

Variable	Univariate	Multivariate			
		Hazard Ratio	95% CI	<i>p</i> -value	
IncARSR expression					
High vs Low	0.004	3.215	1.269-8.145	0.014*	
Furman grade					
III/VIvs I / II	0.040	1.236	0.489-3.125	0.655	
TNM					
III/VIvs I / II	0.006	2.015	0.771-5.265	0.153	
Tumor thrombus					
Yes vs No	0.047	1.222	0.419-3.565	0.713	
Distant metastasis					
Yes vs No	0.003	2.052	0.756-5.570	0.158	

Supplementary Table 4. Univariate and Multivariate Analyses of Facto	rs
Associated with Overall Survival in Cohort 1	

Supplementary Table 5. Univariate and Multivariate Analyses of Factors Associated with Recurrence in Cohort 1

Variable	Univariate	Multivariate		
		Hazard Ratio	95% CI	<i>p</i> -value
IncARSR expression				
High vs Low	0.001	3.073	1.476-6.400	0.003*
TNM				
III/VIvs I / II	0.043	1.242	0.574-2.688	0.583
Distant metastasis				
Yes vs No	0.003	2.736	1.279-5.851	0.009*

Associated with Overan Survival in Conort 2				
Variable	Univariate	Multivariate		
		Hazard Ratio	95% CI	<i>p</i> -value
IncARSR expression				
High vs Low	0.008	2.173	1.230-3.837	0.007*
TNM				
III/VIvs I / II	0.009	2.186	1.079-4.428	0.030*
Distant metastasis				
Yes vs No	0.005	2.451	1.187-5.061	0.015*

Supplementary Table 6. Univariate and Multivariate Analyses of Factors Associated with Overall Survival in Cohort 2

Supplementary Table 7. Univariate and Multivariate Analyses of Factors Associated with Recurrence in Cohort 2

Variable	Univariate	Multivariate		
		Hazard Ratio	95% CI	<i>p</i> -value
IncARSR expression				
High vs Low	0.002	2.023	1.213-3.375	0.007*
TNM				
III/VIvs I / II	0.048	1.751	0.911-3.369	0.093
Tumor thrombus				
Yes vs No	0.138	0.992	0.510-1.932	0.982
Distant metastasis				
Yes vs No	0.004	2.793	1.393-5.597	0.004*

sphere derived ite e cens					
Cell type inoculated	T-ICs Frequency		<i>p</i> -value		
	Estimate Upper and Lower Limits		Ratio of prop.'s=1		
A498 Sphere					
shGFP	1/3181	1/8043-1/1258			
shlncARSR-1	1/38490	1/94240-1/15720	< 0.0001		
shlncARSR-2	1/84598	1/214144-1/33421	< 0.0001		
771 Sphere					
shGFP	1/7908	1/19790-1/3160			
shlncARSR-1	1/84598	1/214144-1/33421	0.0002		
shlncARSR-2	1/280334	1/1115137-1/70473	< 0.0001		

Supplementary Table 8. Frequency of T-ICs in lncARSR-knockdown and control sphere-derived RCC cells

Supplementary Table 9. Frequency of T-ICs in lncARSR-overexpressing and control RCC cells

Cell type inoculated	T-ICs Frequency		<i>p</i> -value
	Estimate Upper and Lower Limits		Ratio of prop.'s=1
A498			
Ctrl	1/460139	1/1110523-1/190656	
lncARSR	1/57086	1/138002-1/23614	0.0007
771			
Ctrl	1/1228510	1/3410211-1/442564	
lncARSR	1/122257	1/333981-1/44753	0.0009

Supplementary Table 10. Frequency of T-ICs in indicated RCC cells

Cell type inoculated	T-ICs Frequency		<i>p</i> -value
	Estimate Upper and Lower Limits		Ratio of prop.'s=1
A498			
Ctrl shGFP	1/376880	1/925194-1/153523	
IncARSR shGFP	1/31801	1/80421-1/12575	< 0.0001
Ctrl shYAP	1/681902	1/1670761-1/278311	0.318
IncARSR shYAP	1/384893	1/942399-1/157197	0.971

Supplementary Table 11. Correlation of Nuclear YAP and IncARSR Levels

. .

in Conort 2					
	Low IncARSR	High IncARSR	<i>p</i> -value		
cyto-YAP	79	38	p < 0.001		
nuc-YAP	24	64			

suppremental j		
pcDNA3.1 -lncARSR	Forward (5'-3')	GGGGTACCACCCCGGAGGCACTCG
	Reverse	CCGCTCGAGTTTTTTTTTTTTTTTTTTTTTTTTATCAAA
	(5'-3')	GGAATTTA
	Forward	
nSPT19	$(5^{2}-3^{2})$	GCTCTAGAACCCCCGGAGGCACTCG
lncARSR	<u>Beverse</u>	
-IIICAKSK	$(5^{\prime}, 2^{\prime})$	
	(3-3)	UAATTIA
pSP119	Reverse	CCGCTCGAG
-IncARS R	(5'-3')	TGAGACCAGCCAGTTGAGTTGG
-5'(1-310)	< <i>'</i> ,	
pSPT19	Forward	GCCC AAGCTT
-lncARSR	(5'-3')	CTATACCCCAACTCAACTGGCTGG
-3'(282-591)	(5 5)	
	Sense	CCGGGAGCATGAAGAACTCCAACTTCTCG
ahlma ADCD 1	(5'-3')	AGAAGTTGGAGTTCTTCATGCTCTTTT
SIIIIICAKSK-I	Antisense	AATTAAAAAGAGCATGAAGAACTCCAACT
	(5'-3')	TCTCGAGAAGTTGGAGTTCTTCATGCTC
	Sense	CCGGGCATGAAGAACTCCAACTTCACTCG
	$(5^{2}-3^{2})$	AGTGAAGTTGGAGTTCTTCATGCTTTTT
shlncARSR-2	Antisense	AATTAAAAAGCATGAAGAACTCCAACTTC
	(5'-3')	ACTCGAGTGAAGTTGGAGTTCTTCATGC
	(5 5)	5' CCCCCC A ACCTCACCCTCA ACTTCATCT
	Sense (5'-3')	CGAGATGAACTTCAGGGTCAGCTTGCTTT
shGFP	Antisense	$\frac{110-3}{5!}$
	(5'-3')	
	()	
YAP(IM)	Forward	CCGGAATTCGCCACCATGGATCCCGGGCA
-(EcoRI)	(5'-3')	GCAGC
YAP(154T)	Reverse	GGACCGTCGACTGTAGCTGCTGGGCCAGA
-(SalI)	(5'-3')	GACTACTCC
YAP(155P)	Forward	CCGGAATTCGCCACCATGGATCCCACAGC
-(EcoRI)	(5'-3')	TCAGCATCTTCGACA
YAP(504L)	Reverse	GGACCGTCGACTAACCATGTAAGAAAGCT
-(SalI)	(5'-3')	TTCTTTATCTAGCTTGG
YAP(263L)	Reverse	GGACCGTCGACAAGCCTTGGGTCTAGCCA
-(SalI)	(5'-3')	AGAGG
YAP(264D)	Forward	CCGGAATTCGCCACCATGGACCCTCGTTTT
-(EcoRI)	(5'-3')	GCCATGAACC
YAP(287P)	Reverse	GGACCGTCGACGGGAGCCAGGGGTGGTG
-(SalI)	(5'-3')	G
YAP(2880)	Forward	CCGGAATTCGCCACCATGGATCAGAGCCC
-(EcoRI)	$(5^{2}-3^{2})$	ACAGGGAGGCG
$\frac{1}{V\Delta P(100S)}$	Reverse	GGACCGTCGACGCTTTCTTTATCTACCTTC
(Sall)	(5' 3')	GTGCAGCC
-(Sall)	(5-5)	UIUULAULL

Supplementary Table 12. Sequences of Primers Used for Plasmid Construction

Supplementary Table 13. Sequences of siRNA Used in This Study				
	Sense (5'-3')	CAACCCUGGAUCCAAAGUATT		
IIICAKSK SIKINA	Antisense (5'-3')	UACUUUGGAUCCAGGGUUGTT		
VAD CDNA 1	Sense (5'-3')	GGUGAUACUAUCAACCAAATT		
IAP SIKINA-I	Antisense (5'-3')	UUUGGUUGAUAGUAUCACCTT		
VAD GDNA 2	Sense (5'-3')	CUGCCACCAAGCUAGAUAATT		
IAP SIKINA-2	Antisense (5'-3')	UUAUCUAGCUUGGUGGCAGTT		
	Sense (5'-3')	CUGCCAUUCAUAACAAGCUTT		
I LADI SINNA	Antisense (5'-3')	AGCUUGUUAUGAAUGGCAGTT		
ΤΕΛΟ2 σΕΝΛ	Sense (5'-3')	GCCAGAUGCAGUUGAUUCUTT		
ILAD2 SINNA	Antisense $(5'-3')$	AGAAUCAACUGCAUCUGGCTT		
TEAD3 siRNA	Sense (5'-3')	CCAGUGUCCUGCAGAACAATT		
ILADJ SININA	Antisense $(5'-3')$	UUGUUCUGCAGGACACUGGTT		
$TE\Delta D4 siRN\Delta$	Sense (5'-3')	GAACGUCCCAUGAUGUGAATT		
ILAD + SINIVA	Antisense (5'-3')	UUCACAUCAUGGGACGUUCTT		
TFAD1/3/4 siRNA	Sense (5'-3')	UGAUCAACUUCAUCCACAATT		
	Antisense (5'-3')	UUGUGGAUGAAGUUGAUCATT		
I ATS1 siRNA	Sense (5'-3')	GCAGCGUCUACAUCGUAAATT		
	Antisense (5'-3')	UUUACGAUGUAGACGCUGCTT		
LATS2 siRNA	Sense (5'-3')	CUACCAGAAAGAGUCUAAUTT		
	Antisense (5'-3')	AUUAGACUCUUUCUGGUAGTT		
Dicer siRNA	Sense (5'-3')	GGGCACCCAUCUCUAAUUATT		
	Antisense (5'-3')	UAAUUAGAGAUGGGUGCCCTT		
ANXA6 siRNA-1	Sense (5'-3')	GGGACUUUGAGAAGCUAAUTT		
	Antisense (5'-3')	AUUAGCUUCUCAAAGUCCCTT		
ANXA6 siRNA-2	Sense (5'-3')	CUCGGACCAAUGCUGAAAUTT		
	Antisense (5'-3')	AUUUCAGCAUUGGUCCGAGTT		
FARSB siRNA-1	Sense (5'-3')	CACCUACACUGACGAAGAATT		
	Antisense $(5^{2}-3^{2})$	UUCUUCGUCAGUGUAGGUGTT		
FARSB siRNA-2	Sense $(5^{2}-3^{2})$	CCUGUAUCCAGUUAUCUAUTT		
	Antisense $(5 - 3)$			
HSPA8 siRNA-1	$\frac{\text{Sense}(5-3)}{\text{Autianza}(5^2, 2^2)}$			
	$\frac{\text{Antisense}(5,-5)}{\text{Songo}(5,2)}$			
HSPA8 siRNA-2	$\frac{\text{Sense}(5-5)}{\text{Antisonas}(5^2, 2^2)}$			
	$\frac{\text{Antisense}(5,-5)}{\text{Sonce}(5,2)}$			
IGF2BP1 siRNA-1	$\frac{\text{Sellse}(5-5)}{\text{Antisonso}(5^2, 2^2)}$			
	$\frac{\text{Alluselise}(3-3)}{\text{Sonso}(5^2, 3^2)}$			
IGF2BP1 siRNA-2	$\frac{\text{Sellse}(5-5)}{\text{Antisonso}(5', 2')}$			
	$\frac{\text{Anuscuse}(5, -5)}{\text{Sonso}(5, 2)}$			
LTA4H siRNA-1	$\frac{\text{Sellse}(5,-5)}{\text{Antisonse}(5,2)}$			
	$\frac{\text{Antiscuse} (5'-3')}{\text{Sense} (5'-3')}$			
LTA4H siRNA-2	$\frac{\Delta ntisense(5'-3')}{\Delta ntisense(5'-3')}$	AGCUAUGAGAUAUUUCAUGTT		
	$\frac{\text{Antiselise}(5'-5')}{\text{Sense}(5'-3')}$	CCGGACUUUGUGUGACUAUTT		
PRMT5 siRNA-1	$\frac{\Delta ntisense(5'-3')}{\Delta ntisense(5'-3')}$	AUAGUCACACAAAGUCCGGTT		
	$\frac{\text{Nitiselise}(5'-5')}{\text{Sense}(5'-3')}$	GUGAACACAGUACUACAUTT		
PRMT5 siRNA-2	Δ ntisense (5'-3')	AUGUAGUACUGUGUUCACCTT		
	$\frac{\text{Nitiselise}(5'-5')}{\text{Sense}(5'-3')}$	GAGCUUCUGACCGAUAAUATT		
SRP68 siRNA-1	$\frac{\text{Defise}(5^2-5^2)}{\text{Antisense}(5^2-3^2)}$	UAUUAUCGGUCAGAAGCUCTT		
	$\frac{\text{Nitriselise}(5'-5')}{\text{Sense}(5'-3')}$	CAGCUACCAUGAGUGAAGUTT		
SRP68 siRNA-2	$\frac{\text{Dense}(5'',5'')}{\text{Antisense}(5',3'')}$	ACHUCACUCAUGGUAGCUGTT		
	$\frac{1}{\text{Sense}(5'-3')}$	CACUGAGGAUUACAAGAATT		
ZNF185 siRNA-1	$\frac{1}{\text{Antisense}(5'-3')}$	UUCUUGUAAUCCUCAGUGGTT		
	$\frac{1}{\text{Sense}(5'-3')}$	CAACUUGUCAGACGAGAGATT		
ZNF185 siRNA-2	$\frac{1}{\text{Antisense}(5'-3')}$	UCUCUCGUCUGACAAGUUGTT		
	Sense $(5^{2}-3^{2})$	UUCUCCGAACGUGUCACGUTT		
Ctrl siRNA	Antisense (5'-3')	ACGUGACACGUUCGGAGAATT		

lncARSR	Forward(5'-3')	TTTGAAATGCTCTTTGAGGGAT
	Reverse(5'-3')	TGCAGGTTGTCTGAAGTTGGA
Oct4	Forward(5'-3')	CTTGCTGCAGAAGTGGGTGGAGGAA
	Reverse(5'-3')	CTGCAGTGTGGGTTTCGGGCA
Sox2	Forward(5'-3')	AAATGGGAGGGGGGGCAAAAGAGGAG
	Reverse(5'-3')	CAGCTGTCATTTGCTGTGGGTGATG
Nanog	Forward(5'-3')	AATACCTCAGCCTCCAGCAGATG
	Reverse(5'-3')	TGCGTCACACCATTGCTATTCTTC
Klf4	Forward(5'-3')	GCCCCTCGGGCGGCTTCGTGGCCGAGCTC
	Reverse(5'-3')	CGTACTCGCTGCCAGGGGGCG
o Muo	Forward(5'-3')	CATCATCCAGGACTGTATGTG
C-IVIYC	Reverse(5'-3')	GGCTGCCGCTGTCTTTGC
CD105	Forward(5'-3')	CACTAGCCAGGTCTCGAAGG
CD105	Reverse(5'-3')	CTGAGGACCAGAAGCACCTC
CD122	Forward(5'-3')	GCAGCAGTCTGACCAGCGTGAA
CD155	Reverse(5'-3')	ACGGGTGGAAGCTGCCTCAGTT
VAD	Forward(5'-3')	AGCCCAAATCCCACTCCC
IAP	Reverse(5'-3')	GTATCTCAAAAGAAGACTGTCGAAGA
CTCE	Forward(5'-3')	GCCCAAGGACCAAACCG
CIGF	Reverse(5'-3')	GTGCAGCCAGAAAGCTCAAA
	Forward(5'-3')	TCGGGGAGAACGGGTATG
ΙΝΠDΑ	Reverse(5'-3')	TGCTGGAGACAGGGAAGACA
DIDC5	Forward(5'-3')	TTCTCAAGGACCACCGCATCT
BIRC2	Reverse(5'-3')	CGCACTTTCTCCGCAGTTTC
CYR61	Forward(5'-3')	AGTGCTGCGAGGAGTGGG
	Reverse(5'-3')	GGTTGTATAGGATGCGAGGCT
ANKRD1	Forward(5'-3')	GAGGAACTGGTCACTGGAAAGA
	Reverse(5'-3')	GGGTCACAGGGTGGGCTA
TEAD1	Forward(5'-3')	CATCTTATCAGACGAAGGCAAAA
	Reverse(5'-3')	AGGTCGGGCGTGGAATC
TEAD2	Forward(5'-3')	GTCTGATGAAGGCAAGATGTATGG
	Reverse(5'-3')	CAAGGTGAACGGTGTCTGTGAG
TEAD3	Forward(5'-3')	AGGACGGGGAAGACTCGG
	Reverse(5'-3')	TGGGGTAGGCTGGCTGTG
TEAD4	Forward(5'-3')	GGGGACCCTCCAATGCCT
	Reverse(5'-3')	CTCTGTCTCAACTTTCTCCACCA
β-actin	Forward(5'-3')	AATCGTGCGTGACATTAAGGAG
	Reverse(5'-3')	ACTGTGTTGGCGTACAGGTCTT

Supplementary Table 14. Sequences of Primers Used for qRT-PCR in This Study

Antigens	Manufacturer	Application
Sox2	Abcam	1:1000 for WB
Oct4	Abcam	1:1000 for WB
p-YAP ^{S127}	Cell Signaling Technology	1:1000 for WB
p-YAP ^{S381}	Cell Signaling Technology	1:1000 for WB
		1:50 for IP, 1:100 for ICC,
YAP	Cell Signaling Technology	1:1000 for WB,1:100 for IHC,
		1:50 for RIP, 1:50 for ChIP
LATS1	Cell Signaling Technology	1:50 for IP, 1:1000 for WB
LATS2	Proteintech	1:1000 for WB
TEAD1	Cell Signaling Technology	1:50 for ChIP
FLAG	Maral Millingro	1:50 for RIP, 1:1000 for WB,
	Merck Minipole	1:100 for ICC, 1:50 for ChIP
MYC	Cell Signaling Technology	1:50 for IP
CD105-APC	ebioscience	1:50 for FACS
CD133-FITC	ebioscience	1:50 for FACS
Histone H3	Abcam	1:1000 for WB
HSPA8	Proteintech	1:1000 for WB
IGF2BP1	Proteintech	1:1000 for WB
LTA4H	Proteintech	1:1000 for WB
GAPDH	Abclonal	1:5000 for WB

Supplementary Table 15. Primary Antibodies Used in This Study

WB, western blot; IHC, immunohistochemitry; ICC, Immunocytochemistry; IP, immunoprecipitation; ChIP, chromatin immunoprecipitation; RIP, RNA immunoprecipitation, FACS, fluorescence activated cell sorter.

Study		
TD 1	Forward(5'-3')	TCACTGGGTGTCTGGTCTGC
	Reverse(5'-3')	GAGCGTTGCCTTGGGAG
тр 1	Forward(5'-3')	GGAAGAAAGCAGCCAACAACC
ID 2	Reverse(5'-3')	GACGCCTACCGCAACG
Nag	Forward(5'-3')	ATCTTACTTCGTTCGGTTCACATC
neg	Reverse(5'-3')	GCGACTCCATTTCTGGCTCTA

Supplementary Table 16. Sequences of Primers Used for ChIP-qPCR in This