SUPPLEMENTAL INFORMATION INVENTORY

Supplemental Figure Legends

Supplemental Figures

Fig. S1 (Associated with Fig. 4): Known γδ T cell ligands were not Aire-dependent.

Fig. S2 (Associated with Fig. 5): Characterization of $V\gamma 6^+V\delta 1^+$ TCRtg mice.

Fig. S3 (Associated with Fig. 6): $\alpha\beta$ T cells were not required for T $\gamma\delta$ 17 cell infiltration of parenchymal tissues.

Supplemental Tables Table S1 (Associated with Fig. 3): V γ and V δ CDR3 sequences from *Aire*^{+/+} and *Aire*^{-/-} thymocytes.

Table S2 (Associated with Fig. 3): V γ and V δ CDR3 sequences from *Aire*^{+/+} and *Aire*^{-/-} peripheral cells.

Supplemental Experimental Procedures

Supplemental References

SUPPLEMENTAL FIGURE LEGENDS

Fig. S1 (Associated with Fig. 4): Known $\gamma\delta$ T cell ligands were not Aire-dependent. A. Microarray-based quantification of transcripts encoding H2-T10 and -T22 in MEC^{hi} from *Aire*^{+/+} and *Aire*^{-/-} littermates. Data are from (Yang et al., 2015). B. Flow cytometric analysis of IL-17A and T22-tetramer staining in $\gamma\delta$ thymocyte compartments. Left, representative cytofluormetric dot plots. n=4. Center and right, summary data on fractional representation and numbers. C, D. Same as A, B, except PCR-based quantification of *Skint-1* expression and flow cytometry analysis of V γ 5⁺ T cells. n=3. Dot plot scales for this figure are all the same.

Fig. S2 (Associated with Fig. 5): Characterization of $V\gamma 6^+V\delta 1^+$ TCRtg mice. A. Flow-cytometric analysis of neonatal thymocytes from $V\gamma 6^+V\delta 1^+$ TCRtg mice that were either *Aire*^{+/+} or *Aire*^{-/-}, and wild-type non-transgenic controls. Representative plots highlighting $\gamma\delta$ T cells (top), the $V\gamma 6^+$ subset (middle) or IL-17A producers (bottom). B. Summary plot for IL-17A-producing cells (as per panel A, bottom row). Left, percentage; right, numbers. C. Flow-cytometric quantification of lymphocytes isolated from the eye or lacrimal gland of 5-week-old *Aire*^{-/-} mice that either did or did not carry the $V\gamma 6^+V\delta 1^+$ TCR transgenes. Dot plot scales for this figure are all the same.

Fig. S3 (Associated with Fig. 6): $\alpha\beta$ T cells were not required for Ty δ 17 cell infiltration of parenchymal tissues. Summary plots for numbers of Vy1,2,4,5 CD27⁻ (i.e. IL-17⁺Vy6⁺-enriched) y δ T cells from 7-week-old littermates that were either *Tcra*^{+/+} or*Tcra*^{-/-}.

Figure S1 Associated with Figure 4

Figure S2 Associated with Figure 5

С

Figure S3 Associated with Figure 6

Table S1: V_γ and V_δ CDR3 sequences from Aire+/+ and Aire-/- thymocytes Associated with Figure 3.

	,		CDP3 longth		CDB2 coqueres	# sequences	
ισκγ ν		J		CDIAS length	CDR3 sequence	Aire ^{+/+}	Aire-/-
Ve	6	J1		11	ACWDSSGFHKV	70	57
					Total	70	57
700			-	CDD2 longth		# sequences	
		J	U	CDR3 length	CDR3 sequence	Aire ^{+/+}	Aire-/-
V4	ŀ	J2	D2	15	GSDIGGSSWDTRQMF	52	49
V4	ŀ	J2	D2	18	GSDGSGRDGSSWDTRQMF	1	
V	ŀ	J2	D2	18	GSDVSGRGGSSWDTRQMF	1	
V4	ŀ	J2	D2	16	GSDIGGSSSWDTRQMF	1	
V	ŀ	J2	D2	15	GSDIGGSSWDTRPDV	1	
V	ŀ	J1	D2	14	GSDISEAYATDKLV	1	
V	ŀ	J2	D2	16	GSDIGGIRSWDTRQMF	1	
V	ŀ	J2	D2	15	GSEVGGSSWDTRQMF		1
V	ŀ	J2	D2	15	GSEIGGSSWDTRQMF		1
V	ŀ	J2	D2	15	GSDMGGSSWDPRQMF		1
V	ŀ	J2	D2	15	GSDIGGSSWDTRQKF		1
V	ŀ	J2	D2	15	GSDIGGSSWDTRQTF		1
V	ŀ	J2	D2	15	GSDFGGSSWDTGTVV		1
V	ŀ	J1	D2	13	GSDIDWRATDKLV		1
V	ŀ	J1	D2	13	GSDIDRRDTDKLV		1
V	ŀ	J1	D2	12	VSEYRRDTDKLV		1
V	ŀ	J1	D2	12	GSDMEGYTDKLV		1
V	ŀ	J1	D2	11	GSDRRDTDKLV		1
V	ŀ	J2	D2	18	GSDIDRRDTSSWDTROMF		2
V	ŀ	J2	D2	15	GSDIGGSSWVTROMF		2
V	ŀ	J2	D2	15	GSDIGGSSCDTROMF		2
V	ŀ	J1	D2	14	GSDIGGIRATDKLV		5

Total 58 72

Table S2 : V_{γ} and V_{δ} CDR3 sequences from *Aire*^{+/+} and *Aire*^{-/-} peripheral cells. Associated with Figure 3.

V4 J2 D2 15 GSDIGGSSWDTRQMF 31 22 V4 J1 D2 14 GSDMGGIRATDKLV 1 1 V4 J2 D2 15 GSEIGGSSWDTRQMF 31 22 V4 J2 D2 15 GSEIGGSSWDTRQMF 1 1 V4 J2 D2 18 GSDIGGSSCDTRQMF 1 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 1 V4 J2 D2 16 GSDIGGSSWDTRQMF 1 1 V4 J2 D2 16 GSDIGGSSWDTRQMF 1 1	TCR $_{\delta}$ V	J	D	CDR3 length	CDR3 sequence	# sequ	# sequences	
V4 J2 D2 15 GSDIGGSSWDTRQMF 31 2 V4 J1 D2 14 GSDMGGIRATDKLV 1 1 V4 J2 D2 15 GSEIGGSSWATRQMF 1 1 V4 J2 D2 18 GSDIDRDTSSWDTRQMF 1 1 V4 J2 D2 18 GSDIGGSSCDTRQMF 1 1 V4 J2 D2 15 GSDIGGSSCDTRQMF 1	Lung (5 weeks)					Aire ^{+/+}	Aire-/-	
V4 J1 D2 14 GSDMGGIRATDKLV 1 V4 J2 D2 15 GSEIGGSSWATRQMF 1 V4 J1 D2 12 GSDMGYATDKLV 1 V4 J2 D2 18 GSDIDRDTSSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSCDTRQMF 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 V4 J2 D2 16 GSDIGGSSWDTRQMF 1 V4 J1 D2 14 GSDIGGSSWDTRQMF 10 33 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 35 V4	V4	J2	D2	15	GSDIGGSSWDTRQMF	31	21	
V4 J2 D2 15 GSEIGGSSWATROMF V4 J1 D2 12 GSDMGYATDKLV 7 V4 J2 D2 18 GSDIGGSSCDTROMF 7 V4 J2 D2 15 GSDIGGSSCDTROMF 7 V4 J1 D2 12 GSDTEGYTDKLV 7 V4 J1 D2 12 GSDTEGYTDKLV 7 Total 32 24 Eye (7 weeks) V4 J2 D2 15 GSDIGGSSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 7 V4 J2 D2 16 GSDIIGGSSWDTRQMF 7 V4 J2 D2 16 GSDIGGSSWDTRQMF 7 V4 J1 D2 14 GSDIGGSSWDTRQMF 7 V4 J2 D2 16 GSDIGGSSWDTRQMF 7 V4 J2 D2 15 GSDIGGS	V	4 J1	D2	14	GSDMGGIRATDKLV	1		
V4 J1 D2 12 GSDMGYATDKLV V4 J2 D2 18 GSDIDRDTSSWDTRQMF 7 V4 J2 D2 15 GSDIGGSSCDTRQMF 7 V4 J1 D2 12 GSDTEGYTDKLV 7 Total 32 26 V4 J2 D2 15 GSDTGGSSWDTRQMF 15 56 V4 J2 D2 15 GSDTGGSSWDTRQMF 1 7 V4 J2 D2 15 GSDTGGSSWDTRQMF 1 7 V4 J2 D2 16 GSDTGGSSWDTRQMF 7 7 V4 J1 D2 14 GSDTGGSSWDTRQMF 7 7 V4 J1 D2 14 GSDTGGSSWDTRQMF 7 7 Eye (13-15 weeks) Total 16 GSDTGGSSWDTRQMF 7 7 V4 J2 D2 15 GSDTGGSSWDTRQMF 7 7	V	4 J2	D2	15	GSEIGGSSWATROMF		1	
V4 J2 D2 18 GSD IDRRDTSSWDTRQMF 1 V4 J2 D2 15 GSD IGGSSCDTRQMF 1 V4 J1 D2 12 GSD IGGSSCDTRQMF 1 Total 32 26 V4 J2 D2 15 GSD IGGSSWDTRQMF 15 50 V4 J2 D2 15 GSD IGGSSWDTRQMF 1 50 V4 J2 D2 15 GSD IGGSSWDTRQMF 1 6 V4 J2 D2 15 GSD IGGSSWDTRQMF 1 6 V4 J2 D2 16 GSD IGGSSWDTRQMF 7 7 V4 J1 D2 14 GSD IGGSSWDTRQMF 7 7 Eye (13-15 weeks) Total 16 55 7 7 7 V4 J2 D2 15 GSD IGGSSWDTRQMF 7 7 V4 J2 D2 16 GSD IGGSSWDTRQMF <td< td=""><td>V</td><td>4 J1</td><td>D2</td><td>12</td><td>GSDMGYATDKLV</td><td></td><td>1</td></td<>	V	4 J1	D2	12	GSDMGYATDKLV		1	
V4 J2 D2 15 GSDIGGSSCDTROMF V4 J1 D2 12 GSDTEGYTDKLV Total 32 24 Eye (7 weeks) Total J2 D2 15 GSDIGGSSWDTROMF 15 56 V4 J2 D2 15 GSDIGGSSWDTROMF 1 56 V4 J2 D2 15 GSDIGGSSWDTROMF 1 67 V4 J2 D2 15 GSDIGGSSWDTROMF 1 67 V4 J2 D2 16 GSDIGGSSWDTROMF 7 7 V4 J1 D2 14 GSDIGGSSWDTROMF 7 V4 J1 D2 14 GSDIGGSSWDTROMF 7 Eye (13-15 weeks) Total 16 55 Eye (13-15 weeks) V4 J2 D2 15 GSDIGGSSWDTROMF 7 V4 J2 D2 15 GSDIGGSSWDTROMF 7 7 V4 <t< td=""><td>V</td><td>4 J2</td><td>D2</td><td>18</td><td>GSDIDRRDTSSWDTROMF</td><td></td><td>1</td></t<>	V	4 J2	D2	18	GSDIDRRDTSSWDTROMF		1	
V4 J1 D2 12 GSDTEGYTDKLV Total 32 24 Total 32 24 Eye (7 weeks) V4 J2 D2 15 GSDIGGSSWDTRQMF 15 56 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 4 V4 J2 D2 16 GSDIGGSSWDTRQMF 4 4 V4 J1 D2 14 GSDIGGIRATDKLV 7 7 V4 J1 D2 14 GSDIGGSSWDTRQMF 1 6 Eye (13-15 weeks) Total 16 55 5 <t< td=""><td>V</td><td>4 J2</td><td>D2</td><td>15</td><td>GSDIGGSSCDTROMF</td><td></td><td>1</td></t<>	V	4 J2	D2	15	GSDIGGSSCDTROMF		1	
V4 J2 D2 15 GSDIGGSSWDTRQMF 15 56 V4 J2 D2 15 GSDRRDSSWDTRQMF 1 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 4 V4 J2 D2 16 GSDIIGGSSWDTRQMF 1 4 V4 J2 D2 16 GSDIIGGIRATDKLV 4 4 V4 J1 D2 14 GSDIGGIRATDKLV 4 5 Eye (13-15 weeks) Total 16 55 5 5 5 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 33 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 35 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 35 V4 J2 D2 16 GSDIGGSSWDTRQMF 4 4 V4 J2 D2 15 GSDIGDATDKLV 4 4	V	4 J1	D2	12	GSDTEGYTDKLV		1	
Eye (7 weeks) V4 J2 D2 15 GSDIGGSSWDTRQMF 15 50 V4 J2 D2 15 GSDRDSSWDTRQMF 1 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 4 V4 J2 D2 16 GSDIGGSSWDTRQMF 4 4 V4 J1 D2 14 GSDIGGIRATDKLV 4 4 V4 J1 D2 14 GSDIGGSSWDTRQMF 10 35 Eye (13-15 weeks) V4 J2 D2 15 GSDIGGSSWDTRQMF 10 35 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 35 Eye (13-15 weeks) V4 J2 D2 16 GSDIGGSSWDTRQMF 1 V4 J2 D2 16 GSDIGGSSWDTRQMF 1 1 V4 J2 D2 16 GSDIGGSSWDTRQMF 1 1 1 1 1 1 1 1	-				То	tal 32	26	
V4 J2 D2 15 GSDIGGSSWDTRQMF 15 50 V4 J2 D2 15 GSDRRDSSWDTRQMF 1 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 4 V4 J2 D2 16 GSDIIGGSSWDTRQMF 4 4 V4 J1 D2 14 GSDIGGIRATDKLV 4 5 V4 J1 D2 14 GSDIGEIRAPDKLV 7 7 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 35 Eye (13-15 weeks) Total 16 57 7 7 7 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 36 V4 J2 D2 16 GSDIGGSSWDTRQMF 10 36 V4 J2 D2 16 GSDIGGSSWDTRQMF 7 7 V4 J1 D2 14 GSDIGGSSWDTRQMF 7 7	Eve (7 weeks)							
V4 J2 D2 15 GSDRRDSSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSWDTRQML 4 V4 J2 D2 16 GSDIIGGSSWDTRQMF 5 V4 J1 D2 14 GSDIGGIRATDKLV 5 V4 J1 D2 14 GSDIGGIRATDKLV 5 V4 J2 D2 15 GSDIGGIRATDKLV 5 Total 16 51 Eye (13-15 weeks) V4 J2 D2 15 GSDIGGSSWDTRQMF 10 39 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 1 V4 J2 D2 15 GSDIGDSSWDTRQMF 1 1 V4 J2 D2 15 GSDIGGSSWDTRQMF	V4	J2	D2	15	GSDIGGSSWDTROMF	15	50	
V4 J2 D2 15 GSDIGGSSWDTRQMF 4 V4 J2 D2 16 GSDIGGSSWDTRQMF 5 V4 J1 D2 14 GSDIGGIRATDKLV 5 V4 J1 D2 14 GSDIGGIRATDKLV 5 Total 16 55 Total 16 55 Eye (13-15 weeks) V4 J2 D2 15 GSDIGGSSWDTRQMF 10 35 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 V4 J2 D2 12 GSDIGGSSWDTRDMF 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 1 V4 J1 D2 12 GSGIGGSSWDTRQMF 1	V4	J2	D2	15	GSDRRDSSWDTROMF	1		
V4 J2 D2 16 GSDIIGGSSWDTRQMF 1 V4 J1 D2 14 GSDIGGIRATDKLV 16 V4 J1 D2 14 GSDIGGIRATDKLV 16 57 Eye (13-15 weeks) Total 16 GSDIGGSSWDTRQMF 10 33 V4 J2 D2 15 GSDIGGSSWDTRQMF 10 33 V4 J2 D2 12 GSDRDTDKLV 1 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 <td>V4</td> <td>J2</td> <td>D2</td> <td>15</td> <td>GSDIGGSSWDTROML</td> <td></td> <td>4</td>	V4	J2	D2	15	GSDIGGSSWDTROML		4	
V4 J1 D2 14 GSDIGGIRATDKLV Total 16 57 V4 J1 D2 14 GSDIGEIRAPDKLV Total 16 57 Eye (13-15 weeks) V4 J2 D2 15 GSDIGGSSWDTRQMF 10 38 V4 J2 D2 12 GSDIGGSSWDTRDV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 1 V4 J2 D2 14 GSDISEGYATDKLV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J2 D2 15 GSDIRDSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 1	V4	J2	D2	16	GSDIIGGSSWDTROMF		1	
V4 J1 D2 14 GSDIGEIRAPDKLV Total 16 57 Eye (13-15 weeks) V4 J2 D2 15 GSDIGGSSWDTROMF 10 38 V4 J2 D2 12 GSDIGGSSWDTRDV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J2 D2 14 GSDIGGSSWDTRDV 1 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J1 D2 14 GSDISEGYATDKLV 1 V4 J1 D2 14 GSDIGGSSWDTRDV 1 V4 J1 D2 12 GSGGIRATDKLV 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 1	V4	J1	D2	14	GSDIGGIRATDKLV		1	
Total 16 5 Total 16 5 V4 J2 CSDIGGSSWDTROMF 10 36 V4 J1 CSDIGGSSWDTROMF 10 36 V4 J2 CSDIGGSSWDTROMF 2 16 CSDIGGSSWDTROMF 2 V4 J2 D2 15 CSDIGGSSWHTROMF 2 V4 J2 D2 15 CSDIGGSSWDTROMF 2 V4 J2 D2 15 CSDIGGSSWDTROMF 2 V4 J2	V4	J1	D2	14	GSDIGEIRAPDKLV		1	
V4 J2 D2 15 GSDIGGSSWDTRQMF 10 39 V4 J2 D2 12 GSDRRDTTDKLV 1 39 V4 J2 D2 16 GSDIGGSSWDTRQMF 10 39 V4 J2 D2 16 GSDIGGSSWDTRDV 1 V4 J1 D2 14 GSDISEGSWDTRDV 1 V4 J1 D2 12 GSGGIRATDKLV 1 V4 J2 D2 15 GSDRRDSSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSWHTRQMF 1 V4 J2 D2 15 GSDIGGSSWHTRQMF 1 V4 J2 D2 15 GSDIRESSWDTRQMF 1 V4 J2 D2 15 GSDIRESSWDTRQMF 1 V4 J2 D2 15 GSDIGGSSWDTRQTL 1 V4 J2 D2 15 GSDIGGSSWDTRQTL 1 V4 <td></td> <td></td> <td></td> <td></td> <td>То</td> <td>tal 16</td> <td>57</td>					То	tal 16	57	
V4 J2 D2 15 GSDIGGSSWDTROMF 10 33 V4 J2 D2 12 GSDRRDTTDKLV 1 1 1 V4 J2 D2 16 GSDIGGSSWDTRTDV 1 1 V4 J2 D2 16 GSDIGGSSWDTRTDV 1 1 V4 J1 D2 14 GSDISEGYATDKLV 1 1 V4 J1 D2 12 GSGGIRATDKLV 1 1 V4 J2 D2 15 GSDIGDATDKLV 1 1 V4 J2 D2 15 GSDIGGSSWDTRQMF 1 1 V4 J2 D2 15 GSDIGGSSWHTRQMF 1	Eye (13-15 weeks	s)						
V4 J2 D2 12 GSDRRDTTDKLV 1 V4 J2 D2 16 GSDIGGSSWDTRTDV 2 V4 J1 D2 14 GSDISEGYATDKLV 2 V4 J1 D2 12 GSGGIRATDKLV 2 V4 J1 D2 12 GSGGIRATDKLV 2 V4 J2 D2 15 GSDIGDATDKLV 2 V4 J2 D2 15 GSDIGGSSWHTRQMF 3 V4 J2 D2 15 GSDIGGSSWDTRQMF 3 V4 J2 D2 15 GSDIGGSSWDTRQMF 3	V4	J2	D2	15	GSDIGGSSWDTRQMF	10	39	
V4 J2 D2 16 GSDIGGSSWDTRTDV - V4 J1 D2 14 GSDISEGYATDKLV - V4 J1 D2 12 GSGGIRATDKLV - V4 J2 D2 15 GSDRDSSWDTRQMF - V4 J1 D2 12 GSDIGGSSWHTRQMF - V4 J2 D2 15 GSDIGGSSWHTRQMF - V4 J2 D2 15 GSDIGGSSWHTRQMF - V4 J2 D2 15 GSDIGGSSWDTRQMF - V4 J2 D2 15 GSDIGGSSWDTRQMF - V4 J2 D2 15 GSDIGGSSWDTRQTL - V4 J2 D2 15 GSDIGGSSWDTRQTL -	V4	J2	D2	12	GSDRRDTTDKLV	1		
V4 J1 D2 14 GSDISEGYATDKLV 4 V4 J1 D2 12 GSGGIRATDKLV 4 V4 J2 D2 15 GSDRDSSWDTRQMF 4 V4 J1 D2 12 GSDIGGATDKLV 4 V4 J2 D2 15 GSDIGGSSWHRQMF 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 4 V4 J2 D2 15 GSDIGGSSWDTRQTL 4	V4	J2	D2	16	GSDIGGSSWDTRTDV		1	
V4 J1 D2 12 GSGGIRATDKLV 2 V4 J2 D2 15 GSDRDSSWDTRQMF 2 V4 J1 D2 12 GSDIGDATDKLV 2 V4 J2 D2 15 GSDIGGSSWHTRQMF 2 V4 J2 D2 15 GSDIGGSSWDTRQMF 2 V4 J2 D2 15 GSDIGGSSWDTRQMF 2 V4 J2 D2 15 GSDIGGSSWDTRQTL 2	V4	J1	D2	14	GSDISEGYATDKLV		1	
V4 J2 D2 15 GSDRRDSSWDTRQMF 4 V4 J1 D2 12 GSDIGDATDKLV 4 V4 J2 D2 15 GSDIGGSSWHTRQMF 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 4 V4 J2 D2 15 GSDIGGSSWDTRQMF 4 V4 J2 D2 15 GSDIGGSSWDTRQTL 4	V4	J1	D2	12	GSGGIRATDKLV		1	
V4 J1 D2 12 GSDIGDATDKLV A V4 J2 D2 15 GSDIGGSSWHTRQMF A V4 J2 D2 15 GSDIGGSSWDTRQMF A V4 J2 D2 15 GSDIGGSSWDTRQTL A V4 J2 D2 15 GSDIGGSSWDTRQTL A	V4	J2	D2	15	GSDRRDSSWDTRQMF		1	
V4 J2 D2 15 GSDIGGSSWHTRQMF A V4 J2 D2 15 GSDIRESSWDTRQMF A V4 J2 D2 15 GSDIGGSSWDTRQTF A V4 J2 D2 15 GSDIGGSSWDTRQTL A Total 11 41 41 41 41	V4	J1	D2	12	GSDIGDATDKLV		1	
V4 J2 D2 15 GSDIRESSWDTRQMF A V4 J2 D2 15 GSDIGGSSWDTRQTL A Total 11 47	V4	J2	D2	15	GSDIGGSSWHTRQMF		1	
V4 J2 D2 15 GSDIGGSSWDTRQTL Total 11 4	V4	J2	D2	15	GSDIRESSWDTRQMF		1	
Total ₁₁ 47	V4	J2	D2	15	GSDIGGSSWDTRQTL		1	
					То	tal 11	47	

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Antibodies and flow cytometry - mice

Abs used for cytofluorometric analyses were: anti-TCR β (H57-597), -TCR $\gamma\delta$ (GL3), -IL-17A (TC11-18H10.1), -IFN- γ (XMG1.2), -CD24 (M1/69), -CD27 (LG3A10), -V γ 1 (Vg1.1, 2.11), <u>V γ 1+2</u> (<u>V γ 1.1+1.2, 4B2.9</u>), -V γ 4 (V γ 2, UC3-10A6), -Vg5 (Vg3, 536), -CD45, -L γ 51, -MHC-II (all from BioLegend); and anti-IL-7R (CD127, B12-1) (BD Pharmingen). The 17D1 hybridoma, kindly provided by Drs. Bob Tigelaar and Julia Lewis, specifically recognizes V $\gamma6^+$ TCRs after staining with the anti-C δ mAb, GL3, as described in (Roark et al., 2004). As a secondary Ab for 17D1, we used goat-anti-rat IgM (Jackson Immunoresearch Laboratories). T22-tetramers were generated by the NIH tetramer core facility. For intracellular staining of IL-17A and IFN- γ , cells were first stimulated in culture medium containing 10 ng/ml pokeweed mitogen antigen and 1 µg/ml ionomycin for 3-4h at 37°C, 5% CO₂, in the presence of Brefeldin-A: BD GolgiPlug (BD Biosciences). After surface staining, cells were pre-fixed by using 4% paraformaldehyde/PBS, and permeabilized by using BD Cytofix/Cytoperm (BD Biosciences) according to the manufacturer's protocol. Flow cytometric analysis was performed on an LSR II, sorting on a FACSAria (BD Bioscience) or a MoFlo (Beckman Coulter). Data were analyzed using FlowJo software (Tree Star).

Antibodies and flow cytometry - humans

Whole blood was harvested into EDTA tubes; red blood cells were lysed using BD FACS Lysing Solution (BD Biosciences); and staining for flow cytometry was performed using the following mAbs: FITC-conjugated anti-TCR α : β (clone WT31) (BD Biosciences), PE-conjugated anti-TCR $\gamma\delta$ (clone 11F2) (BD Biosciences), PE-Cy7-conjugated anti-CD3 (clone UCHT1) (eBioscience) and APC-eFluor780-conjugated anti-CD45 (clone HI30) (eBioscience). Staining was performed on ice for 30 min, and the cells were then washed with PBS. Data were acquired on a FACSanto (BD Biosciences).

To quantify IL-17A-producing cells, we isolated peripheral blood mononuclear cells (PBMCs) from whole blood of APECED patients and healthy donors using Lymphocyte Separation Medium (Lonza) per the manufacturer's instructions. PBMCs were cultured in RPMI 1640 with 10% FBS, 2mM L-glutamine, 100 U/ml of penicillin, and 100 μ g/mL of streptomycin (Gibco) at 37°C in a humidified 5% CO₂ incubator. Intracellular IL-17A staining was performed on PBMCs stimulated for 6 hours with PMA (20 ng/ml; Sigma) and ionomycin (2 µM; Life Technologies) in the presence of Brefeldin A (10 µl/ml; Sigma). Surface staining was performed using the following mAbs which were added for the final 30 minutes of culture before the fix and permeabilization step: PE-Cy7-conjugated anti-CD3 (clone UCHT1) (eBioscience), PerCP-eFluor710-conjugated anti-TCRγδ (clone B1.1) (eBioscience), APC-eFluor780-conjugated anti-CD4 (clone PA-T4) (eBioscience), FITC-conjugated anti-V δ 2 (clone B6) (BioLegend) and APC-conjugated anti-V γ 9 (clone B3) (BioLegend). Cells were washed with PBS and then fixed and permeabilized with Foxp3 Staining

Set (eBioscience) according to the manufacturer's instructions. Cells were then incubated with PE-conjugated anti-IL-17A (clone eBio64CAP17) (eBioscience) for 1 hour at 4°C, and washed with PBS. Data were acquired on a FACSCanto (BD Biosciences).

SUPPLEMENTAL REFERENCES

Roark, C.L., Aydintug, M.K., Lewis, J., Yin, X., Lahn, M., Hahn, Y.S., Born, W.K., Tigelaar, R.E., and O'Brien, R.L. (2004). Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. J. Leukoc. Biol. *75*, 68-75.