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Figure S1: Ultrastructural analysis of AZ organization in RB terminals; related to Figure 1. (A and 
C) EM of WT and Cplx3-/- RB terminals. RB terminal, b; amacrine cell process, a; synaptic ribbon, arrow. 
(B and D) Synaptic vesicle (SV) distribution quantified as vesicle density (number/volume) in 1 and 2 µm 
diameter concentric arcs (proximal—p—and distal—d) centered on the ribbon base. (E) SV density in p 
and d regions of interest (ROIs). (F) Ratio of d to p SV densities. (G) Mean ribbon length; ribbons in both 
WT and Cplx3-/- extended same distances from plasma membrane. (H and J) Electron tomographic 
subvolumes of WT (n=19) and Cplx3-/- (n=16) synapses. Ribbon: black arrow; ribbon-associated SV: 
white arrow. Scale bars: A-D, 500 nm; H and J, 100 nm. (I and K) 3D models of reconstructed WT and 
Cplx3-/- ribbon profiles. Ribbon-associated SVs (SVRA), white; ribbon-associated SV within 50 nm of 
plasma membrane, red. SVRA count unchanged in Cplx3-/-. (L) Mean diameter of SVRA. (M) SVRA number 
normalized to ribbon volume. For E-M, values mean±SEM. P values: **<0.01, *<0.05. (N) SV distribution 
(cumulative) within 50 nm of plasma membrane. We observed subtle differences in SV distribution: fewer 
within 10 nm, and more 15 to 20 nm, from plasma membrane in Cplx3-/- than WT. Differences, however, 
were not significant: maximum difference between the cumulative distributions, D, is 0.2063 with a 
corresponding P= 0.107 by Kolmogorov-Smirnov test. 
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Figure S2: Imaging [Ca2+]I in RB terminals; related to Figure 2.  (A) Relative GCaMP3 
fluorescence, a qualitative measure of [Ca2+]I, varies with [Ca2+]E (n=30 for 1.15-->0 mM; 
n=10 for 1.15-->2.5 mM). *** p<0.01 by Student‘s t-test. (B) OGB 6F fluorescence in WT 
(black) and Cplx3-/- (red) boutons increased rapidly during stimulation, indicating a global 
increase in [Ca2+]I following buffer saturation. Blue lines indicate train of depolarizations. 
The significant rise in OGB 6F fluorescence in the presence of 1 mM Bapta indicated a 
10-20 fold elevation in [Ca2+]I that likely arose from buffer saturation by Ca2+ influx; this 
elevation of [Ca2+]I into the low micromolar range activates release modes that function 
independently from [Ca2+]I nanodomains (Mehta et al., 2014). 
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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

EM analysis of synapse ultrastructure  

Retinae from Cplx3-/- and littermate Cplx3+/+ mice (8-10 weeks old) were fixed 

in 4% paraformaldehyde and 2.5% glutaraldehyde (Leidig et al., 2013), 

embedded in 3% low-melt agarose, and vertically sectioned into 100 µm slices 

with a vibratome. Sections were high-pressure frozen (Leica HPM100), cryo-

substituted (Leica EM AFS2) in the presence of 0.1% tannic acid and 2% 

osmium tetroxide, and embedded in plastic for ultramicrotomy (Imig et al., 2014).   

For 2D ultrastructural analyses, electron micrographs from ultrathin plastic 

sections were acquired with a transmission electron microscope (Zeiss LEO 912-

Omega) operating at 80 kV. For 3D tomographic analyses, 200 nm-thick sections 

were imaged in a JEM-2100 transmission electron microscope (JEOL) operating 

at 200 kV. RB terminals were identified by their size, their location in sublamina 5 

of the inner plexiform layer, and their characteristic dyad synapses (Figures S1A 

and S1C) (Demb and Singer, 2012; Mehta et al., 2014). As noted (Reim et al., 

2009), the gross morphology of the Cplx3-/- retina was normal.  

Tomograms were reconstructed from single-axis tilt series using the IMOD 

package to quantify docked SVs, the morphological correlate of the RRP (Cooper 

et al., 2012; Imig et al., 2014; Kremer et al., 1996). Despite the resolution of EM 

tomography, we could not observe vesicles docked to the plasma membrane, 

likely owing to an artifact of the chemical fixation of specimens before high-

pressure freezing; chemical fixation depletes AZ-proximate vesicles by inducing 

vesicle fusion and causes specimen shrinkage and membrane deformation 

(Korogod et al., 2015; Murk et al., 2003; Smith and Reese, 1980). High-pressure 

freezing of unfixed tissue, however, yielded inconsistent preservation of RB 

terminals, and this freezing artifact could not be eliminated. Quantifications were 

performed blindly using IMOD and ImageJ (Schneider et al., 2012) software.  

Statistical analyses were performed with GraphPad Prism (Version 6.00; 

GraphPad). To test for normality, the Kolmogorov-Smirnov test was used. 

Normally distributed data sets were compared by unpaired Student's t-tests.  
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Our data support observations of a normal number of ribbon-associated 

vesicles and a small reduction in the number of cytoplasmic vesicles in 

dissociated RBs treated with a Cplx3 inhibitory peptide (Vaithianathan et al., 

2015). They also consistent with observations in organotypic slice cultures of 

synapses lacking Cplx1/2/3: these did not reveal changes in the numbers of 

docked and total vesicles (Imig et al., 2014). Thus, collective morphological 

evidence indicates that our observed deficit in phasic release was unlikely to 

have arisen from depletion of vesicles at AZs. 

 

Imaging fluorescent Ca2+ indicators  

2PLSM imaging was performed as described (Mehta et al., 2014). RBs in 

retinal slices were dialyzed with pipette solutions containing a Ca2+-insensitive 

fluorescent tracer (Alexa 594 hydrazide; 0.02– 0.1 mM), the low-affinity 

fluorescent Ca2+indicator OGB 6F (0.1 mM), and a nonfluorescent, high-affinity 

Ca2+chelator (1 mM Bapta). Here, the effective buffering power of OGB 6F (KD=3 

µM) was insignificant given that Bapta has a 10-fold higher concentration and 50-

fold higher affinity for Ca2+(Naraghi and Neher, 1997).  

Dyes were excited at 910 nm using a pulsed IR laser (Chameleon; Coherent), 

and emitted light was passed through a series of dichroic mirrors and filters and 

collected by GaAsP photomultipliers (Thorlabs). Collected data were analyzed 

using ImageJ (Schneider et al., 2012).  

Changes in intracellular [Ca2+] in a population of unperturbed terminals in 

retinal whole-mounts were assessed by imaging the genetically-encoded Ca2+ 

indicator GCaMP3 expressed in RBs (and ON CBs) by cre-mediated 

recombination. Tg(Pcp2-cre)1Amc/J (Barski et al., 2000; Ivanova et al., 2010) 

(Jackson Labs) mice were crossed with Ai38 mice in which the GCaMP3 

sequence was preceded by a STOP sequence flanked by loxP sites (Madisen et 

al., 2012) (Jackson Labs). RB terminals were identified by their large size and 

position within sublamina 5 of the inner plexiform layer. 2PLSM imaging was 

performed as described above. 
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