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1. Using yeast experimental data to generate target dose-response curves

As the main text describes, we fit our signaling system models to produce the best
possible agreement with “target” dose-response curves. In some cases, we used idealized data
for the target dose-response curves. In others, we used experimental data from several
measurement points of the yeast pheromone response system. This section describes the
experimental data that we used to create this second set of target dose-response curves.

1.1. Ste2°"® activity

. N GPCR
Several researchers have measured the dissociation constant between Ste2 and a-

factor. (i) Jenness, Burkholder, and Hartwell (Jenness et al., 1986) quantified binding between
cell-surface receptors on intact cells derived from strain 381G (see (Hartwell, 1980) for its origin)
and *H-labeled a-factor by measuring radioactivity uptake from the extracellular medium. They
found an equilibrium dissociation constant of about 6 nM. Their data lay along a reasonably
straight line in a Scatchard plot, suggesting non-cooperative binding. These results improved
upon prior ones from the same group (Jenness et al., 1983) that were based upon impure o-
factor. (ii) Blumer, Reneke, and Thorner (Blumer et al., 1988) quantified binding between
receptors in membrane preparations from strain RK-5116B cells and **S-labeled a-factor, also by
measuring radioactivity uptake from the solution. They found a dissociation constant of 2 nM
and that the data again lay along a straight line in a Scatchard plot. (iii) Yi, Kitano, and Simon (i
et al., 2003) quantified binding between receptors on intact cells that were isogenic derivatives
of strain W303 and **S-labeled a-factor in a similar fashion. They found a dissociation constant
of 623 nM. (iv) Bajaj and co-workers (Bajaj et al., 2004) investigated binding between a
fluorescent a-factor analogue and GPCR proteins from strain A232. By quantifying cell
fluorescence, they found a dissociation constant of 3.7+0.8 nM. Finally, experiments by one of
us using fluorescent alpha factor (Bush and Colman-Lerner, unpublished) assign a Kp of 2-6 nM.

From these results, we chose for this work 5 nM as the dissociation constant between
Ste2°"® proteins and a-factor. This value is close to the 6 nM value found by Jenness et al., and
is within the 63 nM range found by Yi et al. It is somewhat higher than the 2 nM value found
by Blumer et al., but the deviation is reasonable because these measurements were from
isolated membranes rather than intact cells. Similarly, it is somewhat larger than the 3.7+0.8
value found by Bajaj et al., but again the deviation seems reasonable because these researchers
used data from a fluorescent a-factor analogue rather than wild-type a-factor, which may bind
differently.

Based on the linear Scatchard plots of the Jenness et al. and Blumer et al. results, we
assumed that binding between GPCRs and a-factor obeys simple non-cooperative kinetics. This
implies: that the binding dose-response curve is a Hill function; that this Hill function’s baseline,
which represents the fraction of receptors bound when there is no a-factor at all, is equal to
zero; that the Hill function’s maximum value, which represents the fraction of receptors bound
when there is saturating a-factor, is equal to 1; that the Hill function cooperativity parameter is
equal to 1, implying non-cooperative behavior; and that the Hill function ECsp, which is the a-
factor dose concentration when exactly half of the receptors are bound, is equal to the binding
dissociation constant.

1.2. G-protein activity
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We used G-protein activities from Figure 4 of Yi, Kitano, and Simon (Yi et al., 2003). They
guantified G-protein dissociation by measuring Férster Resonance Energy Tranfer (FRET)
between CFP that is tagged to Gal (Gpal) and YFP that is tagged to Gy (Stel8) using a bulk
sample (i.e. not single cells). These data were from strain RJD-415, a bar derivative of a W303
reference strain. The authors presented their dose-response data with the responses scaled to
range from 0 to 1. For our work, we needed to rescale these data so that they would represent
the absolute fraction of G-proteins that are active as a function of pheromone dose. To do so,
we needed to estimate the G-protein activity levels with no pheromone stimulation and with
saturating pheromone stimulation. For the former value, we used the finding that transcription
from the PRM1 promoter proceeds at 4.7% of its maximum value when there is no a-factor (see
section 1.4) and presumed that this arose from the basal concentration of dissociated G-
proteins. From this, we set the G-protein activity baseline to 0.047. To estimate the G-protein
activity with saturating pheromone, we first noted that there are 3 times more GPCRs than G-
proteins (Thomson et al., 2011) and they have similar ECsgs, so saturating a-factor would likely
activate most G-proteins. Additionally, recent work by Bush et al. (Bush et al., 2015) shows that
G-protein association is catalyzed by GPCR proteins that are not ligand-bound. With saturating
a-factor, essentially all of the GPCRs would be ligand-bound, which suggests that G-protein
association would be infrequent, leading to a very low population of inactive G-proteins. Based
on these results, we estimated that all G-proteins would be active with saturating pheromone.

The following table shows Yi et al.’s published G-protein activity results in the “original
response” column, which we measured from their figure. It also shows our rescaled values,
using the above baseline and maximum response values in the “rescaled response” column.
Next, we found the “Best fit Hill parameters” shown below by fitting the scaled response values
with a Hill function, as described in section 1.5.

[o] (nM) original response  re-scaled response Best fit Hill parameters
0.096 0.0256 0.071
0.988 0.151 0.191 original rescaled
1.94 0.267 0.301 B=10.04 B=10.047
4.93 0.497 0.521 A=1.00 A=0.953
9.92 0.756 0.768 E=495 E=495
19.1 0.997 0.998 N=1.50 N=1.50
49.5 1.02 1.015
99.6 1.03 1.024
954 0.995 0.995

1.3 Fus3" activity

To generate the Fus3'*™ dose-response curve, we used data from the black circles plotted in
Figure S14 of Yu et al. (Yu et al., 2008). These data show the amount of phosphorylated Fus3 as
a function of the applied pheromone dose. They are scaled so that 100% represents the
maximum amount of phosphorylation of the same allelic form of the Fus3¥*** (Fus3-as2) that
was observed in a comparable experiment, in the presence of a chemical inhibitor, 10 mM 4-
amino-1-(tert-butyl)-3-(19-naphthylmethyl)-pyrazolo[3,4-d]pyrimidine (1-NM-PP1), which
inhibits the Fus3"*** kinase activity, and with the pheromone dose at a saturating level. By
implication, we are assuming, under these conditions, essentially every Fus3"*"™ monomer in
the cell (Thomson et al., 2011) is phosphorylated.
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We also rescaled and plotted Fus3“*™ data plotted in Figure 5 of Yu et al. (Yu et al., 2008).
We obtained the data by quantifying phosphorylated and total protein in well-calibrated
Western gel experiments (Thomson et al., 2011) using strain ACL-379 (Colman-Lerner et al.,
2005), a bar1 derivative of a W303 reference strain. The following table shows these data and
the best Hill function parameters to them. Section 1.5 describes the fitting method.

[a] (nM)  response Best fit Hill parameters
0 0.0848
0.001 0.140
0.01 0.158 B=0.12
0.03 0.177 A=0.39
0.1 0.160 E=0.62
0.3 0.265 N=0.76
1.0 0.373
3.3 0.403
10 0.477
33 0.483
100 0.500
1000 0.512

1.4. YFP expression from PRM1 promoter

We used data for YFP expression from the PRM1 promoter from the original data for the
black triangles that are plotted in Figure 2a of Yu et al. (Yu et al., 2008). These data were
guantified from strain ACL-379 (Colman-Lerner et al., 2005). These data show a low basal
expression rate, implying that that there is some expression from the PRM1 promoter even in
the absence of a-factor. To account for this, we used the response that arose with no added a-
factor, which was 4.7% of the maximal response, as the baseline for our Hill function fit to the
data. On the other hand, there is no good way to define the maximally active value for the gene
expression rate so we decided to set it to 100%. The assumption that the total amount of a
reporter gene product in a time slice reflects equilibrium occupancy of DNA regulatory elements
that exist in bound and unbound states was key to quantification of DNA binding in vivo by LexA
and LexA fusion proteins in “repression assays” (Brent and Ptashne, 1984; Golemis and Brent,
1992).

In the following table, the column labeled “<y>/<r>" represents the raw data for the
average yellow fluorescence, from pheromone-induced YFP expression, divided by the red
fluorescence, from constitutive RFP expression. The next column, labeled “response,” shows
our re-scaled version of the raw data, adjusted to make the Hill function maximum equal to 1.

[a] (MM) <y>/<r> response [a] (nM) <y>/<r> response Best fit Hill parameters
0 0.466 0.0470 0.00141 0.563 0.0571

1E-10 0.467 0.0471 0.00260 0.582 0.0590

1.84E-10 0.468 0.0472 0.00478 0.617 0.0627 B=0.047

3.39E-10  0.480 0.0485 0.00880 0.647 0.0658 A=0.953

6.23E-10  0.470 0.0475 0.0162 0.704 0.0716 E=267

1.15E-09 0.468 0.0473 0.0298 0.753 0.0767 N=1.24

2.11E-09 0.404 0.0406 0.0333 0.715 0.0728

3.88E-09 0.438 0.0441 0.0467 0.758 0.0772

7.14E-09  0.455 0.0459 0.0653 0.820  0.0837
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1.31E-08  0.448 0.0452 0.0915 0.873 0.0891
2.42E-08 0.466 0.0470 0.128 0.995 0.102
4.45E-08 0.462 0.0466 0.179 1.10 0.113
8.18E-08 0.748 0.0762 0.251 1.26 0.130
1.51E-07 0.664 0.0675 0.351 1.44 0.147
2.77E-07 0.476 0.0481 0.492 1.68 0.173
5.10E-07 0.475 0.0480 0.689 1.86 0.191
9.38E-07 0.478 0.0483 0.964 2.38 0.245
1.73E-06  0.478 0.0483 1.35 3.23 0.333
3.18E-06 0.471 0.0475 1.89 3.87 0.399
5.84E-06 0.475 0.0479 2.65 5.15 0.532
1.08E-05 0.471 0.0476 3.70 6.17 0.637
1.98E-05 0.471 0.0475 5.19 7.15 0.739
3.64E-05 0.479 0.0484 7.26 7.59 0.784
6.70E-05  0.480 0.0485 10.2 8.58 0.886
1.23E-04 0.474 0.0478 20.3 8.95 0.925
2.27E-04 0.488 0.0493 40.7 9.43 0.975
4.17E-04 0.510 0.0516 81.3 9.57 0.990

7.68E-04  0.529 0.0536

1.5. Hill function fitting method

We fit Hill functions to the experimental yeast dose-response data that are described
above in sections 1.2, 1.3, and 1.4 by manual optimization using Excel. We fit an initial Hill
function to each data set by eye, choosing the parameters that made a graph of the Hill function
agree reasonably well with a scatter plot of the experimental data. We computed the fit error
by summing the squared differences between the computed Hill function and the experimental
data. We then adjusted the Hill function parameters until the fit error was minimized. Results
shown above are the best possible fits, up to two decimal places of accuracy for each
parameter.

1.6 Summary of Hill function fits to experimental data

The following table summarizes the Hill function fits to the experimental data that are
presented above. See the above sections for details.

node baseline (B) amplitude (4) ECs (E) Hill coop. (N)
GPCR 0 1 5 1

G-protein 0.047 0.953 4.95 1.5

Fus3 0.12 0.39 0.62 0.76

PRM1 0.047 0.953 2.67 1.24
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2. Modeling scheme
2.1. Steady-state node activities as functions of their inputs

This section describes the mathematics that we used to compute steady-state node
activities for cases where arrows affected the activity levels of nodes. The following section
addresses arrows that affect other arrows. We present these mathematics in a general fashion
in part because this enables its application to all of the network topologies that we explored, but
also because a general approach is better for revealing the structure of the equations.

Consider a node, X, which can represent any node in our model scheme. Its uncatalyzed
activation and deactivation reaction rate constants are ky and k,, respectively. Suppose this
node is also enzymatically activated by zero or more arrows that originate from nodes A1, A2, ...,
and it is enzymatically deactivated by zero or more arrows that originate from nodes D1, D2, ....
Whether these arrows arise from the active or inactive states of the source nodes does not
affect this analysis. The topology and detailed diagrams for this node are

Al A2

kA 1% kA 2X

Al A2 ...
\ ¢ / ky MY n42x
X X= k\X
ko1 o '
TN N
DI D2 ..

Dl D2

Using simple mass action kinetics, as described in the main text, the dynamics of node X are
given by the differential equation

ax]

= [x](k, +&

(ALl +k,,, [A2]" +--)

AlX A2X

~[X](k, +k,, [D1]"" +k,, [D2]" +--)

We assume that the total amount of node X is constant and set to 1, leading to the conservation
equation

[x]+[x]=1

At steady state (denoted with subscript s.s.), the above differential equation equals zero.
Setting it to zero and rearranging yields the equilibrium constant for node X,

[X], ko thg (A 4k, [A2]" +-

K, = -
[x], & +k,, [DI]* +k,, [D2]" +-

X

Combining this with the constraint that the total amount of node X equals one yields the
“steady state equation,” for the steady-state activity of node X,
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(kX + kAIX [IA]‘]“’1M + kAZX [Az]n"zx + “.)
(ALl + &, [A2]" +)+(k, +k,, [DI]" +k,, [D2]" +--)

AlX

(k, +k

This steady state equation applies to all nodes in our model scheme for cases where arrows
affect nodes.

In the steady state equation, note that dividing each term in both the numerator and
denominator by k, does not affect the value of the ratio, but simply rescales all of the rate
constants by 1/k,. It also causes the k, term to drop out of the equation. For this reason, we
typically fixed k, to 1 and optimized all other rate constants, now with the understanding that
these rate constants were measured relative to the uncatalyzed deactivation rate.

Although not essential to the computation of node steady-state activities, it is helpful to
continue this analysis to investigate the functional form of the node activities as functions of
their inputs. In fact, we show here that the steady state activity of node X is a Hill function of
any individual input. This is unwieldy when starting with the steady state equation, so we
instead start with the Hill function equation and rearrange it into the form of the steady state
equation. From the main text, the Hill function is

N
X

H(x)=B+A———
( ) x"+EY

This can be rearranged to the following forms:

BE" +(A+B)x" AE"
( )x H(x)=B+A-———

H(X): E" +x" XN+ EY

Returning to the steady state equation, suppose that the activity of input A1, given as [Al], is
the independent variable. In that case, the steady state equation can be seen to be identical to
the former rearrangement of the Hill function with the following substitutions (note the
notational convention that model parameters are all lower case, with the subscripts giving the
arrow source and destination nodes, while the Hill function parameters are all upper case, with
the subscripts giving the input and output nodes):

x=[Al]
~ k. +k, [A2]" +--
"k vk, [A2] 4k +k, [DI] +k,, [D2]" 4
Alx T 1- BAIX
NAIX =y

v kotk, [A2]" +--+k +k, [D1]"" +k, [D2]" +--
k

AlX

In words, the steady state equation is a Hill function of [A1] and these are the parameters for
this Hill function. This is true for all values of the other inputs. Analogous results apply to all
other activating inputs, such as A2. Next, suppose that the activity of D1, given as [D1], is the
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independent variable. In that case, the steady state equation can be seen to be identical to the
latter rearrangement of the Hill function with the following substitutions:

x=[D1]
B, = ky+k, [AL" + &, [A2] + o
Kk Al +k_ [A2]" +tk +&_[D2]" +--
Ay =B,
NDIX = nDlr
v _ ket k(AL vk, [A2]™ 4+t k 4y, [D2] 4

DIX —

DI

Dlx
Analogous results apply to all other de-activating inputs, such as D2.

There is one exception to this finding that the steady state activity of any node is a Hill
function of each individual input. It arises if there are two or more arrows from a single source
to the same node, and those arrows have different reaction orders. If this happens, then the
same types of simplifications performed here show the node activity is not a Hill function of that
input.

The fact that node activities are nearly always Hill functions of their inputs raises the
guestion of which Hill functions can arise through parameter variation and which cannot. As an
alternate view of the same question, our modeling scheme creates a mapping between the
space of model parameters and the space of Hill functions, and it is interesting to ask what the
coverage is of Hill function space. This coverage represents the set of dose-response behaviors
that can arise from any single node in our modeling scheme.

For the activating input A1, the equations above show that A;x + Bix = 1. This means that
node X is always driven to its fully active state as the concentration of an activating input tends
towards infinity. The deactivating inputs are similar. For them, the subsequent set of equations
above show that A + Bix = 0. This means that node X is always driven to its fully inactive state
as the concentration of a deactivating input tends towards infinity. These results constrain the
node activity dose-response curves. Rather than having four parameters (A, B, E, and N) that
can be varied through modification of the model parameters, the A and B Hill function
parameters are constrained to always add to 1 for activating inputs and to O for deactivating
inputs.

Next, it is worth noting that the Hill function baseline, amplitude, and ECs, value for each
input to node X depend upon the concentrations of the other inputs. For this reason, it can be
helpful to consider the Hill function parameters that result when only the input of interest (here,
Al or D1) has non-zero concentration. For activating inputs, the parameters for these “single-
input” Hill functions are:

For the deactivating inputs, they are:
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k, N k,+k
Bmx = ADIX = _Bmx NDIX =Ny E,”I;‘X = k

kX + k.r Dlx

The baseline values are the same for both the activating and deactivating inputs that are shown
here, and in fact are the same for all of the inputs to node X. This value is simply the node X
activity level when all inputs have zero concentration. It can be set to any value between 0 and
1, which is the entire range over which it is sensible, by modifying the kx and/or k, model
parameters (we typically fixed k, to 1 and varied kx). As mentioned above, the amplitude value
is fully constrained by the baseline value. The Hill coefficient value can also be set to any value
in its sensible range, which is 0 to infinity, by modifying the reaction order. Finally, the ECs,
value can be set to any value in its sensible range, which is again 0 to infinity, by modifying kaix
or kpix as appropriate.

These results show the set of dose-response curves that a particular node can produce
upon variation of its model parameters, where the dose represents the concentration(s) of one
or more node inputs and the response is the node activity level. This is a multidimensional
dose-response curve with one independent axis for each input concentration. It has the
following characteristics: (i) from above, the curve is always a Hill function of each input (for
inputs that do not impinge upon the same node multiple times and with different reaction
orders), (ii) the baseline value, representing the condition where all inputs have zero
concentration, can be made to adopt any value within its sensible range, which is from 0 to 1, by
varying ky, (iii) the amplitude for each input is constrained by the baseline value and by whether
the input activates or deactivates, (iv) the Hill coefficient for each input can be made to adopt
any value within its sensible range, which is 0 to infinity, and (v) the ECs, value for each input,
provided the other inputs have zero concentration, can be made to adopt any value within its
sensible range, which is 0 to infinity.

For example, suppose node X has only one input, Al. In this case, the possible dose-
response curves are the set of all possible Hill functions that have a baseline between 0 and 1
and a maximum response of 1.

As another example, suppose node X has two inputs, Al and A2. In this case, the response
curve will be a function of two variables, such as that shown in the following figure.

This figure shows the baseline value as the closest point of the 3D surface, that the saturation
value tends to 1 as either input is made large, and that the response is a Hill function along (or
parallel to) any of the gridlines shown in the figure. In particular, the response is a Hill function
on the two close faces of this 3D figure; these single-input Hill functions represent the response
where one input is varied and the other is fixed at essentially 0 concentration. In this 2-input
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case, the model parameters can be adjusted to give any baseline value, any ECs, for either of the
single-input Hill functions, and any Hill coefficient for either input.

2.2. Two-input control reactions (two-input arrows)

Some topologies, including T14 to T19, included arrows that acted on other arrows. We
called these “secondary” arrows, which acted on “primary” arrows. In our typical procedure for
computing their influence, we first replaced secondary arrows that had negative influences (i.e.
end with T-bar arrowhead) with ones that arose from the opposite state of the origin node and
had positive influences. For example, the lower diagram for topology T15 in Figure 3 shows a
negative feedback; we replaced it with a low-true positive feedback, as shown in the upper
diagram. Next, we computed the influence of the two positive arrows by multiplying the activity
values at their origins. In topology T15, this implies that the differential equation for node B is

d|B . " "

B {1 i A AT [T o], o]

Within the parentheses, the first term represents the uncatalyzed activation rate, the second
term represents the simple arrow from node A to node B, and the third term represents the
second arrow from node A to node B, which is influenced by a low-true positive feedback from
node B. This method expands trivially to 3-input and higher multi-input arrows. To return to
the negative feedback interpretation of this topology, we used the conservation equation for
node B to rewrite this equation as

d[B] ' . -
ALtk [T b [T (-8 (o], o]
Focusing on the third term within parentheses, this represents linear inhibition, in which node B
inhibits its own activation in direct proportion to its own activity. The other topologies in which
arrows acted on other arrows were analogous.

For topology T15, we also investigated hyperbolic inhibition, defining the node B kinetic
equation as (we only investigated the case of first order reaction rates),

LR (AL DRNG

dt 1+k, [B]

Here, node B inhibits its own activation according to Michaelis-Menten kinetics, which are likely
to be more biochemically reasonable than linear inhibition. However, neither negative feedback
mechanism enabled better DoRA than the simple linear topology. The reason was that the
negative feedbacks decreased node B responses at high input values, which were precisely the
values where node B needed greater activity to fit the target dose-response curves. We did not
investigate the other topologies using this hyperbolic inhibition approach.

2.3. Justification for our modeling scheme

The biological relevance of our results relies on the biological validity of our modeling
scheme. Mechanistic models (e.g. (Kofahl and Klipp, 2004)) have a direct correspondence
between model and biological details, providing a means to assess one aspect of whether their
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conclusions are likely to reflect biological reality or not. Our modeling scheme, by contrast, is
abstract. In particular, the biochemical reactions within our nodes often do not correspond
directly to those of specific individual reactions and single steps within our models may
represent multiple biochemical events. Two arguments support our development and use of
this scheme.

First, any model that is expressed in our modeling scheme can be constructed using real
biochemical reactions, at least in principle. As explained in the discussion of Michaelis-Menten
reactions in the main text, one would build such a reaction network using enzymatic reactions in
which each enzyme operates in the limit of low saturation. Because of this, all of our results in
which we say that a model topology can do something (e.g. a push-pull mechanism can produce
DoRA) are strong. In other words, results from models using our scheme show that a
biochemical reaction network could be engineered that corresponded closely to those specific
models, and would produce the same behavior(s).

However, our modeling scheme cannot represent all types of biochemical reactions. As
just one example, our scheme assumes that the total concentration of each species remains
constant but that these species simply interconvert between inactive and active states. This two
state model is clearly a substantial simplification for many real biochemical systems. For this
reason, all of our results in which we say that no model built in our scheme can produce some
behavior (e.g. there is no model in our scheme in which negative feedback can produce DoRA)
are weak. In other words, there may be biochemical mechanisms that can produce the stated
behavior but that cannot be represented in our modeling scheme.

For these negative results, we turn to the second justification. It is that each node’s
steady-state activity level in our modeling scheme, regardless of the model topology, is a Hill
function of each of its inputs (section 2.1) and the dose-response behaviors observed in many
biological systems are also described well by Hill functions. For example, Hill functions can be
used to represent receptor-ligand binding (Clark, 1926, 1933), enzymatic catalysis (Goldbeter
and Koshland, 1981), enzymatic catalysis over sequential steps (Black and Leff, 1983), and
enzymatic catalysis over sequential steps with multisite phosphorylation (Huang and Ferrell,
1996). They are also observed in experimental dose-response curves, including in oxygen-
hemoglobin binding (Hill, 1910), drug interactions on muscles (Clark, 1933) and receptors
(Goutelle et al., 2008), and in the yeast data that we investigated in this work (section 1). That
is, the functional dependencies in our modeling scheme generally agree well with those in
biological systems. Furthermore, by modifying arrow rate constants and other model
parameters, one can arrange that the node steady-state activity levels can be essentially any
physiologically sensible Hill function of the input node (section 2.1). Thus, the functional
dependencies in our modeling scheme have the same quantitative range as those in biological
systems. As a result, if a biological system exhibits some specific dose-response relationship,
that relationship can probably be described by Hill functions, and, if so, it can be modeled using
our scheme. Or, turning this around, if models built in our scheme cannot exhibit some
behavior, then biological systems with similar network topologies probably cannot either. This
is a less strong statement than our first justification enabled, and it makes our negative results
suggestive but not conclusive. For example, our result that systems with linear topologies
cannot produce DoRA is true for biological systems that have Hill function dose-response
relationships, but does not necessarily hold for those that don’t.

These ideas can also be understood by considering spaces of dose-response behaviors.
Our modeling scheme (nearly always) produces dose-response behaviors that are Hill functions
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and that obey the constraints listed above in section 2.1. This is the dose-response space of our
modeling scheme. Biological systems can, at least in principle, produce all of the same dose-
response behaviors and many more as well. This means that our model dose-response space
lies strictly within subset of biological dose-response space.
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3. Model optimization and analysis
3.1. The SWRMS fit distance metric

To optimize the parameter values of a given model, we needed a metric with which we
could quantify the difference between model and target dose-response curves. Most
importantly, this metric needed to accurately reflect the qualitative concept of dose-response
alignment. This led to our identification of the four following criteria that we decided that a our
metric needed to exhibit. (/) The metric should return a value of 0 when the curves are identical
and larger values for increasing differences between curves. (ii) The metric should be sensitive
to differences in curve ECso values, steepnesses (Hill coefficients), baselines, and amplitudes.
The ECso and steepness values are clearly important because they determine the curve shape.
We also decided to include baselines and amplitudes because these are typically well-defined
physical properties and models that can fit all physical properties are generally better
representations of reality than those that can fit only a few of them. Also, as the main text
describes, ignoring the baseline and amplitude parameters enables some models to nominally
exhibit DoRA but have zero amplitude, making them biologically unrealistic. (iii) The metric
should return finite values even when the curves have different baselines or amplitudes. This
criterion is important because it enables the metric to be sensitive to all curve differences
simultaneously. Standard unweighted least squares approaches do not obey this criterion. (iv)
The metric should be invariant to input value units and to whether input values are plotted on
linear or logarithmic scales. This criterion is important because the concept of dose-response
alignment is not tied to a specific way of graphing dose-response curves. Standard unweighted
least squares approaches do not obey this criterion either.

Based on these criteria, we developed the Slope-Weighted Root Mean Square (SWRMS)
distance. From the main text, we defined it the SWRMS fit distance between model and target
dose-response curves, yn,(/) and y.(l) respectively, with the equation

e
where
"2 (=)=, (0) =2 (=)-2.(0)

The initial factor of 100 expresses the total fit distance, d, as the percentage of the worst
possible fit. Perfect agreement between two dose-response curves results in a distance of 0,
whereas complete disagreement (e.g. in the limit of y,, = 0 and y; — 1, for all /) results in a
distance of 100. The c; and c,, parameters equalize the weighting on the two dose-response
curves using their ranges.

In essence, this metric is a simple weighted sum of squared errors, very much like the
standard x* and “residual sum of squares” statistics (Larsen and Marx, 2012; Press et al., 1988).
For reference, x* is conventionally defined as

i=1 o

i
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where x; values are a set of experimental observations, m; values are model values, o; values are
experiment standard deviations, and there are n total observations. When used as a goodness-
of-fit metric, the model is typical varied so as to minimize the differences between m; and x;,
weighted by o;. (The residual sum of squares is identical, but without the o; weighting factors.)
The central portion of the SWRMS metric is the same weighted sum of squares. In it, the
squares are [yn(/)-y:(l)]* and the weights are, essentially, the sums of the slopes. The absolute
values of the slopes are used because the weights need to be positive, much as they are in the y
equation. In most cases, the dose-response curves used in this work increased monotonically,
so the absolute value computations became moot in those cases. However, some dose-
response curves decreased (e.g. for T9, which includes a low-true positive feedforward), making
the absolute value computations essential in those cases. In practice, we used the absolute
values in all cases. Because the dose-response functions that we compared were defined
continuously rather than at a finite list of discrete data points, we replaced the summation in
the x* equation with an integral. This integral needed to extend over the entire dose-response
curves, so we set its limits from 0 to infinity. Another way of seeing why these limits are
appropriate is that the weighted sum of squares needs to include the entire response ranges of
both dose-response curves so that it includes all response differences, and this is only possible if
the integral extends to infinity. The dose-response slopes tend to zero as the / value tends
towards infinity, causing this portion of the integral to have a minimal influence (this is criterion
iii, above).

2

In practice, we used the SWRMS metric as expressed above. However, a different
arrangement helps elucidate its properties. For the typical case that both dose-response curves
increase monotonically, the metric rearranges to

(=) v, (=)

d =100 ¢ J (y —yt)2 dyt +tc j (y —yl)2 dym
»(0) »,(0)

Notably, the input value, I, does not appear in this equation. This fact reflects the metric’s
independence to the input units and also whether the input is graphed on a linear or logarithmic
scale (criterion jv, above).

The two SWRMS equations can be understood with reference to the following figure. The
panel on the left shows model and target dose-response curves as functions of the input value.
The SWRMS metric can be computed with the first equation by integrating the difference
between the two curves, while weighting this difference using, approximately, the sum of the
curve slopes, which the shading depicts. The panel on the right shows a parametric plot of y,, as
a function of y; in red. The diagonal line represents the case y,, = y;, so deviations from this
diagonal represent differences between the two dose-response curves. The SWRMS metric is
computed here using the second equation, now with one integral summing the squared vertical
deviations and the other integral summing the squared horizontal deviations (the straight lines
show the integral slices). The overall deviation of the parametric curve from the main diagonal
is a good qualitative measure of the goodness of fit, and one that corresponds closely to the
SWRMS distance.
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Although it is reasonably unimportant to its use as a fitting metric, it is interesting to note
that the SWRMS distance obeys three of the four properties required of a metric for a
mathematical metric space. The properties are: (i) non-negativity, meaning that d(x,y) 2 0, (ii)
identity of indiscernibles, meaning that d(x,y) = 0 if and only if x = y, (iii) symmetry, meaning that
d(x,y) = d(y,x), and (iv) triangle inequality, meaning that d(x,y) + d(y,z) 2 d(x,2). Itis
straightforward to show that the SWRMS distance obeys the first three properties. However, by
trial and error, we found that it can fail the triangle inequality. Our example that failed was
based on three Hill functions, each with baseline 0 and Hill coefficient 1: amplitudes and ECss
for the three Hill functions were 1 and 1 for Hill function x, 0.5 and 1 for Hill function y, and 0.5
and 10 for Hill function z, respectively. Using these numbers, we found that the SWRMS
distances were 28.8 between x and y, 18.2 between y and z, and 52.8 between x and z. The sum
of the first two distances is less than the third by 5.7, thus showing the failure of the triangle
inequality.

Every model produced a separate dose-response curve for each node, each of which was
compared to the appropriate target function. We computed the SWRMS distance for the entire
model as the arithmetic mean of the SWRMS distances for the individual dose-response curves
away from their specific target functions.

A potential concern with our use of the SWRMS distance is that it may place an excessive
importance on dose-response curve amplitudes as opposed to their ECss, which might be more
biologically significant. We addressed this issue in several ways. First, we used a different
metric in preliminary work that quantified dose-response curve differences by fitting Hill
functions to the model data and then comparing those Hill function parameters to the Hill
function parameters of the target curves. Even when we weighted this metric to strongly
emphasize ECsqy’s, rather than amplitude differences, we found the same qualitative results as
are described in the main text. Second, changing the dose-response targets from the 4-node
idealized targets, in which all dose-response amplitudes equaled one, to the yeast PRS targets,
in which one amplitude was much less than one (thus making it easier to fit), still showed the
same qualitative results. Finally, we also investigated several other sets of yeast PRS targets
that had lower amplitudes for the Prm1 and/or G-protein nodes (Apgn; Was 0.35 and Agpr Was
0.8) which again made the amplitudes easier to fit but did not affect qualitative results. Thus,
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the precise fit distances and the optimal model parameters clearly depend on the fit metric
definition, but the qualitative results of this work do not.

Another possible concern with our use of the SWRMS distance is that it is removed from
the quantity that is actually of interest, which is information transmission through the signaling
system. We chose the SWRMS distance because the information transmission cannot be
computed without making assumptions about the noise within the signaling system. (In the
absence of noise, essentially all possible combinations of dose-response curves transmit
information completely perfectly, making that assumption not informative.) We do not have
adequate experimental data to estimate the noise levels for the yeast data, so we decided to
avoid making assumptions about the noise throughout this work. Nevertheless, this raises the
interesting open question about how well the SWRMS distance correlates with information
transmission.

3.2. The DoRA-score, used in preliminary work

Before developing the SWRMS distance metric, we quantified the difference between
model and target dose-response curves using a different metric, a “DoRA-score.” To use it, we
fit model dose-response curves with Hill functions and then compared the differences between
model and target Hill function parameters. The equation is

d= Z 2 wu_(modeliﬁ/_—targetw_)z

ienodes je{B,AE.N}

where j is an index that scans over the nodes in a model, j is an index for the Hill function
parameter (B for baseline, A for amplitude, E for ECsq, and N for Hill cooperativity), w;; is a matrix
of weighting factors, model;; is the j’th Hill parameter for the model dose-response curve for the
i'th node, and target;; is the j'th Hill parameter for the target dose-response curve for the i'th
node. This metric obeyed the four criteria that we considered essential, listed above in section
3.1. However, it also had the problems of being arbitrary and not working well when dose-
response curves weren’t Hill functions. In addition, it was not clear how the weights should be
chosen. For these reasons, we replaced it with the SWRMS distance.

Notably, we found the same qualitative results with this DoRA-score as we found later
with the SWRMS distance. In particular, using this DoRA-score, we found that linear topologies
and those with most feedbacks and feedforwards could not produce good DoRA. We also found
that fits were substantially better when we allowed model reactions to be cooperative rather
than constraining them to be non-cooperative. In addition, we found that the models with
push-pull mechanisms could exhibit DoRA. Furthermore, these qualitative results did not
change when we varied the DoRA-score weighting factors; we typically set all of them to 1, but
also explored other options, including setting multiple values to 0.

The qualitative similarity between the results that we found with the SWRMS distance and
those with the DoRA-score suggests that the conclusions of this work arose from genuine
differences between models, rather than artifacts of the SWRMS distance.

3.3. Optimization methods
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We optimized model parameters using a combination of greedy random walk and
downhill simplex methods (Press et al., 1988), both of which are types of stochastic optimization
(Moles et al., 2003; Schneider and Kirkpatrick, 2006). In both cases, our NodeSolver software
started the optimization with user-defined model parameters (or, sometimes, random
parameters) and then iteratively improved them until SWRMS fit distances stopped decreasing.
We deemed a solution optimal only when we found it repeatedly from many different starting
values.

In our greedy random walk method, NodeSolver software computed the SWRMS distance
for a model with an initial set of parameters. It then took a trial step in parameter space by
changing one randomly chosen parameter by a random displacement (chosen from a Gaussian
distribution with a standard deviation of 1 initially) and computed the SWRMS distance for the
modified model. If this trial step reduced the SWRMS distance, the modification was kept and
the standard deviation for that parameter was increased by 20%. Otherwise, the trial step was
rejected, returning the model to its prior parameters, and the standard deviation for that
parameter was reduced by 1%. NodeSolver repeated this procedure about 10,000 times for
each round of fitting, which took a few seconds of computer time. This procedure was slow but
very robust, meaning that it always led to local minima.

Our downhill simplex method closely followed the procedure described in Numerical
Recipes in C (Press et al., 1988). In brief, the algorithm defines a high-dimensional triangle which
has as many vertices as there are fitting parameters, which is called a simplex, and then
propagates this simplex through parameter space to the optimal location. NodeSolver
performed about 10,000 propagation steps for each round of fitting. This procedure was fast
but our implementation of it did not always work reliably when models were complicated or
parameters were highly correlated.

Simple models, such as the two-node models with non-cooperative reactions and only one
control arrow, generally required ten or fewer rounds of fitting with no user input. Complicated
models, such as ones with all possible control arrows, ones with non-linear reaction orders, and
those with the yeast experimental data, sometimes required fifty or more rounds of fitting with
intermittent input from us. This input would typically entail fixing model parameters that
appeared to be fully optimized so that more computation would be directed towards the other
parameters, setting bounds on the parameter search ranges to avoid local minima, adjusting
parameters to get the current search location away from a local minimum (typically evidenced
by model dose-response curves having zero amplitude), and changing the list of fittable
parameters to ones that seemed more likely to lead to success (e.g. for a two-node model, we
typically fixed k, to 1 because it is redundant with other parameters, but sometimes we got
better fitting results when this was made a fittable parameter). This user input adds bias to the
fitting procedure, but we believe that all of our reported results represent the global minima
based on the fact that we found them multiple times from multiple different starting points.

We also tried to minimize SWRMS distances using simulated annealing (Schneider and
Kirkpatrick, 2006) and greedy random walk methods that varied multiple parameters with each
step. Those methods did not prove to be as useful as the above-mentioned ones, at least with
our implementations of them, and did not figure in the results in this manuscript.

3.4. Akaike Information Criterion computation
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To determine whether the roughly 3-fold improvements from increasing steepness were
significant rather than a consequence of adding additional fitting parameters, we computed
Akaike Information Criterion (AIC) values for each model (Document S1). It is an assertion
generally acknowledged that models with lower AIC values, which can arise through better fits
and/or fewer model parameters, represent the data better (Burnham and Anderson, 2002).
Here, we found that enabling changes in reaction order always decreased AIC values, with an
average decrease of 17.6 units. By contrast, adding control arrows, which also added fitting
parameters, typically increased AIC values. Both results argue that models that allowed different
reaction orders represented the target functions better than those that did not.

The Akaike Information Criterion (AIC) is a measure of the ability of models to fit data,
thereby providing a means for selecting between multiple candidate models. The AIC value is
given with the equation (Burnham and Anderson, 2002)

AIC=-2InL+2K

where K is the number of model parameters and L is the likelihood of the model. The likelihood
is the probability that the observed data could have arisen, given the model. Models with
smaller AIC values are better than those with higher AIC values, where in this case better means
that there is less information loss in representing the data with the model (see (Burnham and
Anderson, 2002)). The -2 In L term in the AIC equation rewards models that fit the data well
while the 2K term penalizes those that use more parameters to do so. Thus, the AIC value
represents a balance between quality of fit and model parsimony (few parameters).

The AIC is not particularly practical in this general form. To calculate it here, we began
with the fact that it is conventional to assume that the data include independent normally
distributed errors with constant variance (Burnham and Anderson, 2002). With this assumption,
the AIC becomes

AIC =nIn(s*)+2K +C

where n is the number of data points, s%is the estimated variance, and Cis a constant. The
actual value of Cis ignored here because only the differences between AIC values are relevant.
Note that the value of K is the total number of estimated model parameters, including the
variance. The value of s? is the mean sum of squared errors (Burnham and Anderson, 2002),

s’ = li(m, _xi)z
n

where m; and x; are the model and data values at point i, as in section 3.1. This s*value is very
close to the x” value introduced above, which was

i=1 o

i

Thus, we rewrote the AIC equation for le
AIC =nln(y* [n)+2K +C

Additional constant terms got subsumed into C here. This change relieved the assumption that
the variance is constant for all data points because the y” statistic allows for a different variance
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at each data point. The squared SWRMS distance, d°, is a weighted sum of squares, just like XZ.
This means that the AIC can also be written as

AIC =nin(d’[n)+2K +C

Yet more terms got subsumed into C. A problem arises at this point. Our computation of the
SWRMS is performed with an integral over an infinite number of “data points”, rather than the
sum that is used for the Xz statistic. However, taking the limit of n going to infinity in the above
equation increases the AIC to infinity. More importantly though, it shifts all of the emphasis in
the AIC towards the quality of the fit and away from the number of fit parameters, thereby
negating the entire purpose of using the AIC. On a deeper level, the problem with taking n to
infinity is that the AIC derivation assumed that the n data points have independent errors,
whereas adjacent points in noise-free dose-response curves, as used here, are clearly not
independent. This raises the question of how many independent points are represented by a
single noise-free dose-response curve. We concluded that there are 4 points because all of the
dose-response curves in this work are 4-parameter Hill functions; alternatively, any 4 pointsin a
dose-response graph are sufficient to uniquely determine the parameters of the 4-parameter
Hill function that includes them. Based on these arguments, we computed AIC values using the
equation

d2
AIC =4T In| — |[+2K
4T

where T is the number of nodes that are fit to target functions.

For example, consider the 2-node linear topology, T1. Using non-cooperative reactions,
its SWRMS distance was 5.55, so d” was 30.8. The fit included 5 unknown parameters, ka, kia, ks,
kas, and the SWRMS distance, so K was 5. We fit both nodes A and B to target functions (which
happened to be identical to each other), so T was 2. From these values the AIC was 20.8. Using
the same linear topology but with cooperative reactions, its SWRMS distance was 1.86 and the
number of unknown parameters increased by 2 to 7. Its AIC was 7.3. This large AIC decrease
shows that including cooperativity leads to a qualitatively better model.

From differences in AIC values, it is possible to compute the likelihood that one model
reduces the information loss when compared to another model, which is called the relative
likelihood or evidence ratio (Burnham and Anderson, 2002). It is

( AAIC)
L =exp| ——
2

where AAIC is the AIC difference between two models. Continuing with the above example,
exp(-(20.8-7.3)/2) = 0.001. This suggests that the linear topology with cooperativity is 1000-fold
more likely to minimize the information loss from the target functions than the linear topology
without cooperativity. The precise meaning of this result is unclear because the target functions
are continuous noise-free curves rather than discrete data points with independent additive
Gaussian-distributed noise, as is assumed for the AIC. Nevertheless, it does show that the
difference between 20.8 and 7.3 is quite large.

3.5. Robustness computation
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We tested each optimized model for robustness to parameter variation. When a model is
optimized, this means that its SWRMS distance value is the minimum possible value and that the
SWRMS distance will increase if parameters are moved away from this optimum position in
parameter space. To test robustness, we varied the parameters to random values that were up
to 3-fold away from their optimum values (see below) to produce a trial model, and then
computed the SWRMS distance for the trial model. We repeated this 10> times and counted the
number of the trial models for which the SWRMS value was (i) less than 3 SWRMS units above
the distance for the optimal model and (ii) less than 3 SWRMS units above 0. In both cases, we
divided the result by 10° to yield the percent of trials that were below the respective SWRMS
threshold. We called the first result, in which the threshold is relative to the optimal SWRMS
distance, the relative robustness. It tested the robustness of the optimal model to parameter
variation. That is, for a topology that has already been optimized, this tests how well it will
exhibit DoRA if the parameters move a short distance away from their optimal values. We
called the second result, in which the threshold is 3 units above an SWRMS distance of 0, the
absolute robustness. It tested the likelihood of achieving partial DoRA (i.e. d < 3) with a given
topology when searching parameter space randomly. This absolute robustness value is
comparable to the “Q-value” used by Yan et al. (Yan et al., 2012).

To explain our parameter variation method, consider a vector of optimized parameters
{ky, ks, k3, ..., k,}, where there are n total parameters. The obvious way to vary the parameters
by up to 3-fold variation is to vary each one individually, in each case picking a uniformly
distributed random number between 1/3 and 3 times the optimal value. For example, k; would
be replaced by a uniformly distributed random number between k;/3 and 3k;, the same
procedure would apply to k,, and so forth. The problem with this method is that the results are
highly dependent on dimensionality. If there is one parameter, for example, the maximum
possible variation away from the origin is 3k;. However, if there are two parameters, then the
maximum possible variation away from the origin is {3ky, 3k,}, which is, in some sense, farther
away from the optimum than just 3k;. This problem gets worse with higher dimension because
it becomes increasingly likely for random points to be near one or more of the edges of the
parameter variation domain. The solution is not to pick each parameter’s variation
independently but to pick them so that the total variation is uniformly distributed with a 3-fold
variation maximum.

This is easiest to consider using the logarithms of the parameters, so the optimum
becomes log k = {log k4, log k>, log ks, ..., log k,}. Three-fold variation is now represented by
adding or subtracting log 3. To do so, we defined an n-dimensional ball that was centered at log
k and had radius log 3. We picked random variables uniformly within the volume of this ball as
the trial parameters. Inverting the logs by exponentiating the values led to the parameters that
we entered into the model. This approach keeps a constant distribution of Euclidean distances
of trial parameters about the optimal parameters, independent of the number of parameters.
In essence, this samples from an n-dimensional sphere of parameter space rather than an n-
dimensional cube.
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4. Results for two-node topologies
4.1 Two-node topologies with single control arrows

This section presents the optimized parameters for each two-node topology. It presents
them for models that were constrained to use only non-cooperative reactions and for models
that could include cooperative reactions as well, meaning that we optimized the reaction orders
too. For some topologies, this section also presents additional analytical or simulation results.
In each data table, asterisks next to parameters indicate that the parameter was included in the
fitting, while parameters without asterisks were constrained to the value shown.

T1 - linear topology

|—A— B

parameter non-coop. cooperative
ky 0* 0*
k, 1 1
kia 1* 1*
n, 1 1*
kg 0* 0.134%
k, 1 1
ki 2.234* 6.709*
Mg 1 2.797%
node A SWRMS 0 0
node B SWRMS 11.09 3.72
overall SWRMS 5.546 1.862
AIC 20.77 7.31
rel. robustness 133 20
abs. robustness 0 09

Differential equations and steady-state node activities:
[A]=[a](k, +, [1")-[Al(x,) [B]=[b](k, +,[A]")-[B](k,)

— kA + kIA [I]”M B — kB + kAB [A]n""
k,+k, [1]" +k, k,+k, [A]" +k,

Substituting the optimized parameters given above (for both non-cooperative and
cooperative results) into the steady-state solution for [A] yields

_
[1]+1

This is a Hill function with zero baseline, unit amplitude, unit ECso, and unit Hill cooperativity. It
is identical to the target function, so the fit distance for node A is 0.
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The steady-state activity for node B is a Hill function of [A], with the following Hill function
parameters:

k k k +k
= . A = . NAB:nAE E\’” = - :
k +k

4
B b B b AB

AB

We substituted the steady-state solution for [A] (using the optimized parameters) into the
steady-state solution for [B] to yield the dose-response curve for [B] as a function of [I]. The
solution is unwieldy (and not a Hill function) if nsz # 1 but simplifies to another Hill function if ngs
= 1. In this latter case, the function and its parameters are

[B _ k8+[1](k8+kAB)
B klf + kb + [I](klf + kAB + kb)

kB kABkh kB + kh
AIB = NIB = 1 IB =
k +k (k8+kb)(kAB+kB+kb) k,+k, +k

B b

B~

For the steady-state activity of this node to agree with the target dose-response curve, Bz needs
to equal 0, while Ajs, N5, and Ej all need to equal 1. The first requirement, for Bjg, can be
achieved by setting kg to 0, as in fact is the result of the optimal fit for first order reactions,
shown above. The requirement on Nz is already achieved here as well. However, the other two
parameters cannot simultaneously equal their target values of 1. This becomes clearer when
the kg = 0 result is substituted into their equations and k, is set to 1, which can be done without
loss of generality as described in section 2.1.

k 1

— AB E =
k,+1

1B

If ks is reduced to zero, then Ejz equals 1, as desired, but A,z equals 0. On the other hand,
increasing k,z towards infinity causes Az to equal 1 but then Ejz equals 0.

The following figures show this trade-off between a sufficiently large amplitude and a
sufficiently large ECso. In the left panel, the black dashed line represents the target function, the
red dashed line is the dose-response function for node A (k,=1, k=0, ks =1, and n, =1) and
the orange lines are possible dose-response functions for node B (k, =1, ks =0, nag =1, and kyg
differs for the curves; reading from left to right, its values are 200, 20, 2, 0.2, and 0.02,
respectively). ‘+’ symbols in the figure depict the half-maximum points, which give the ECs
values. The inset shows a parametric plot of the node B response as a function of the node A
response, where the diagonal line represents perfect alignment. The right panel graphs the
node A and B Hill function amplitudes on the y-axis against their ECsq values on the x-axis. The
red point represents the Hill function parameters for node A, which is the same as those for the
target function. The orange points represent the node B parameters for 500 different ks
values, chosen randomly between 0.01 and 100. For the system to exhibit DoRA, it would have
to be possible for an orange dot to be at the location of the red dot, which clearly does not
happen.
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The next figure illustrates the role of the kz parameter. The red line and dot represent the
dose-response function for node A, using the same parameters as before, and also represent the
target dose-response function. The orange lines and dots represent node B (left panel: k, =1,
kag =1, nag =1, and kg values, from bottom to top, are 0, 0.5, 1, 2, 5, and 100; right panel: k, =1,
nas =1, and k4 and kz were randomly chosen between 0.01 and 100). These show that
increasing kg increases the node B baselines and decreases the node B amplitudes but do not
improve the ability of node B to equal the target function.
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The next figure illustrates the role of the reaction order, nss, showing how increasing it
enables a better fit to the target function. The red point represents the dose-response of node
A using the same parameters as before, which is also the target function. The orange points
represent dose-responses of node B, each for 500 randomly chosen ks values between 0.01 to
100. The ngg values for these lines are 0.5 for the left line, 1 for the middle line (identical to
ones above), and 3 for the right line (also, k, = 1 and kz = 0).
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This figure shows that increasing the reaction order of the arrow from A to B simultaneously
increases the amplitude and ECs, for the node B dose-response curve.

T2 - negative feedback

|—A—B

—
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ky 0* 0* 0.00154* 0*
k, 1 1 1 1
ki 1.9504* 1* 1.958%* 1*
Ny 1 1 1.219% 1*
kg 0* 0* 0.125% 0.134*
k;, 1 1 1 1
kg 2.203%* 2.234% 6.861* 6.709*
Nyg 1 1 2.769% 2.797%*
kg, 2 0* 2 0*
Mg 1 1 1 1*
node A SWRMS 2.00 0 0.878 0
node B SWRMS 12.42 11.09 3.152 3.72
overall SWRMS 7.21 5.546 2.01 1.862
AIC 2497 22.77 8.57 11.31
rel. robustness 200 132 48 46
abs. robustness 0 0 2 2

Differential equations and steady-state node activities:
[Al=[a](k, + &, [1]")-[Al(k, + &, [B])  [B]=[b](k, + £, [A]")-[B](x,)

[a]-—farhlll IR A NG
k,+k,[1]" +k, +k,[B]™ k, +k,[A]" +k,

We were initially surprised that this negative feedback did not help produce DoRA. In
retrospect, we realized that it did not because feedback from a downstream node to an
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upstream node does not change the effect of the upstream node on the downstream node. In
this particular case, the negative feedback lowers the activity of node A, but does not change
the effect of A on B. Restated yet again, the steady-state activity of B is

— kB + kAB [A]nm
k,+k, [A]"+k

independent of the presence of the feedback. This is the same function that arose for the linear
topology (T1), with the same result, which is that [B] cannot be made to equal [A]. Yet another
way of seeing this is that the negative feedback does not affect the dose-response curve of B
relative to that of A, meaning that it does not affect the alignment of the two dose-response
curves. This finding applied to all four types of feedbacks that originated at downstream nodes
and ended at upstream nodes.

T3 - positive feedback

|—A— B

L S|
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
ki 0.696* 1* 0.154* 1*
iy 1 1 2.129% 1*
kg 0* 0* 0.112%* 0.134*
k;, 1 1 1 1
kag 0.508* 2.234% 6.325% 6.709%
g 1 1 3.154% 2.797%*
kga 2 0* 2 0*
A 1 1 1 1*
node A SWRMS 6.45 0 5.63 0
node B SWRMS 33.16 11.09 4.45 3.72
overall SWRMS 19.81 5.546 5.04 1.862
AIC 41.14 22.77 23.24 11.31
rel. robustness 590 133 13 31
abs. robustness 0 0 0 1.5

Differential equations and steady-state node activities:
[Al=[a](k, +&, (0" +&,[B]")-[Al(k,)  [B]=[b](k,+k,[A]")-[B](k,)

= kA + klA [I]”M + kBA |:B:|”rM B = kB + kAB [A]n""
ko+k, (1 + e, [B]™ +, k+k, [A]" +k,
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Positive feedback leads to bistability in many systems, so we investigated whether it does
here as well. Using equations from section 2.1 (and assuming that k, and kg equal 0 and that nj,
and nyg equal 1), the node steady-state activities are

ikl LA
A= e Bk = ATk

Substituting the latter equation into the former leads to

[A]=

(k, k, [1]+k k) A]+k,k [1]

IA""AB AB " BA IA"b

(k &, [1]+k &, [ A]+k, k& [1]+k,

AB "BA IA™"b

For notational convenience, define
¢, =k k [1]+k, k c, =k, k [1]

IA""AB AB""BA

These simplify the prior equation to

¢ [A]+c2
¢ [A] +e, + k”

[4]-

Solving for [A] yields

—\c.—c+k )£ 4cc+c—c+k2
[A]_(z 1 u)\/ll(l 1 a)

This solution is only sensible when [A] is a non-negative number. If ¢; and ¢, are greater than
zero, then taking the negative option for the + symbol always yields a negative value for [A]
because the square root term is always larger than the absolute value of (c,-ci1+k;). Thus, only
the positive option is sensible. The positive option can be seen to yield non-negative values for
[A] for any ¢y, ¢y, and k, values, meaning that there is a single solution when c; and ¢, are greater
than zero. From its definition, ¢; cannot equal zero. However, if ¢, equals zero (only possible
when ky, ki4, or [I] equal zero), then the solution is bistable with solutions [A] = 0 and [A] > 0.

T4 - negative feedforward

|—A— B

T
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 1* 1* 1* 1*
iy 1 1 1* 1*
kg 0* 0* 0.142% 0.134*
k;, 1 1 1 1
kg 3.972% 2.234% 18.221% 6.709%
g 1 1 3.091%* 2.797%*
ka, 2 0* 2 0*
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o 1 1 1 1*
node A SWRMS 0 0 0 0
node B SWRMS 15.94 11.09 4.22 3.72
overall SWRMS 7.97 5.546 211 1.862
AIC 26.57 22.77 9.29 11.31
rel. robustness 158 132 19 32
abs. robustness 0 0 0.3 1.5

Differential equations and steady-state node activities:
[A]=[a](k, +, [1")-[Al(x,) [B]=[b](k, +&,[a]")-[B](k, +k,[A]")

= LIA[I]”M - kE + kAB [A]”m
Lokl ko k(AT ks [AT

T5 - positive feedforward

|—A— B

|
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 1* 1* 1* 1*
Ny 1 1 1* 1*
kg 0* 0* 0* 0.0381*
k;, 1 1 1 1
kg 0.234* 2.234% 19.331%* 17.491%*
Mg 1 1 8.76* 9.326*
kg 2 0* 2 2.948*
Mg 1 1 1 1.659*
node A SWRMS 0 0 0 0
node B SWRMS 11.09 11.09 4.63 0.839
overall SWRMS 5.546 5.546 2.31 042
AIC 20.77 22.77 10.78 -12.53
rel. robustness 343 132 95 17
abs. robustness 0 0 5 9

Differential equations and steady-state node activities:
[A]=[a](k, +&, (") - [Al(x,) [B]=[b](k, + &, [A]" +k,,.[A])-[B](k,)

= L’A[I]”“ [B] _ kB + kAB [A]”‘” + kABZ [A]",\,,:
kA " kIA [I]”M - k" kE + kAE [A]nm + kb
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T6 - low-true negative feedback

|—A—B

T— 29
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0.0281%* 0* 0* 0*
k, 1 1 1 1
kia 1.88%* 1* 1.944% 1*
gy 1 1 0.779* 1*
kg 0* 0* 0.122%* 0.134*
k;, 1 1 1 1
kag 2.314* 2.234% 6.001%* 6.709%
g 1 1 2.585% 2.797%*
ke 2 0* 2 0*
Mg 1 1 1 1*
node A SWRMS 1.76 0 0.884 0
node B SWRMS 9.96 11.09 4.19 3.72
overall SWRMS 5.86 5.546 2.535 1.862
AIC 21.65 22.77 12.25 11.31
rel. robustness 234 134 26 32
abs. robustness 0 0 0.2 1.5

Differential equations and steady-state node activities:
[Al=[a](k, +&,[1]")-[A](k, + . [b]*) [B]=[b](k, +,[A]")-[B](k,)

— kA + klA [I]”M Bl- kB + kAB [A]",m
ke, (11" + &, + &, [6] K+, AT+,

T7 - low-true positive feedback

|—A— B

A9
non-coop. non-coop. cooperative cooperative

parameter control fixed control fit control fixed control fit

ks 0* 0* 0* 0*

k, 1 1 1 1

kia 0.000001* 1* 0.366* 1*

iy 1 1 1.812% 1*

kg 0* 0* 0* 0.134*

k;, 1 1 1 1

kg 1.939% 2.234% 17.86%* 6.709%

Nyg 1 1 6.054%* 2.797%*
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Npa 1 1 1 1*
node A SWRMS 19.83 0 184 0
node B SWRMS 19.8 11.09 9.97 3.72
overall SWRMS 19.81 5.546 14.18 1.862
AIC 41.14 22.77 39.80 11.31
rel. robustness 1000 132 227 31
abs. robustness 0 0 0 1.5

Differential equations and steady-state node activities:
[Al=[al(k, + &, [ +&,[6])-[Al(k,)  [B]=[b](k, + &, [A]")-[B](x,)

= kA + klA [I]n“ + kbA [b]n“ B = kg + kAB [A]n""
K+ k1] ke, o]+, k+k, [A]" +k,

T8 - low-true negative feedforward (push-pull)

|—A—B

non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit

ks 0* 0* 0* 0*

k, 1 1 1 1

kia 1* 1* 1* 1*
Ny 1 1 1* 1*
kg 0* 0* 0.288* 0*
k;, 1 0* 1 0*
kag 4.443* 1* 8.035* 1*
Nyg 1 1 2.104* 1*
kap, 2 1* 2 1*
Ny 1 1 1 1*

node A SWRMS 0 0 0 0
node B SWRMS 6.37 0 2.937 0
overall SWRMS 3.187 0 1.468 0
AIC 1191 - 3.51 -

rel. robustness 110 60 24 7
abs. robustness 0 60 3 7

Differential equations and steady-state node activities:
[Al=lal(k,+ £, [0°)-[a1)  [B]=[o](k, £, [AT")~[BI(k, +K,[a]")

— kA + klA [I]”M B — kB + kAB [A]”"”
kA + kIA I:I]'XM + ka kB + kAB [A]n‘m + kb + kub [a]n"b




Andrews, Peria, Yu, Colman-Lerner, and Brent, Cell Systems, 2016 31

The following analysis shows that this topology yields perfect DoRA. The steady-state
activity of node A, from the analysis of topology T1 and using the optimized parameters given
here, is identical to the target function, in which the baseline is 0 and the amplitude, ECs, and
Hill cooperativity all equal 1. The steady-state activity of node B is

— kB + kAB [A]”"”
k,+k,[A]" +k +k, [a]™

Setting the model parameters to those that were found in the optimized results (ks =k, = 0, kap =
kab, and nag = ngp = 1) simplifies the node B activity to

A
(5] A
[]+[a]
We also assumed throughout this work that the total concentration of each node equals one,
which further simplifies this equation to

[B]=[4]
This is the DoRA condition. Furthermore, because the activity of node A was already shown to
equal the target function, this shows that the node B activity also equals the target function.

Note that the solution only arises if all of the conditions listed above are true. This is the only
solution for this model, which implies that the model does not exhibit bistability.

T9 - low-true positive feedforward

|—A—B

LA
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0.248* 0*
k, 1 1 1 1
kia 1* 1* 0.606* 1*
iy 1 1 1.442% 1*
kg 0* 0* 0* 0.134*
k;, 1 1 1 1
kg 1.529% 2.234% 13.044* 6.709%
Nyg 1 1 5.319% 2.797%*
kg 2 0* 2 0*
N 1 1 1 1*
node A SWRMS 0 0 4.98 0
node B SWRMS 32.47 11.09 21.57 3.72
overall SWRMS 16.23 5.546 13.28 1.862
AIC 37.96 22.77 38.74 11.31
rel. robustness 263 132 374 30

abs. robustness 0 0 0 1.2
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Differential equations and steady-state node activities:
[A]=[a](k, +,[1")-[Al(x,) [B]=[b](k, + &, [A]" +k, [a]*)-[BI(k,)

R kAl LT
kot k[T +£, k,+k,[A]" +k,[a]™ +k,

T10 - negative control arrow

| —A— B

non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 1* 1* 1* 1*
iy 1 1 1* 1*
kg 0* 0* 0.164* 0.119*
k;, 1 1 1 1
kg 4.331* 2.234% 19.498* 8.092%
Nyg 1 1 3.218* 2.811*
kg, 2 0* 2 18.996*
Mgy 1 1 1 7.274*
node A SWRMS 0 0 0 0
node B SWRMS 13.374 11.09 3.62 3.04
overall SWRMS 6.687 5.546 1.81 1.52
AIC 23.77 22.77 6.86 8.06
rel. robustness 247 133 23 23
abs. robustness 0 0 1.2 1.6

Differential equations and steady-state node activities:
[A]=[a](k, +, [1")-[Al(x,) [B]=[b](k, + &, [a]")-[B](k,+ &, [B]")

ERRIALK kAL
k,+k, [1]" +k,

T11 - positive control arrow

| —A— B

non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k 1 1 1 1

a
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ki 1* 1* 1* 1*
Ny 1 1 1* 1*
kg 0* 0* 0* 0.0633*
ky 1 1 1 1
kap 0.2733* 2.234% 19.729%* 3.7515%
s 1 1 8.816* 1.9432%
kpp 2 0* 2 18.8931%
gy 1 1 1 11.3565%
node A SWRMS 0 0 0 0
node B SWRMS 26.74 11.09 14.598 1.535
overall SWRMS 13.37 5.546 7.299 0.767
AIC 34.85 22.77 29.17 -2.87
rel. robustness 360 134 76 6
abs. robustness 0 0 0 1.6

Differential equations and steady-state node activities:
[A]=[a](k, +&, (") - [Al(x,) [B]=[b](k, + &, [A]" +k, [B]")-[B](x,)

= LIA[I]”M — kB + kAB I:A]"m + kBB [B]"""
bk Tk, k,+k,[A]" +k, [B]™ +k,

T12 - low-true negative control arrow

|—A— B

non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit

ks 0* 0* 0* 0*
k, 1 1 1 1

kia 1* 1* 1* 1*

Ny 1 1 1* 1*

kg 0* 0* 0.3246%* 0*

k;, 1 0* 1 0*

kg 4.4909* 1* 8.1498%* 1*

Nyg 1 1 2.1829% 1*

ky, 2 1* 2 1*

My 1 1 1 1*
node A SWRMS 0 0 0 0
node B SWRMS 8.157 0 3.526 0
overall SWRMS 4.079 0 1.763 0
AIC 15.86 - 6.44 -

rel. robustness 96 17 17.48 0.6

abs. robustness 0 17 0.83 0.6

33
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Differential equations and steady-state node activities:
[A]=[a](k, +,[1")-[Al(x,) [B]=[b](k, + K, [A]")-[BI(k, + &, [b]")

- LIA[I]”M Bl= kB + kAB [A]nm
borklilek b+ [T+ k, [o]"

We investigated this model analytically. The steady-state activity of node A is identical to
that given above for topology T1, aligning perfectly with the target function. The steady-state
activity for node B is

B — kB + kAB [A]n"”
k,+k,[A]" +k +k,[b]™

Using the parameters identified in the optimization process (kg = k, = 0, kag = kpp, and nag = npp =
1) this simplifies to

]
Bl e -]

2

0=[B] -[a][B]-[B]+[a]=([B]-[A]([B]-1)
The factors in the final equality shows that there are two solutions for the node B activity level.
They are [B] = [A], which is perfect DoRA, or [B] = 1, which is B in its fully active state. This
means that if node B is not fully active, then its activity will adjust to become exactly equal to
that of node A. However, if node B becomes fully active, either because it was driven there by
node A or because of some external influence, then it will get stuck in this state and will not
deactivate, independent of the node A activity. This result implies that the node B activity is
bistable for all values of [A].

T13 - low-true positive control arrow

| —A— B

non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit

ks 0* 0* 0* 0*

k, 1 1 1 1

kia 1* 1* 1* 1*

Ny 1 1 1* 1*

kg 0* 0* 0* 0*

k;, 1 1 1 1

kag 1.0473%* 2.234% 20.729* 6.794%

Nyg 1 1 7.255% 2.762*

kyp 2 0* 2 0.144*

My 1 1 1 0.531*
node A SWRMS 0 0 0 0
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node B SWRMS 25.92 11.09 14.648 3.716
overall SWRMS 12.96 5.546 7.324 1.858
AIC 34.35 22.77 29.22 11.28
rel. robustness 343 134 75 31
abs. robustness 0 0 0 1.5

Differential equations and steady-state node activities:
[A]=[a](k, +&, (") - [Al(x,) [B]=[b](k, + &, [A]" +k,[b]")-[BI(k,)

— kA + kIA [I]”M
k,+k, [1]" +k,

— kB + kAB [A]n"" + ka [b]nm
kB + kAB [A]nw + ka [b]”bﬁ + kb

T14 - positive feedback / low-true negative feedback, arrow to arrow

| - A= B | »A= B

non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 1* 1* 1* 1*
iy 1 1 1* 1*
kg 0* 0.0581* 0.1398* 0.0381*
k;, 1 1 1 1
kg 1.189% 0* 5.997%* 17.491*
g 1 1 3.883%* 9.326%*
kags 2 4.2744%* 2 2.948%*
Napp 1,1 1,1 1,1 1.659,0*
node A SWRMS 0 0 0 0
node B SWRMS 8.554 6.557 3.729 0.839
overall SWRMS 4.277 3.279 1.864 042
AIC 16.62 14.37 7.33 -10.53
rel. robustness 172 92 34 16
abs. robustness 0 0 13 9

Differential equations and steady-state node activities:

[8]=[o1(k, +k, [A]* + £, [T [B] )~[BI(x,)

[Al=[al(k, +&,[1]")-[A](,)

_ kA + kIA [I]”“

kA + kIA I:I]'XM

+k,

B k,+k,[A]" +k

k,+k [A]" +k,, [A]™[B]

Mass2

ABB

(AT [BI= 4

T15 - negative feedback / low-true positive feedback, arrow to arrow
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| ~A—B

| —-A—=8B

non-coop. T_—don-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 1* 1* 1* 1*
gy 1 1 1* 1*
kg 0* 0* 0* 0.0381*
k;, 1 1 1 1
kag 1.284* 2.234% 12.018* 2.948%*
g 1 1 4.832% 1.659%*
kapp 2 0* 2 17.491*
Hppg 1,1 1,1 1,1 9.326,0*
node A SWRMS 0 0 0 0
node B SWRMS 13.016 11.09 2.482 0.839
overall SWRMS 6.508 5.546 1.241 0.419
AIC 2333 22.77 0.82 -10.55
rel. robustness 288 132 28 17
abs. robustness 0 0 6 10

36

Differential equations and steady-state node activities:
[A]=[a](k, +&, (") - [Al(x,) [B]=[b](k, + &, [A]" +k,,[A] [b]*)-[B](k,)

— kA + kIA [I]”M
k,+k, [1]" +k,

kB + kAB [A]""” + kAbB [A]n,wm [b]”’”’“
(AT [o] <%

kB + kAB [A]nm + kAbB b

T16 - positive feedback / low-true negative feedback, arrow to arrow

|—A— B |—A— B

non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit

ky 0.0469* 0* 0* 0*

k, 1 1 1 1

kia 0* 1* 0.164* 1*

Ny 1 1 0.2027* 1*

kg 0* 0* 0.161* 0.1345%

k;, 1 1 1 1

kag 2.1744* 2.234% 3.847% 6.709%

Nyg 1 1 2.2848* 2.797%*

kipa 2 0* 2 0*

™ 1,1 1,1 1,1 1,1%
node A SWRMS 3.563 0 4.69 0
node B SWRMS 9.689 11.09 5.863 3.724
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overall SWRMS 6.626 5.546 5.278 1.862
AIC 23.62 22.77 23.98 13.31
rel. robustness 366 134 282 31
abs. robustness 0 0 0 14

Differential equations and steady-state node activities:
[A]=[a](k, + K, [1]" + &, [ [B]*) -[A](k,) [B]=[b](k, + £, [A]")-[B](k,)

kA + klA [I]”M + kIBA [I]’lm/” |:]3:|nm2 B — kB + kAB [A]n""
kB + kAE [A]n’w + kb

kA + kIA [I]”M + kIBA I:I]nml [B]nm‘“ + k

a

T17 - negative feedback / low-true positive feedback, arrow to arrow

|l —A— B | —A— B
j S
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 0.0247* 1* 0.058* 1*
gy 1 1 2.576* 1*
kg 0* 0* 0.0878* 0.1345%
k;, 1 1 1 1
kg 2.0929* 2.234% 9.049%* 6.709%
Nyg 1 1 3.338%* 2.797%*
kipa 2 0* 2 0*
Nipa 1,1 1,1 1,1 1,1%
node A SWRMS 3.2897 0 5.098 0
node B SWRMS 13.458 11.09 1.5904 3.724
overall SWRMS 8.374 5.546 3.344 1.862
AIC 27.37 22.77 16.68 13.31
rel. robustness 626 131 276 31
abs. robustness 0 0 0 1.6

Differential equations and steady-state node activities:
[A]=[a](k, + &, [ + &, [0 6] ) - [A](,) [B]=[b](k, + £, [A]")-[B](k,)

— kA + kIA [I]"” + k”}A [I]”""H [b]n”"‘: B — kB + kAB [A]n""
kA + kIA [I]nL1 + kle [I]””"“ [b]nmz + ka kB + kAE [A]n’w + kb

T18 - negative feedforward / low-true positive feedforward, arrow to arrow
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| —A—B | —A—B
non-coop. T non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 1* 1* 1* 1*
gy 1 1 1* 1*
kg 0* 0* 0* 0.0381*
k;, 1 1 1 1
kg 1.494% 2.234% 11.726* 17.491*
g 1 1 4.7757* 9.326%*
koup 2 0* 2 2.948%*
Haap 1,1 1,1 1,1 0,1.659*
node A SWRMS 0 0 0 0
node B SWRMS 15.277 11.09 2.838 0.839
overall SWRMS 7.638 5.546 1419 0.420
AIC 25.89 22.77 2.96 -10.53
rel. robustness 225 133 24 27
abs. robustness 0 0 3.7 16

Differential equations and steady-state node activities:

[Al=[al(k, +&,[1]")-[A](,) [B]=[6](k, + &, [A]" +k,, [a] [A]*)-[B](x,)

__kork O alo kst kg (Al 4k, [a]™ [A]™
k,+k, [1]" +k, k,+k, [A]" +k [a]™ [A]™ +k,

T19 - positive feedforward / low-true negative feedforward, arrow to arrow

| — 'Io\_f — B | — f\_T:: B
non-coop. non-coop. cooperative cooperative
parameter control fixed control fit control fixed control fit
ks 0* 0* 0* 0*
k, 1 1 1 1
kia 1* 1* 1* 1*
iy 1 1 1* 1*
kg 0* 0.0377* 0.1653* 0.0381*
k;, 1 1 1 1
kag 1.201%* 0* 6.797%* 17.491*
Nyg 1 1 4.166* 9.326%*
kap 2 4.619% 2 2.948%*
o 1,1 1,1 1,1 1.654,0*
node A SWRMS 0 0 0 0
node B SWRMS 7.302 4.794 3217 0.839
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overall SWRMS 3.651 2.397 1.609 0.420
AIC 14.08 9.35 497 -10.53
rel. robustness 207 153 47 16
abs. robustness 0 11 4.6 9

Differential equations and steady-state node activities:
[A]=[a](k, +&, [1") - [Al(x,) [B]=[b](k, + &, [A]" +k,, [A]" [A])-[B](k,)

k[ g bt kA" o [T [A]
borkll ek b+ by (AT k, [AT AT vk

b

4.2. Robustness of two-node topologies

To better understand the robustness parameters that we quantified and reported above,
we looked for correlations between their values and the optimal SWRMS distances. The
following graphs show the relative robustness values. As described above, the relative
robustness for a particular model is the percent of trial models that had SWRMS distances less
than 3 units greater than the optimal SWRMS distance. This tests the robustness of an
optimized model to parameter variation.
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The two graphs present the same data but use either linear and log scales to show the results
more clearly. Colors are the same as in Figure 3 of the main text (green for non-cooperative
models, blue for cooperative; light colors for fixed control arrows and dark colors for fit control
arrows). These graphs show a positive correlation between robustness and optimal SWRMS
distance. In these results, the linear topology, T1, and the push-pull topology, T8, are typical; all
of their data points lie close to the main diagonal. In particular, the fully optimized push-pull
topology has an SWRMS distance of 0 and, correspondingly, a very low robustness of 0.6%. This
low robustness shows that it is highly sensitive to parameter variation.

To better understand this correlation, we considered the SWRMS distance as a function of
parameter space, visualizing the function as a curved surface. This surface has a depression that
is centered around the region where the parameters are optimal, and a minimum at the optimal
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parameters. The correlation shows that topologies that produce deep depressions in the
SWRMS surface (e.g. the push-pull topology) tend to have narrow depressions, whereas those
that produce small depressions in the SWRMS surface tend to have broad depressions.

A somewhat different picture emerges from the absolute robustness values. The absolute
robustness is the percent of trial models that had SWRMS distances below a value of 3. This
tested the likelihood that a model with randomly chosen parameters would exhibit partial
DoRA. The following figure shows that absolute robustness values generally correlate inversely
with the optimal SWRMS distance.

1.5

absolute robustness
[y

°
0.5
0 ®
0 0.5 1 1.5 2
optimal SWRMS distance

As before, blue dots represent the models with both control arrows and cooperativity
optimized. Data for models optimized in other ways are not shown for clarity, but generally
agreed with the same trend. The line shown here was not fit to the data, but simply added to
guide the eye. The two points that do not lie on the line are for T8 (robustness of 0.6), the push-
pull topology, and T12 (robustness of 0.06), which also includes a low-true negative arrow and
achieves DoRA in a similar manner. The inverse correlation found here shows that, in general,
models that are better at exhibiting DoRA also have a greater range of parameters for which
they exhibit partial DoRA. Considering the SWRMS surface as a function of parameter space,
this shows that the width of a depression at a fixed height above the baseline (SWRMS distance
of 0) tends to increase as the depression gets deeper, much as one would expect for a
depression that has sloped sides. However, topologies T8 and T12 are exceptions. For them,
relatively few randomly chosen parameter sets yielded partial DoRA. This implies that the
depressions in their SWRMS surfaces are particularly narrow. This agrees with the results for
the relative robustness, where we found that these topologies are particularly sensitive to
parameter variation.

4.3. Control arrows act independently

We tested whether any two-node topology with multiple control arrows could produce
better DoRA than those with single arrows. To do so, we started with a topology with a single
control arrow and then added all control arrows that had produced the same or larger SWRMS
distances when used alone. Upon re-optimization, we found that these additional arrows led to
negligible improvement in every case (see below). For example, the SWRMS distance for T14
was 3.28 and the distance for the same topology plus control arrows from all single-arrow
topologies that produced worse fits was 3.22. This showed that control reactions cannot work in
synergy to produce DoRA in two-node models.
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The following table presents optimized model parameters for several two-node models
that included multiple control arrows. Each of these models used non-cooperative reactions.

values in the table represent arrows that were not included in the model. Each column

represents one model. The column labeled “T1+worse” is for topology T1, which is the linear
topology, plus all control arrows that did not reduce the SWRMS fit distance to below that of T1
when used alone. For example, adding negative feedback to T1, creating topology T2, did not
lower the SWRMS fit distance, so it was a “worse” arrow and was included in the “T1+worse”
model. On the other hand, adding a low-true negative feedforward to T1, creating topology T8,
did lower the SWRMS fit distance, so it was not a “worse” arrow and was not included in this
particular model. The other models listed here are analogous. The last rows of the table
present the SWRMS fit distances for nodes A and B and for the overall model. The final “control
distance” row presents the SWRMS fit distance for the same topology but without any of the
“worse” arrows. For example, the control distance for the “T1+worse” model is simply the

SWRMS fit distance for topology T1.

‘

XI

parameter T1 T8 T12 T14 T19
parameter description +worse +worse +worse +worse +worse
ky A activation 0 0 0 0 0
kg B activation 0 0 0 0 0
k, A inactivation 1 1 1 1 1
k, B inactivation 1 0 0 1 1
kia core arrow 1 1 1 1 1
ki core arrow 2.234 1 1 0 0
kga in T2, n.fb. 0 0 0 0.045 0
ko, in T3, p.fb. 0.203 0 0 0 0
ko, in T4, n.ff. 0 0 0 0 0
kag, in TS, p.ff. 0 0 0 0 0
ky, in T6, 1t.n.fb. 0.867 0 0 0.031 0
ka in T7, 1t.p.fb. 0 0 0 0 0
k., in T8, It.n ff. X 1 X X X
kg in T9, It.p ff. 0 0 0 0 0
kg, in T10, n. 0 0 0 0 0
kgp in TI11,p. 0 0 0 0 0
ky, in T12, It.n. X 0 1 X X
kg in T13, It.p. 0 0 0 0.067 0.046
kags in T14, p.fb. X 0 0 4.370 0
kaps in T15, n.fb. 0 0 0 0 0
kipa in T16 0.203 0 0 0.045 0
kipa in T17 0415 0 0 0.031 0
kaas in T18 0 0 0 0 0
kasg in T19 X 0 0 X 4.672
node A SWRMS 0 0 0 0 0
node B SWRMS 11.091 0 0 6.449 4.741
overall SWRMS 5.545 0 0 3.225 2.371
comparison SWRMS 5.546 0 0 3.279 2.397
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Key to abbreviations in the parameter description column: It. = low-true, n. = negative, p. =
positive, fb. = feedback, and ff. = feedforward.

These results show that control arrows act essentially independently of each other as opposed
to acting synergistically. More specifically, if two control arrows do not cause the network to
exhibit DoRA by when used separately, then they also do not cause the network to exhibit DoRA
when used together. This test investigated all possible pairs of control arrows.
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5. Results for four-node toplogies
5.1 Idealized target functions

The following table presents the parameters for several 4-node models that we fit to
idealized target functions. The main text discusses the models and the left column of Figure 4
presents their dose-response functions.

parameter Figure 4A  Figure 4B Figure 4C  Figure 4D Figure 4E

parameter description linear cooperative pos. ff. push-pull pull reaction
k4 A activation 0 0 0 0 0
kg B activation 0 0.151 0 0 0
ke C activation 0 0.177 0 0 0
kp D activation 0 0.186 0 0 0
k, A inactivation 1 1 1 1 1
ky B inactivation 1 1 1 0 1
k. C inactivation 1 1 1 0 1
ky D inactivation 1 1 1 0 0
ki rate, [=A 1 1 1 1 1
kg rate, A—=B 2.032 6.201 2234 1 2.041
ksc rate, B—=C 1.858 6316 0 1 1.866
kep rate, C—D 1.784 6.305 0 1 1
ny order, [=A 1 1 1 1 1
nyp order, A—B 1 2.745 1 1 1
npc order, B—C 1 2.851 1 1 1
nep order, C—=D 1 2.880 1 1 1
kac p.ff., A—C X X 2.234 X X
kip p.ff., A—D X X 2.234 X X
kap It.n.ff., A—B X X X 1 X
ke It.n.ff.,, B—C X X X 1 X
kea It.n.ff., C—=D X X X 1 X
kaa It.n.ff., A—=D X X X X 1.046
A SWRMS 0 0 0 0 0
B SWRMS 11.307 3.835 11.091 0 11.286
C SWRMS 16.037 5.526 11.091 0 16.038
D SWRMS 19.040 6.730 11.091 0 6.631
overall
SWRMS 11.596 4.023 8.318 0 8.489

5.2 Yeast dose-response data target functions

The following table presents the parameters for several 4-node models that we fit to
target functions that we created from experimental yeast dose-response data. These target
functions are described in section 1. The main text discusses the models and the right column of
Figure 4 presents their dose-response functions.
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parameter Figure 4F Figure 4G Figure 4H  Figure 41 Figure 4]
parameter description linear cooperative p.ff. push-pull C%L;;l:rlzi lsil\l/’e
kg R activation 0 0 0 0 0
kg G activation 0 0 0 0 0.001
ke F activation 0.177 0.140 0.198 0.138 0
kp P activation 0 0.208 0 0 0.006
k, R inactivation 1 1 1 1 1
kq G inactivation 1 1 1 0 0
ky F inactivation 1 1 1 1 0.018
k, P inactivation 1 1 1 0 0
kg rate, a—R 0.2 0.2 0.2 0.2 0.2
krc rate, R—G 2.307 8.675 2.336 1 0.790
ker rate, G—F 1.255 0.762 1.167 1.626 0.957
krp rate, F—P 2.015 2.371E5 0 0.461 5232
n.g order, a—R 1 1 1 1 1
nRG order, R—=G 1 2.763 1 1 1.306
nGr order, G—=F 1 0.224 1 1 0.263
nrp order, F—P 1 14.258 1 1 18.491
krr p.ff, R—F X X 0 X X
kgp p.ff., R—P X X 3.444 X X
kg It.n.ff.,, R—=G X X X 0.900 0.792
kgr It.n.ff.,, G—=F X X X 0 1.010
ky, It.n.ff., F—=P X X X 0.313 0.878
Mg It.n.ff. order X X X 1 1.483
Ngs It.n.ff. order X X X 1 0.036
ny It.n.ff. order X X X 1 9.374
R SWRMS 0 0 0 0 0
G SWRMS 14.236 4.524 14.247 5.212 0.976
F SWRMS 1.274 0.588 1.012 5.861 0.363
P SWRMS 21.698 4.946 9.617 13.987 0.504
overall 9.303 2.514 6.219 6.265 0.461

SWRMS



Andrews, Peria, Yu, Colman-Lerner, and Brent, Cell Systems, 2016 45

6. Robustness of results to changes in input data, fitting metric, and parameter values
6.1 Robustness to input data and fitting metric

The similarity between our results from target dose-response curves that were perfectly
aligned and from the imperfectly aligned experimental data suggested that our results might be
reasonably general. In support of this, we found essentially the same results for the 2-node and
4-node idealized models. Furthermore, we found qualitatively identical results in two
preliminary studies. In one, we set the amplitude of the PRM1 node to 0.35 instead of 0.95. In
another, we used a different fitting metric, defining it as the root mean squared differences
between the parameters of a Hill function fit to the model and the parameters of the target
curves (the DoRA-score, described in section 3.2).

6.2 Robustness to parameter variation

We also tested the robustness of optimized models to parameter variation. In each case,
we created a set of 10° “trial models” by varying the optimal parameters by up to 3-fold. We
computed the fraction of these trial models that had SWRMS distances within 3 units of the
optimum value (Document S1). From this survey, we found that the models that fit the targets
better, such as the push-pull mechanism (T8) were generally more sensitive to parameter
variation than those that fit the targets poorly, such as the linear topology (T1). This observation
held for all fits to two-node models, including those in which we only fit some of the
parameters. Rephrased: if one pictures the value of the SWRMS metric as a surface in parameter
space, our results show that deeper minima in this surface are also narrower. This finding
suggested that the high sensitivity of the push-pull model arose from the fact that it fit the
target function well, as opposed to some particular attribute of its topology.



Andrews, Peria, Yu, Colman-Lerner, and Brent, Cell Systems, 2016 46

7. Michaelis-Menten kinetics
7.1 Simplified Michaelis-Menten, linear topology

We defined the simplified Michaelis-Menten approach as the assumption of Henri-
Michaelis-Menten kinetics, but without an explicit treatment of enzyme-substrate complexes.
The following analysis shows that topology T1 can exhibit perfect DoRA when assuming
simplified Michaelis-Menten kinetics.

For convenience, we assumed that there is no uncatalyzed activation of either node A or
node B, meaning that k4 = kg = 0. We also assumed first order kinetics, meaning that nj; = nsz =
0. Although we assumed in most of our work that the total amount of each species is equal to 1,
we did not make that assumption here; instead, we set the total amount of node A to [A];: and
the total amount of node B to [B];:. Using these assumptions and the conventional equations
for Michaelis-Menten kinetics at steady-state, the net formation rates of A and B are

1 ko ltla] ok [Allb]
[A]—i[ahKM k,[A] [B]—iK o] k,[B]

M AB

These equations include the new parameters: k. ;s and k.45 are the Michaelis-Menten catalytic
rate constants for activation of node A by |, and activation of node B by A, respectively. Also,
Kwm,ia and Ky a5 are the Michaelis constants for these two reactions. At steady-state, both net
formation rates equal zero.

Focus first on the node A equation. It is easy to simplify in two limits. First, consider the
limit of low saturation, in which Ky, 4 is much larger than [A]i:. To do so, we defined kj, =
k. i1a/ K 1a, substituted this into the node A net formation rate equation, and set the result to zero
for the steady-state condition, which gave

£K,[1]e]

"l

-k [A]

A

Next, we took the limit that Ky, 4 is increased towards infinity, which led to

0=k, [1][a] -k [A]

This result is identical to the steady-state equation for the simple mass action approach
considered in the rest of this work. It shows that the simple mass action approach is consistent
with the simplified Michaelis-Menten approach, but makes the assumption of low enzyme
saturation (i.e. Ky, values are much larger than species concentrations). In section 4.1, we solved
this equation to show that node A aligns perfectly with the target function if k, = kj, = 1.

The net formation rate of node A is also easy to simplify in the opposite limit of strong
enzyme saturation, in which Ky, 4 is much smaller than [A].,:. We took this limit by starting with
the net formation rate equation again, decreasing Ky 4 to zero, and setting the result to zero for
the steady-state condition, which yielded

0=k ,[1]-#[a]

This result solves to
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[a] =221

a

This is not a Hill function, which implies that the node A activity cannot align with the target
dose-response curve in the limit of high enzyme saturation.

We also solved for the steady-state node A activity between these two limits of low and
high enzyme saturation. The result is lengthy so we do not present it here. However,
importantly, it is not a Hill function. Together, these results show that the node A activity can
only agree with its target function, while assuming simplified Michaelis-Menten kinetics, in the
limit of low enzyme saturation, which is also the limit that we investigated throughout the rest
of this work.

Focus next on the node B equation. It is structurally identical to the node A equation, so it
has the same solutions. As a result, we simply present them here rather than re-deriving them.
In the limit of low saturation, meaning that Ky, 45 is much greater than [B];,:, the steady-state
equation is

0=k, [1][b]-[B]

This uses the definition ks = k. as/Ki,a- As before, this result is identical to the simple mass
action approach that we used in the rest of this work, showing again that the simple mass action
approach is equivalent to the simplified Michaelis-Menten approach with the assumption of low
enzyme saturation. Section 4.1 shows that use of this steady-state equation does not allow the
node B activation to align with the target function. The opposite limit of high enzyme
saturation, meaning that Ky, 45 is much less than [B];,:, leads to the solution

Including the total species concentrations changes the equation slightly to

[8] _k.[al, [A]
(Bl &l8l, [l

The above equation now shows that the dose-response curve for node B is identical to that for
node A, meaning perfect DoRA, if k. as[Alior. = ks[Blior.. Because we already stated that the node
A activity can align perfectly with the target function, this shows that the node B activity can
also align perfectly with the target function.

These results show that topology T1 can exhibit perfect DoRA when implemented using
simplified Michaelis-Menten kinetics. Topology T1 does so when node A is in the unsaturated
limit, where its kinetics are identical to those of the simple mass action approach, and when
node B is in the saturated limit. This saturated limit is the “zeroth order regime” described by
Goldbeter and Koshland (Goldbeter and Koshland).

7.2 Full Michaelis-Menten, linear topology
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This section investigates topology T1 again, but using what the main text labels the “full
Henri-Michaelis-Menten” approach. Its only difference from the simplified Michaelis-Menten
approach described above is that it treats the enzyme-substrate complexes explicitly.

First, we assumed Henri-Michaelis-Menten mechanisms for both node A activation and
node B activation and simulated the resulting reaction network using COPASI. The reaction
network was

I+ai£la Ja—feu ST+ A A—tesq
A+b=2%=Ab Ab—fu A 4B B—4—b

r,AB

We simulated each of these reactions using mass action kinetics. We also defined the total
concentrations for the two species as [Al::. and [B],:. We defined responses in this case as the
total fraction of the active state of each species, independent of whether it was free or part of a
complex. We did not have software that would automatically optimize the rate constants in this
network, minimizing the SWRMS distance between the network’s steady-state dose-response
curves and the target functions, so we did the optimization manually. To do so, we computed
steady-state dose-response curves using COPASI, copied the results into an Excel spreadsheet
that computed SWRMS distances, and then adjusted parameters and repeated until we found
the best possible fit. We followed the greedy random walk approach, described above. This
required about 40 iterations, first to identify the best fit and then to verify that it was a local
minimum in parameter space. We found that the best fit could arise from many different
parameter sets, one of which was: kgja =1, k;ja =0, kgia = 1000, ko = 1, kpap = 2.234, ke ag = 0, ke s
=1000, k, =1, [Alior. =1, and [Bl:: = 1. All of these best fits had a SWRMS distance of 5.55.
Inspection of these results showed that all of them were essentially identical to the simple mass
action result (leading to the same fit distance) and that they differed from each other in ways
that did not affect the dose-response curves (e.g. changing [Al:: did not affect the dose-
response curves).

To better understand these results, we defined Michaelis constants for the reactions in
the usual way,

k +k k +k

K _ c.lA _ _r.dB .48

M. KMAB_

[, 4 f,A4B

In our best fit, Ky, was much larger than [Als:. and Ky, 45 was much larger than [B];:, meaning
that both enzymes were in their unsaturated limits. For both Henri-Michaelis-Menten reactions,
the reverse rate constant equaled zero and the catalytic rate constant was much larger than the
forward rate constant, which made the forward reaction the rate-limiting step. With this
identification, the reactions simplify to

[+a—u ST+ A A—tesyg [Ia]zO
A+b—£5>A+B  B—"—b [Ab] =0

These are exactly the same as the reactions of the simple mass action approach.

Thus, when modeled using the full Henri-Michaelis-Menten approach, topology T1 is best
able to exhibit DoRA, meaning that the SWRMS fit distance between its dose-response curves
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and the target functions is minimized, when both enzymes are in limit of low enzyme saturation.
This solution is identical to the simple mass action approach. This solution is also identical to
the simplified Michaelis-Menten approach, when it is considered in this low saturation limit.
However, importantly, we found that SWRMS fit distances increased with A enzyme saturation
in this full Henri-Michaelis-Menten approach, in marked contrast to the finding that A enzyme
saturation can lead to perfect DoRA in the simplified Michaelis-Menten approach.

We further investigated the behavior of this full Henri-Michaelis-Menten approach. To do
so, we started by simplifying the reaction network by using simple mass action kinetics for node
A, thus effectively fixing the saturation of enzyme |, the input, to a low level. The resulting
network is shown in the main text Figure 5B. This simplification did not affect the optimal result
at all, but helped us to focus on the interesting behavior, which is the saturation of enzyme A.
The following figure shows steady-state dose-response curves from COPASI simulations of this
network. On the left, we used essentially the optimal parameters listed above, leading to low
enzyme saturation (ks =1, kg =1, kgag = 2.234, k. a5 = 0, ke ag = 1000, kp = 1, [Altor. = 1, and [Blot. =
1). On the right, we used parameters for the same node B activation rate but using high enzyme
saturation (ks =1, kg =1, kag = 1000, k. as =1, keap = 2.234, kp = 1, [Altor. = 1, and [Blir, = 1). In
both figure panels, the black dashed line is the target function, the red dotted line is [A], the
large red spots are [Ab], the red solid line is total active A which is [A]+[Ab], and the orange line
is [B].

0.001 0.1 10 1000 0.001 0.1 10 1000
Input, I (nM) Input, I (nM)

Comparison of these figure panels shows the effects of enzyme saturation. In particular, they
show that the activity level of node A changes with the different parameters, despite the facts
that the node A parameters are exactly the same in both cases and there is no explicit feedback
in topology T1 from node B to node A. We realized that this change arises because the
complexation between A and b shifts the equilibrium for node A towards its active state, and
that this phenomenon is the same as that described previously as retroactivity or hidden
feedback (Ventura et al.); (Del Vecchio et al.). We also realized that this equilibrium shift for
node A causes a decrease in the node B ECsp, thus worsening its alignment with the target.
Furthermore, the complexation sequesters b into Ab complexes, which limits the total activation
of node B, seen in the right panel at high input levels.

7.3 Full Michaelis-Menten, topology with negative feedback
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We also investigated topology T2, which includes a negative feedback control arrow from
node B to node A, using full Henri-Michaelis-Menten kinetics. In this investigation, we treated
the activation of node A from the input using simple mass action kinetics, but then explicitly
treated all enzyme-substrate complexes for the interactions between nodes A and B. The use of
simple mass action kinetics for the activation of A from the input is supported by the findings
shown above (section 7.2) that (i) this is identical to its treatment using full Henri-Michaelis-
Menten kinetics when taken in the limit of low enzyme saturation, and (ii) when the same
reaction in topology T1 was modeled using full Henri-Michaelis-Menten kinetics, it could only fit
the target function when in this limit of low enzyme saturation.

This topology T2 reaction network included a positive arrow from node A to node B in
which A is the enzyme and b is the substrate. It also included a negative arrow from B to A in
which B is the enzyme and A is the substrate. The chemical reactions were

[+a—=>31+A A—=>a
A+b="2Ab Ab—t A+ B B——b
A+B \_% “— AB AB—:: 5B+a

The first row shows activation of A from | and inactivation of A, the second row shows activation
of B from A and inactivation of B, and the third row shows negative feedback from B to A. We
defined the Michaelis constants for this network in the usual way, with

We optimized the rate constants in this reaction network as described in section 7.2.
First, by using large k. a5 and k. g, values, we imposed low saturation. In this case, optimization
led to the same result found with the simple mass action kinetics in which the best result had
the negative feedback effectively removed. In this case, the SWRMS distance was 5.55, in
agreement with the simple mass action value (section 4.1).

Next, we relaxed this constraint to allow for high enzyme saturation. Further optimization
led to a nearly perfect DoRA (d = 0.118). The optimal parameter values were: ki; =1, ko = 1, kgap
=4,k a5=0, Kk pp = 10°, kp = 1, Kepa = 10°, k.ga =0, and k.g; = 1. For the optimum parameters,
Kwm,ag = 25,000 and Ky, g, = 10”. This result shows that the forward arrow from A to B is in the
unsaturated limit and the negative feedback arrow from B to A is in the saturated limit. In
agreement with this, computations showed that the steady-state concentration of the Ab
complex was always essentially zero and the steady-state concentration of the AB complex was
always much greater than that of uncomplexed B. In more detail, if there was no input value,
then the system had all of node A in the ‘a’ form and all of node B in the ‘b’ form. At higher
input values, the input converted a to A; the resulting A then enzymatically converted b to B,
and then all of the A and B combined into AB complexes. At these intermediate input levels, the
a, b, and AB species were highly populated (present in high amounts), while the amounts of the
A, B, and Ab species were negligible. Finally, with saturating input, all molecules from both
nodes were bound together in AB complexes.

This result showed that essentially perfect DoRA can arise in a reaction network that has a
negative feedback loop in it when it is modeled using full Henri-Michaelis-Menten kinetics.
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Inspection showed that the negative feedback loop did not act as we had anticipated, by using
the signal from node B to decrease the activity of node A. Instead, it acted through tight binding
between A and B. This suppressed the formation of B when A values were low and promoted
the formation of B when A values were high, both of which promoted alignment of node B with
node A.

Another (and complementary) understanding of this network is that it produces DoRA
using negative feedback that included a comparator-adjustor mechanism. In this view, tight
binding between A and B creates a comparator between and A and B amounts. If there is more
A than B, then there is unbound A; those A molecules enzymatically convert b to B, thus
adjusting the amount of B upwards and reducing the difference between A and B. On the other
hand, if there is more B than A, then there is unbound B; those B molecules are not stabilized by
the AB complex, so they spontaneously deactivate back to b. This conversion of B to b adjusts
the amount of B downwards, again reducing the difference between A and B.

7.4 Full Michaelis-Menten, topology with push-pull

We performed a similar analysis with topology T8, which includes a push-pull mechanism,
to see how its steady-state dose-response behavior changes when investigated with full Henri-
Michaelis-Menten kinetics. As above in section 7.3, we treated the activation of node A using
simple mass action kinetics and treated both arrows between nodes A and B using explicit
ezyme-substrate complexes. The chemical reactions for this network are

[+a—=>31+A A—=>a
A+b="=Ab Ab—t A+ B B——b
a+B_g\+ aB aB—=>a+b

As before, the first row shows activation of A from | and inactivation of A, and the second row
shows activation of B from A and inactivation of B. Here, the third row shows the “pull”
reaction, in which ‘a’ acts as an enzyme that converts substrate B to product b. The Michaelis
parameters for the two Michaelis-Menten reactions are

k/,AE ' kf,ab
As the main text and section 4.1 describe, the push-pull topology can exhibit perfect DoRA
when modeled using simple mass action kinetics. Because full Henri-Michaelis-Menten kinetics
become identical to simple mass action kinetics in the limit of unsaturated reactions, we
anticipated that this network would also exhibit perfect DoRA when both K, values are large.
Indeed, the following rate constants led to essentially perfect DoRA (d = 10'3): kian=1,kq=1, kpasg
=1,k as=0, Kkcas = 10°, kiab =1, Krab = 0, ke gp = 10°; using these parameters, Ky as = Knpap = 10°.

We wondered whether the same network could also produce DoRA when not in this
unsaturated limit. To test this, we tried decreasing the k.45 and/or k.5 values in order to
increase saturation. Both led to worse fits. Changing the k¢ag, Kfqpb, kras, and k4 values also led
to worse fits. We also tried exploring points in parameter space that were quite distant from
this optimum to see if those parameter combinations could produce good DoRA, but again fits
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were invariably worse. Finally, we performed optimization from those distant points using the
greedy random walk method. We found that the parameters reverted towards the optimum
given above. From these results, we concluded that the push-pull mechanism only produces
perfect DoRA when all of its reactions are in the unsaturated limit.
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8. Negative feedback can produce linear input-output relationships
8.1 General theory

Figure 6A presents a general negative feedback system. This is a standard system that is
presented in many control theory textbooks (e.g. (Astrom and Murray, 2008; Franklin et al.,
1994)). An operational amplifier that is wired as a voltage follower is a particularly important,
and widely studied, instance of this general system (Horowitz and Hill, 1989). Here, we present
the mathematics that shows that the output can exactly track the input for this system and what
conditions produce this behavior. See control theory (Astrom and Murray, 2008; Franklin et al.,
1994) or electronics (Horowitz and Hill, 1989) textbooks for further details.

Define the input value as V;, and the output value as V,; (for the voltage follower, both
values are voltages). Assume that the comparator-adjuster simply computes the difference
between the input and output values, multiplies that difference by gain G, and outputs that
result. The production of said output may require more power than is available from the input
signal; assume that the amplifier has the capability to direct to the output as much power as
may be needed. With these assumptions, the output value is equal to the output from the
comparator-adjuster, which is
=G(v -v )

out in out

Solving for V,,; yields

in

V =
o G+1

This equation shows that V,,; = V;,, meaning that the output exactly tracks the input, in the limit
that the gain G approaches infinity, i.e. as the responsiveness of the comparator-adjuster to
input-output discrepancies becomes very large. Even with less gain, V,; is still directly
proportional to V;,, but has a lower value.

8.2 Conceptual two-node signaling system with negative feedback

Figure 6B shows a two-node signaling system designed to produce perfect DoRA using
feedback and a comparator-adjuster. This system is reasonably similar to the general negative
feedback system described above, but has some additional complexities due to the Hill function
dependencies of the two nodes.

The steady-state node A activity, assuming simple mass action kinetics and that there is no
uncatalyzed activation (see section 2), is

[a] __&01]

EIAULYS

This is a simple Hill function.

We compute the node B activity with two different sets of assumptions. First, to create a
system that is mathematically closer to the general negative feedback case, we assume that the
output of the comparator-adjuster can be negative as well as positive. This is mathematically
simple (but, if the output is molecular, does not make physical sense). With this assumption,
the steady-state node B activity follows the same form as the node A activity (and that
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presented in section 2, above) but with the forward reaction rate driven by the output of the
comparator-adjuster. Consider the comparator-adjuster output as G, the gain factor, times the
difference between the comparator-adjuster inputs. With this, the steady-state node B activity

" ([Hl[”]]

If the gain factor is increased towards infinity, then the k;, term in the denominator becomes
irrelevant and so can be dropped. In this limit, this equation simplifies and then factors to yield

o ) )
([Ei,].] ) [E?]X[Eh ]
This result shows that there are two solutions for the node B activity, which are

[A]
Bl )
[B]M_ - [ ]ml.

1

The former solution represents perfect DoRA. The second solution is an artifact of our
assumption that the comparator-adjuster output can be negative and that the gain is so large
that k, can be ignored. The important result is that this system can produce perfect DoRA with
the assumptions given, provided that the comparator-adjuster produces a highly amplified
output. Again, however, if we assume that the output of the comparator-adjuster is molecular,
the idea that it can be negative is physically unreasonable.

Due to the need to posit positive values for a molecular output, we visited this problem
again, but with a slightly different comparator-adjuster output. Suppose the output is a gain
factor times the difference between the inputs, if this value is positive, and is zero otherwise. In
this case, the rate of change of the node B activity is

R EEEORNC Ry
(o], “Tal, {[s]-[5]

0 else

d[B
t

—==G [A] [B].

This dynamical system will have a stable point at the DoRA condition,
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if d[B]/dt < 0 whenever [B]/[Bl:: > [Al/[Al::. and also d[B]/dt > 0 whenever [B]/[Bl:o: < [Al/[Alot..
Substituting these conditions into the above rate equation leads to the two following
requirements

G M ﬂ ([B] —[B])—kh[B]>0 whenever [B] < [A]

(Al [8], (8], [l

—k, [B] <0 whenever [B] [A]

>

(8], [l

The second condition implies that k, > 0, which is what we were assuming anyhow. The first
condition can only be satisfied for all [B] if G >> k,. With this condition, it is satisfied. The
system is physically reasonable because all chemical concentrations are positive. Nevertheless,
it is still schematic because we did not specify a biochemical mechanism for the comparator-
adjuster.

These results show that that DoRA can arise from a physically reasonable chemical
reaction system that uses negative feedback and includes a comparator-adjuster. We
intentionally designed this system to be similar to an operational amplifier that is wired as a
voltage follower, described above in section 8.1, to show that a similar mechanism could work in
biology. There are biological systems in prokaryotes, such as regulation of TetR and controlled
genes in transposon Tn10, that operate along these lines, and there is one eukaryotic system
that operates at a cellular level, built by human engineers in the past decade and described
below. In addition, in this work, we showed above in section 7.3 that topology T2, when
modeled with full Henri-Michaelis-Menten kinetics, can also exhibit DoRA using negative
feedback and a comparator-adjustor mechanism. It is possible that examination of evolved
cellular systems will reveal instances where such feedback control operates.

8.3 A human-built example of linear input-output using negative feedback

Nevozhay et al. (Nevozhay et al., 2009) and Figure 6C, main text, recently engineered a
biochemical system that aligns output with input. The system, which mimics the control logic in
the bacterial transposon Tn10, operates in yeast cells. It causes expression of the yEGFP
fluorophore to vary linearly with the extracellular concentration of anhydrotetracycline (ATc).
ATc diffuses into (and out of) yeast cells relatively slowly. ATc binds the tetracycline repressor,
TetR, tightly, and on binding inactivates it. This interaction effectively compares the
concentration of ATc and TetR. Consider a cell in which, due to an increase in extracellular
concentration, intracellular concentration of ATc rises, and becomes greater than that of TetR.
Under this condition, all TetR is bound and inactivated, while some ATc is free. Because all TetR
is inactivated, expression of yEGFP is not repressed, as it would normally by TetR binding to the
two TetR operators (TetOps) in the Tet-repressible promoter that drives yEGFP synthesis.
System output, measured by yEGFP signal, therefore increases. In this system, the cells contain
TetR because the cells contain a tetR gene placed under the control of a second instance of the
same Tet-repressible promoter that drives yEGFP. Transcription of tetR is now derepressed and
the total cellular concentration of TetR monomers increases in parallel with the increase in
YEGFP output. Once the total TetR concentration has increased above that of ATc, some TetR
monomers are not bound by aTC and are active. This free TetR represses yEGFP expression,
capping YEGFP expression (and the total number of active + inactive TetR monomers in the cell,
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at a new, higher level. Amplification arises from the fact that a small increase in the number of
free TetR monomers brings about a larger decrease in the number of total TetR monomers. A
guantitative analysis of this system, presented by the original authors (Nevozhay et al., 2009),
presents a description of how negative feedback explains the system's experimentally observed
linear input-output relationship.
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