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1.	Using	yeast	experimental	data	to	generate	target	dose-response	curves 
As	the	main	text	describes,	we	fit	our	signaling	system	models	to	produce	the	best	

possible	agreement	with	“target”	dose-response	curves.		In	some	cases,	we	used	idealized	data	
for	the	target	dose-response	curves.		In	others,	we	used	experimental	data	from	several	
measurement	points	of	the	yeast	pheromone	response	system.		This	section	describes	the	
experimental	data	that	we	used	to	create	this	second	set	of	target	dose-response	curves.	

	

1.1.	Ste2GPCR	activity	

Several	researchers	have	measured	the	dissociation	constant	between	Ste2GPCR	and	α-
factor.		(i)	Jenness,	Burkholder,	and	Hartwell	(Jenness	et	al.,	1986)	quantified	binding	between	
cell-surface	receptors	on	intact	cells	derived	from	strain	381G	(see	(Hartwell,	1980)	for	its	origin)	
and	3H-labeled	α-factor	by	measuring	radioactivity	uptake	from	the	extracellular	medium.		They	
found	an	equilibrium	dissociation	constant	of	about	6	nM.		Their	data	lay	along	a	reasonably	
straight	line	in	a	Scatchard	plot,	suggesting	non-cooperative	binding.		These	results	improved	
upon	prior	ones	from	the	same	group	(Jenness	et	al.,	1983)	that	were	based	upon	impure	α-
factor.		(ii)	Blumer,	Reneke,	and	Thorner	(Blumer	et	al.,	1988)	quantified	binding	between	
receptors	in	membrane	preparations	from	strain	RK-5116B	cells	and	35S-labeled	α-factor,	also	by	
measuring	radioactivity	uptake	from	the	solution.		They	found	a	dissociation	constant	of	2	nM	
and	that	the	data	again	lay	along	a	straight	line	in	a	Scatchard	plot.		(iii)	Yi,	Kitano,	and	Simon	(Yi	
et	al.,	2003)	quantified	binding	between	receptors	on	intact	cells	that	were	isogenic	derivatives	
of	strain	W303	and	35S-labeled	α-factor	in	a	similar	fashion.		They	found	a	dissociation	constant	
of	6±3	nM.		(iv)	Bajaj	and	co-workers	(Bajaj	et	al.,	2004)	investigated	binding	between	a	
fluorescent	α-factor	analogue	and	GPCR	proteins	from	strain	A232.		By	quantifying	cell	
fluorescence,	they	found	a	dissociation	constant	of	3.7±0.8	nM.		Finally,	experiments	by	one	of	
us	using	fluorescent	alpha	factor	(Bush	and	Colman-Lerner,	unpublished)	assign	a	KD	of	2-6	nM.	

From	these	results,	we	chose	for	this	work	5	nM	as	the	dissociation	constant	between	
Ste2GPCR	proteins	and	α-factor.		This	value	is	close	to	the	6	nM	value	found	by	Jenness	et	al.,	and	
is	within	the	6±3	nM	range	found	by	Yi	et	al.		It	is	somewhat	higher	than	the	2	nM	value	found	
by	Blumer	et	al.,	but	the	deviation	is	reasonable	because	these	measurements	were	from	
isolated	membranes	rather	than	intact	cells.		Similarly,	it	is	somewhat	larger	than	the	3.7±0.8	
value	found	by	Bajaj	et	al.,	but	again	the	deviation	seems	reasonable	because	these	researchers	
used	data	from	a	fluorescent	α-factor	analogue	rather	than	wild-type	α-factor,	which	may	bind	
differently.	

Based	on	the	linear	Scatchard	plots	of	the	Jenness	et	al.	and	Blumer	et	al.	results,	we	
assumed	that	binding	between	GPCRs	and	α-factor	obeys	simple	non-cooperative	kinetics.		This	
implies:	that	the	binding	dose-response	curve	is	a	Hill	function;	that	this	Hill	function’s	baseline,	
which	represents	the	fraction	of	receptors	bound	when	there	is	no	α-factor	at	all,	is	equal	to	
zero;	that	the	Hill	function’s	maximum	value,	which	represents	the	fraction	of	receptors	bound	
when	there	is	saturating	α-factor,	is	equal	to	1;	that	the	Hill	function	cooperativity	parameter	is	
equal	to	1,	implying	non-cooperative	behavior;	and	that	the	Hill	function	EC50,	which	is	the	α-
factor	dose	concentration	when	exactly	half	of	the	receptors	are	bound,	is	equal	to	the	binding	
dissociation	constant.	

	

1.2.	G-protein	activity	



Andrews,	Peria,	Yu,	Colman-Lerner,	and	Brent,	Cell	Systems,	2016	

 

4	

 

We	used	G-protein	activities	from	Figure	4	of	Yi,	Kitano,	and	Simon	(Yi	et	al.,	2003).		They	
quantified	G-protein	dissociation	by	measuring	Förster	Resonance	Energy	Tranfer	(FRET)	
between	CFP	that	is	tagged	to	Gα1	(Gpa1)	and	YFP	that	is	tagged	to	Gγ	(Ste18)	using	a	bulk	
sample	(i.e.	not	single	cells).		These	data	were	from	strain	RJD-415,	a	bar–	derivative	of	a	W303	
reference	strain.		The	authors	presented	their	dose-response	data	with	the	responses	scaled	to	
range	from	0	to	1.		For	our	work,	we	needed	to	rescale	these	data	so	that	they	would	represent	
the	absolute	fraction	of	G-proteins	that	are	active	as	a	function	of	pheromone	dose.		To	do	so,	
we	needed	to	estimate	the	G-protein	activity	levels	with	no	pheromone	stimulation	and	with	
saturating	pheromone	stimulation.		For	the	former	value,	we	used	the	finding	that	transcription	
from	the	PRM1	promoter	proceeds	at	4.7%	of	its	maximum	value	when	there	is	no	α-factor	(see	
section	1.4)	and	presumed	that	this	arose	from	the	basal	concentration	of	dissociated	G-
proteins.		From	this,	we	set	the	G-protein	activity	baseline	to	0.047.		To	estimate	the	G-protein	
activity	with	saturating	pheromone,	we	first	noted	that	there	are	3	times	more	GPCRs	than	G-
proteins	(Thomson	et	al.,	2011)	and	they	have	similar	EC50s,	so	saturating	α-factor	would	likely	
activate	most	G-proteins.		Additionally,	recent	work	by	Bush	et	al.	(Bush	et	al.,	2015)	shows	that	
G-protein	association	is	catalyzed	by	GPCR	proteins	that	are	not	ligand-bound.		With	saturating	
α-factor,	essentially	all	of	the	GPCRs	would	be	ligand-bound,	which	suggests	that	G-protein	
association	would	be	infrequent,	leading	to	a	very	low	population	of	inactive	G-proteins.		Based	
on	these	results,	we	estimated	that	all	G-proteins	would	be	active	with	saturating	pheromone.	

The	following	table	shows	Yi	et	al.’s	published	G-protein	activity	results	in	the	“original	
response”	column,	which	we	measured	from	their	figure.		It	also	shows	our	rescaled	values,	
using	the	above	baseline	and	maximum	response	values	in	the	“rescaled	response”	column.		
Next,	we	found	the	“Best	fit	Hill	parameters”	shown	below	by	fitting	the	scaled	response	values	
with	a	Hill	function,	as	described	in	section	1.5. 

 
 [α] (nM) original response re-scaled response Best fit Hill parameters 
 0.096 0.0256 0.071 
 0.988 0.151 0.191 original rescaled 
 1.94 0.267 0.301 B = 0.04 B = 0.047 
 4.93 0.497 0.521 A = 1.00 A = 0.953 
 9.92 0.756 0.768 E = 4.95 E = 4.95 
 19.1 0.997 0.998 N = 1.50 N = 1.50 
 49.5 1.02 1.015 
 99.6 1.03 1.024 
954 0.995 0.995 

 
1.3	Fus3MAPK	activity		

					To	generate	the	Fus3MAPK	dose-response	curve,	we	used	data	from	the	black	circles	plotted	in	
Figure	S14	of	Yu	et	al.	(Yu	et	al.,	2008).		These	data	show	the	amount	of	phosphorylated	Fus3	as	
a	function	of	the	applied	pheromone	dose.		They	are	scaled	so	that	100%	represents	the	
maximum	amount	of	phosphorylation	of	the	same	allelic	form	of	the	Fus3MAPK	(Fus3-as2)	that	
was	observed	in	a	comparable	experiment,	in	the	presence	of	a	chemical	inhibitor,	10	mM	4-
amino-1-(tert-butyl)-3-(19-naphthylmethyl)-pyrazolo[3,4-d]pyrimidine	(1-NM-PP1),	which	
inhibits	the	Fus3MAPK	kinase	activity,	and	with	the	pheromone	dose	at	a	saturating	level.		By	
implication,	we	are	assuming,	under	these	conditions,	essentially	every	Fus3MAPK		monomer	in	
the	cell	(Thomson	et	al.,	2011)	is	phosphorylated. 
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We	also	rescaled	and	plotted	Fus3MAPK	data	plotted	in	Figure	5	of	Yu	et	al.	(Yu	et	al.,	2008).		
We	obtained	the	data	by	quantifying	phosphorylated	and	total	protein	in	well-calibrated	
Western	gel	experiments	(Thomson	et	al.,	2011)	using	strain	ACL-379	(Colman-Lerner	et	al.,	
2005),	a	bar1–	derivative	of	a	W303	reference	strain.		The	following	table	shows	these	data	and	
the	best	Hill	function	parameters	to	them.		Section	1.5	describes	the	fitting	method. 

 
[α] (nM) response  Best fit Hill parameters 
 0 0.0848 
 0.001 0.140 
 0.01 0.158 B = 0.12 
 0.03 0.177 A = 0.39 
 0.1 0.160 E = 0.62 
 0.3 0.265 N = 0.76 
 1.0 0.373 
 3.3 0.403 
 10 0.477 
 33 0.483 
 100 0.500 
1000 0.512 

 
1.4.	YFP	expression	from	PRM1	promoter	

We	used	data	for	YFP	expression	from	the	PRM1	promoter	from	the	original	data	for	the	
black	triangles	that	are	plotted	in	Figure	2a	of	Yu	et	al.	(Yu	et	al.,	2008).		These	data	were	
quantified	from	strain	ACL-379	(Colman-Lerner	et	al.,	2005).		These	data	show	a	low	basal	
expression	rate,	implying	that	that	there	is	some	expression	from	the	PRM1	promoter	even	in	
the	absence	of	α-factor.		To	account	for	this,	we	used	the	response	that	arose	with	no	added	α-
factor,	which	was	4.7%	of	the	maximal	response,	as	the	baseline	for	our	Hill	function	fit	to	the	
data.		On	the	other	hand,	there	is	no	good	way	to	define	the	maximally	active	value	for	the	gene	
expression	rate	so	we	decided	to	set	it	to	100%.		The	assumption	that	the	total	amount	of	a	
reporter	gene	product	in	a	time	slice	reflects	equilibrium	occupancy	of	DNA	regulatory	elements	
that	exist	in	bound	and	unbound	states	was	key	to	quantification	of	DNA	binding	in	vivo	by	LexA	
and	LexA	fusion	proteins	in	“repression	assays”	(Brent	and	Ptashne,	1984;	Golemis	and	Brent,	
1992).	

In	the	following	table,	the	column	labeled	“<y>/<r>”	represents	the	raw	data	for	the	
average	yellow	fluorescence,	from	pheromone-induced	YFP	expression,	divided	by	the	red	
fluorescence,	from	constitutive	RFP	expression.		The	next	column,	labeled	“response,”	shows	
our	re-scaled	version	of	the	raw	data,	adjusted	to	make	the	Hill	function	maximum	equal	to	1. 

 
 [α] (nM) <y>/<r> response [α] (nM) <y>/<r> response Best fit Hill parameters 
 0 0.466 0.0470 0.00141 0.563 0.0571 
 1E-10 0.467 0.0471 0.00260 0.582 0.0590 
 1.84E-10 0.468 0.0472 0.00478 0.617 0.0627 B = 0.047 
 3.39E-10 0.480 0.0485 0.00880 0.647 0.0658 A = 0.953 
 6.23E-10 0.470 0.0475 0.0162 0.704 0.0716 E = 2.67 
 1.15E-09 0.468 0.0473 0.0298 0.753 0.0767 N = 1.24 
 2.11E-09 0.404 0.0406 0.0333 0.715 0.0728 
 3.88E-09 0.438 0.0441 0.0467 0.758 0.0772 
 7.14E-09 0.455 0.0459 0.0653 0.820 0.0837 
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 1.31E-08 0.448 0.0452 0.0915 0.873 0.0891 
 2.42E-08 0.466 0.0470 0.128 0.995 0.102 
 4.45E-08 0.462 0.0466 0.179 1.10 0.113 
 8.18E-08 0.748 0.0762 0.251 1.26 0.130 
 1.51E-07 0.664 0.0675 0.351 1.44 0.147 
 2.77E-07 0.476 0.0481 0.492 1.68 0.173 
 5.10E-07 0.475 0.0480 0.689 1.86 0.191 
 9.38E-07 0.478 0.0483 0.964 2.38 0.245 
 1.73E-06 0.478 0.0483 1.35 3.23 0.333 
 3.18E-06 0.471 0.0475 1.89 3.87 0.399 
 5.84E-06 0.475 0.0479 2.65 5.15 0.532 
 1.08E-05 0.471 0.0476 3.70 6.17 0.637 
 1.98E-05 0.471 0.0475 5.19 7.15 0.739 
 3.64E-05 0.479 0.0484 7.26 7.59 0.784 
 6.70E-05 0.480 0.0485 10.2 8.58 0.886 
 1.23E-04 0.474 0.0478 20.3 8.95 0.925 
 2.27E-04 0.488 0.0493 40.7 9.43 0.975 
 4.17E-04 0.510 0.0516 81.3 9.57 0.990 
 7.68E-04 0.529 0.0536    

 
1.5.	Hill	function	fitting	method	

We	fit	Hill	functions	to	the	experimental	yeast	dose-response	data	that	are	described	
above	in	sections	1.2,	1.3,	and	1.4	by	manual	optimization	using	Excel.		We	fit	an	initial	Hill	
function	to	each	data	set	by	eye,	choosing	the	parameters	that	made	a	graph	of	the	Hill	function	
agree	reasonably	well	with	a	scatter	plot	of	the	experimental	data.		We	computed	the	fit	error	
by	summing	the	squared	differences	between	the	computed	Hill	function	and	the	experimental	
data.		We	then	adjusted	the	Hill	function	parameters	until	the	fit	error	was	minimized.		Results	
shown	above	are	the	best	possible	fits,	up	to	two	decimal	places	of	accuracy	for	each	
parameter.	

	

1.6	Summary	of	Hill	function	fits	to	experimental	data	

The	following	table	summarizes	the	Hill	function	fits	to	the	experimental	data	that	are	
presented	above.		See	the	above	sections	for	details. 
 

node baseline (B) amplitude (A) EC50 (E) Hill coop. (N) 

GPCR 0 1 5 1 

G-protein 0.047 0.953 4.95 1.5 

Fus3 0.12 0.39 0.62 0.76 

PRM1 0.047 0.953 2.67 1.24 
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2.	Modeling	scheme	

2.1.	Steady-state	node	activities	as	functions	of	their	inputs	

This	section	describes	the	mathematics	that	we	used	to	compute	steady-state	node	
activities	for	cases	where	arrows	affected	the	activity	levels	of	nodes.		The	following	section	
addresses	arrows	that	affect	other	arrows.		We	present	these	mathematics	in	a	general	fashion	
in	part	because	this	enables	its	application	to	all	of	the	network	topologies	that	we	explored,	but	
also	because	a	general	approach	is	better	for	revealing	the	structure	of	the	equations.	

Consider	a	node,	X,	which	can	represent	any	node	in	our	model	scheme.		Its	uncatalyzed	
activation	and	deactivation	reaction	rate	constants	are	kX	and	kx,	respectively.		Suppose	this	
node	is	also	enzymatically	activated	by	zero	or	more	arrows	that	originate	from	nodes	A1,	A2,	…,	
and	it	is	enzymatically	deactivated	by	zero	or	more	arrows	that	originate	from	nodes	D1,	D2,	….		
Whether	these	arrows	arise	from	the	active	or	inactive	states	of	the	source	nodes	does	not	
affect	this	analysis.		The	topology	and	detailed	diagrams	for	this	node	are	

	

 

X 

A1 A2 … 

D1 D2 … 
	

 

x             X 

A1 A2 … 

D1 D2 … 

kX 

kx 

kA1X, 
nA1X 

kA2X, 
nA2X 

kD1x, 
nD1x 

kD2x, 
nD2x 

	
Using	simple	mass	action	kinetics,	as	described	in	the	main	text,	the	dynamics	of	node	X	are	
given	by	the	differential	equation	

	

 

d X[ ]
dt

= x[ ] kX + kA1X A1[ ]nA 1 X + kA2 X A2[ ]nA 2 X +!( )
− X[ ] kx + kD1x D1[ ]nD 1 x + kD 2 x D2[ ]nD 2 x +!( )

	

We	assume	that	the	total	amount	of	node	X	is	constant	and	set	to	1,	leading	to	the	conservation	
equation	

	 x[ ] + X[ ] = 1 	
At	steady	state	(denoted	with	subscript	s.s.),	the	above	differential	equation	equals	zero.		
Setting	it	to	zero	and	rearranging	yields	the	equilibrium	constant	for	node	X,	

	
 
KX =

X[ ]s .s .
x[ ]s .s .

=
kX + kA1X A1[ ]nA 1 X + kA2 X A2[ ]nA 2 X +!
kx + kD1x D1[ ]nD 1 x + kD 2 x D2[ ]nD 2 x +!

	

Combining	this	with	the	constraint	that	the	total	amount	of	node	X	equals	one	yields	the	
“steady	state	equation,”	for	the	steady-state	activity	of	node	X,	
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X[ ]s .s . =
KX

KX + 1

=
kX + kA1X A1[ ]nA 1 X + kA2 X A2[ ]nA 2 X +!( )

kX + kA1X A1[ ]nA 1 X + kA2 X A2[ ]nA 2 X +!( ) + kx + kD1x D1[ ]nD 1 x + kD 2 x D2[ ]nD 2 x +!( )
	

This	steady	state	equation	applies	to	all	nodes	in	our	model	scheme	for	cases	where	arrows	
affect	nodes.	

In	the	steady	state	equation,	note	that	dividing	each	term	in	both	the	numerator	and	
denominator	by	kx	does	not	affect	the	value	of	the	ratio,	but	simply	rescales	all	of	the	rate	
constants	by	1/kx.		It	also	causes	the	kx	term	to	drop	out	of	the	equation.		For	this	reason,	we	
typically	fixed	kx	to	1	and	optimized	all	other	rate	constants,	now	with	the	understanding	that	
these	rate	constants	were	measured	relative	to	the	uncatalyzed	deactivation	rate.	

Although	not	essential	to	the	computation	of	node	steady-state	activities,	it	is	helpful	to	
continue	this	analysis	to	investigate	the	functional	form	of	the	node	activities	as	functions	of	
their	inputs.		In	fact,	we	show	here	that	the	steady	state	activity	of	node	X	is	a	Hill	function	of	
any	individual	input.		This	is	unwieldy	when	starting	with	the	steady	state	equation,	so	we	
instead	start	with	the	Hill	function	equation	and	rearrange	it	into	the	form	of	the	steady	state	
equation.		From	the	main	text,	the	Hill	function	is	

	 H x( ) = B + A
xN

xN + EN
	

This	can	be	rearranged	to	the	following	forms:	

	 H x( ) = BEN + A + B( ) xN

EN + xN
	 H x( ) = B + A −

AEN

xN + EN
	

Returning	to	the	steady	state	equation,	suppose	that	the	activity	of	input	A1,	given	as	[A1],	is	
the	independent	variable.		In	that	case,	the	steady	state	equation	can	be	seen	to	be	identical	to	
the	former	rearrangement	of	the	Hill	function	with	the	following	substitutions	(note	the	
notational	convention	that	model	parameters	are	all	lower	case,	with	the	subscripts	giving	the	
arrow	source	and	destination	nodes,	while	the	Hill	function	parameters	are	all	upper	case,	with	
the	subscripts	giving	the	input	and	output	nodes):	

	 x = A1[ ] 		

	
 
BA1X =

kX + kA2 X A2[ ]nA 2 X +!
kX + kA2 X A2[ ]nA 2 X +!+ kx + kD1x D1[ ]nD 1 x + kD 2 x D2[ ]nD 2 x +!

	

	 AA1X = 1− BA1X 	

	 NA1X = nA1X 	

	
 
E

A 1 X

N
A 1 X =

kX + kA2 X A2[ ]nA 2 X +!+ kx + kD1x D1[ ]nD 1 x + kD 2 x D2[ ]nD 2 x +!
kA1X

	

In	words,	the	steady	state	equation	is	a	Hill	function	of	[A1]	and	these	are	the	parameters	for	
this	Hill	function.		This	is	true	for	all	values	of	the	other	inputs.		Analogous	results	apply	to	all	
other	activating	inputs,	such	as	A2.		Next,	suppose	that	the	activity	of	D1,	given	as	[D1],	is	the	
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independent	variable.		In	that	case,	the	steady	state	equation	can	be	seen	to	be	identical	to	the	
latter	rearrangement	of	the	Hill	function	with	the	following	substitutions:	

	 x = D1[ ] 		

	
 
BD1X =

kX + kA1X A1[ ]nA 1 X + kA2 X A2[ ]nA 2 X +!
kX + kA1X A1[ ]nA 1 X + kA2 X A2[ ]nA 2 X +!+ kx + kD 2 x D2[ ]nD 2 x +!

	

	 AD1X = −BD1X 	

	 ND1X = nD1x 	

	
 
E

D 1 X

N
D 1 X =

kX + kA1X A1[ ]nA 1 X + kA2 X A2[ ]nA 2 X +!+ kx + kD 2 x D2[ ]nD 2 x +!
kD1x

	

Analogous	results	apply	to	all	other	de-activating	inputs,	such	as	D2.	

There	is	one	exception	to	this	finding	that	the	steady	state	activity	of	any	node	is	a	Hill	
function	of	each	individual	input.		It	arises	if	there	are	two	or	more	arrows	from	a	single	source	
to	the	same	node,	and	those	arrows	have	different	reaction	orders.		If	this	happens,	then	the	
same	types	of	simplifications	performed	here	show	the	node	activity	is	not	a	Hill	function	of	that	
input.	

The	fact	that	node	activities	are	nearly	always	Hill	functions	of	their	inputs	raises	the	
question	of	which	Hill	functions	can	arise	through	parameter	variation	and	which	cannot.		As	an	
alternate	view	of	the	same	question,	our	modeling	scheme	creates	a	mapping	between	the	
space	of	model	parameters	and	the	space	of	Hill	functions,	and	it	is	interesting	to	ask	what	the	
coverage	is	of	Hill	function	space.		This	coverage	represents	the	set	of	dose-response	behaviors	
that	can	arise	from	any	single	node	in	our	modeling	scheme.	

For	the	activating	input	A1,	the	equations	above	show	that	A1X	+	B1X	=	1.		This	means	that	
node	X	is	always	driven	to	its	fully	active	state	as	the	concentration	of	an	activating	input	tends	
towards	infinity.		The	deactivating	inputs	are	similar.		For	them,	the	subsequent	set	of	equations	
above	show	that	A1X	+	B1X	=	0.		This	means	that	node	X	is	always	driven	to	its	fully	inactive	state	
as	the	concentration	of	a	deactivating	input	tends	towards	infinity.		These	results	constrain	the	
node	activity	dose-response	curves.		Rather	than	having	four	parameters	(A,	B,	E,	and	N)	that	
can	be	varied	through	modification	of	the	model	parameters,	the	A	and	B	Hill	function	
parameters	are	constrained	to	always	add	to	1	for	activating	inputs	and	to	0	for	deactivating	
inputs.	

Next,	it	is	worth	noting	that	the	Hill	function	baseline,	amplitude,	and	EC50	value	for	each	
input	to	node	X	depend	upon	the	concentrations	of	the	other	inputs.		For	this	reason,	it	can	be	
helpful	to	consider	the	Hill	function	parameters	that	result	when	only	the	input	of	interest	(here,	
A1	or	D1)	has	non-zero	concentration.		For	activating	inputs,	the	parameters	for	these	“single-
input”	Hill	functions	are:	

	 BA1X =
kX

kX + kx
	 AA1X = 1− BA1X 	 NA1X = nA1X 	 E

A 1 X

N
A 1 X =

kX + kx
kA1X

	

For	the	deactivating	inputs,	they	are:	
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	 BD1X =
kX

kX + kx
	 AD1X = −BD1X 	 ND1X = nD1x 	 E

D 1 X

N
D 1 X =

kX + kx
kD1x

	

The	baseline	values	are	the	same	for	both	the	activating	and	deactivating	inputs	that	are	shown	
here,	and	in	fact	are	the	same	for	all	of	the	inputs	to	node	X.		This	value	is	simply	the	node	X	
activity	level	when	all	inputs	have	zero	concentration.		It	can	be	set	to	any	value	between	0	and	
1,	which	is	the	entire	range	over	which	it	is	sensible,	by	modifying	the	kX	and/or	kx	model	
parameters	(we	typically	fixed	kx	to	1	and	varied	kX).		As	mentioned	above,	the	amplitude	value	
is	fully	constrained	by	the	baseline	value.		The	Hill	coefficient	value	can	also	be	set	to	any	value	
in	its	sensible	range,	which	is	0	to	infinity,	by	modifying	the	reaction	order.		Finally,	the	EC50	
value	can	be	set	to	any	value	in	its	sensible	range,	which	is	again	0	to	infinity,	by	modifying	kA1X	
or	kD1x	as	appropriate.	

These	results	show	the	set	of	dose-response	curves	that	a	particular	node	can	produce	
upon	variation	of	its	model	parameters,	where	the	dose	represents	the	concentration(s)	of	one	
or	more	node	inputs	and	the	response	is	the	node	activity	level.		This	is	a	multidimensional	
dose-response	curve	with	one	independent	axis	for	each	input	concentration.		It	has	the	
following	characteristics:	(i)	from	above,	the	curve	is	always	a	Hill	function	of	each	input	(for	
inputs	that	do	not	impinge	upon	the	same	node	multiple	times	and	with	different	reaction	
orders),	(ii)	the	baseline	value,	representing	the	condition	where	all	inputs	have	zero	
concentration,	can	be	made	to	adopt	any	value	within	its	sensible	range,	which	is	from	0	to	1,	by	
varying	kX,	(iii)	the	amplitude	for	each	input	is	constrained	by	the	baseline	value	and	by	whether	
the	input	activates	or	deactivates,	(iv)	the	Hill	coefficient	for	each	input	can	be	made	to	adopt	
any	value	within	its	sensible	range,	which	is	0	to	infinity,	and	(v)	the	EC50	value	for	each	input,	
provided	the	other	inputs	have	zero	concentration,	can	be	made	to	adopt	any	value	within	its	
sensible	range,	which	is	0	to	infinity.	

For	example,	suppose	node	X	has	only	one	input,	A1.		In	this	case,	the	possible	dose-
response	curves	are	the	set	of	all	possible	Hill	functions	that	have	a	baseline	between	0	and	1	
and	a	maximum	response	of	1.	

As	another	example,	suppose	node	X	has	two	inputs,	A1	and	A2.		In	this	case,	the	response	
curve	will	be	a	function	of	two	variables,	such	as	that	shown	in	the	following	figure.	

	 	 	
This	figure	shows	the	baseline	value	as	the	closest	point	of	the	3D	surface,	that	the	saturation	
value	tends	to	1	as	either	input	is	made	large,	and	that	the	response	is	a	Hill	function	along	(or	
parallel	to)	any	of	the	gridlines	shown	in	the	figure.		In	particular,	the	response	is	a	Hill	function	
on	the	two	close	faces	of	this	3D	figure;	these	single-input	Hill	functions	represent	the	response	
where	one	input	is	varied	and	the	other	is	fixed	at	essentially	0	concentration.		In	this	2-input	

log [A1] log [A2] 

[X] 
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case,	the	model	parameters	can	be	adjusted	to	give	any	baseline	value,	any	EC50	for	either	of	the	
single-input	Hill	functions,	and	any	Hill	coefficient	for	either	input.	

	

2.2.	Two-input	control	reactions	(two-input	arrows)	

Some	topologies,	including	T14	to	T19,	included	arrows	that	acted	on	other	arrows.		We	
called	these	“secondary”	arrows,	which	acted	on	“primary”	arrows.		In	our	typical	procedure	for	
computing	their	influence,	we	first	replaced	secondary	arrows	that	had	negative	influences	(i.e.	
end	with	T-bar	arrowhead)	with	ones	that	arose	from	the	opposite	state	of	the	origin	node	and	
had	positive	influences.		For	example,	the	lower	diagram	for	topology	T15	in	Figure	3	shows	a	
negative	feedback;	we	replaced	it	with	a	low-true	positive	feedback,	as	shown	in	the	upper	
diagram.		Next,	we	computed	the	influence	of	the	two	positive	arrows	by	multiplying	the	activity	
values	at	their	origins.		In	topology	T15,	this	implies	that	the	differential	equation	for	node	B	is 

 
  

d B[ ]
dt

= k
B
+ k

AB
A[ ]n

AB + k
AbB

A[ ]n
AbB 1 b[ ]n

AbB 2( ) b[ ]− k
b

B[ ]   
Within	the	parentheses,	the	first	term	represents	the	uncatalyzed	activation	rate,	the	second	
term	represents	the	simple	arrow	from	node	A	to	node	B,	and	the	third	term	represents	the	
second	arrow	from	node	A	to	node	B,	which	is	influenced	by	a	low-true	positive	feedback	from	
node	B.		This	method	expands	trivially	to	3-input	and	higher	multi-input	arrows.		To	return	to	
the	negative	feedback	interpretation	of	this	topology,	we	used	the	conservation	equation	for	
node	B	to	rewrite	this	equation	as	

 
  

d B[ ]
dt

= k
B
+ k

AB
A[ ]n

AB + k
AbB

A[ ]n
AbB 1 1− B[ ]( )n

AbB 2( ) b[ ]− k
b

B[ ]   
Focusing	on	the	third	term	within	parentheses,	this	represents	linear	inhibition,	in	which	node	B	
inhibits	its	own	activation	in	direct	proportion	to	its	own	activity.		The	other	topologies	in	which	
arrows	acted	on	other	arrows	were	analogous.	

For	topology	T15,	we	also	investigated	hyperbolic	inhibition,	defining	the	node	B	kinetic	
equation	as	(we	only	investigated	the	case	of	first	order	reaction	rates), 

 
  

d B[ ]
dt

= k
B
+ k

AB
A[ ] + k

AbB1
A[ ]

1+ k
AbB 2

B[ ]
⎛
⎝⎜

⎞
⎠⎟

b[ ]− k
b

B[ ]   

Here,	node	B	inhibits	its	own	activation	according	to	Michaelis-Menten	kinetics,	which	are	likely	
to	be	more	biochemically	reasonable	than	linear	inhibition.		However,	neither	negative	feedback	
mechanism	enabled	better	DoRA	than	the	simple	linear	topology.		The	reason	was	that	the	
negative	feedbacks	decreased	node	B	responses	at	high	input	values,	which	were	precisely	the	
values	where	node	B	needed	greater	activity	to	fit	the	target	dose-response	curves.		We	did	not	
investigate	the	other	topologies	using	this	hyperbolic	inhibition	approach.	

	

2.3.	Justification	for	our	modeling	scheme	

The	biological	relevance	of	our	results	relies	on	the	biological	validity	of	our	modeling	
scheme.		Mechanistic	models	(e.g.	(Kofahl	and	Klipp,	2004))	have	a	direct	correspondence	
between	model	and	biological	details,	providing	a	means	to	assess	one	aspect	of	whether	their	
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conclusions	are		likely	to	reflect	biological	reality	or	not.		Our	modeling	scheme,	by	contrast,	is	
abstract.		In	particular,	the	biochemical	reactions	within	our	nodes	often	do	not	correspond	
directly	to	those	of	specific	individual	reactions	and	single	steps	within	our	models	may	
represent	multiple	biochemical	events.		Two	arguments	support	our	development	and	use	of	
this	scheme.	

First,	any	model	that	is	expressed	in	our	modeling	scheme	can	be	constructed	using	real	
biochemical	reactions,	at	least	in	principle.		As	explained	in	the	discussion	of	Michaelis-Menten	
reactions	in	the	main	text,	one	would	build	such	a	reaction	network	using	enzymatic	reactions	in	
which	each	enzyme	operates	in	the	limit	of	low	saturation.		Because	of	this,	all	of	our	results	in	
which	we	say	that	a	model	topology	can	do	something	(e.g.	a	push-pull	mechanism	can	produce	
DoRA)	are	strong.		In	other	words,	results	from	models	using	our	scheme	show	that	a	
biochemical	reaction	network	could	be	engineered	that	corresponded	closely	to	those	specific	
models,	and	would	produce	the	same	behavior(s).	

However,	our	modeling	scheme	cannot	represent	all	types	of	biochemical	reactions.		As	
just	one	example,	our	scheme	assumes	that	the	total	concentration	of	each	species	remains	
constant	but	that	these	species	simply	interconvert	between	inactive	and	active	states.		This	two	
state	model	is	clearly	a	substantial	simplification	for	many	real	biochemical	systems.		For	this	
reason,	all	of	our	results	in	which	we	say	that	no	model	built	in	our	scheme	can	produce	some	
behavior	(e.g.	there	is	no	model	in	our	scheme	in	which	negative	feedback	can	produce	DoRA)	
are	weak.		In	other	words,	there	may	be	biochemical	mechanisms	that	can	produce	the	stated	
behavior	but	that	cannot	be	represented	in	our	modeling	scheme.	

For	these	negative	results,	we	turn	to	the	second	justification.		It	is	that	each	node’s	
steady-state	activity	level	in	our	modeling	scheme,	regardless	of	the	model	topology,	is	a	Hill	
function	of	each	of	its	inputs	(section	2.1)	and	the	dose-response	behaviors	observed	in	many	
biological	systems	are	also	described	well	by	Hill	functions.		For	example,	Hill	functions	can	be	
used	to	represent	receptor-ligand	binding	(Clark,	1926,	1933),	enzymatic	catalysis	(Goldbeter	
and	Koshland,	1981),	enzymatic	catalysis	over	sequential	steps	(Black	and	Leff,	1983),	and	
enzymatic	catalysis	over	sequential	steps	with	multisite	phosphorylation	(Huang	and	Ferrell,	
1996).		They	are	also	observed	in	experimental	dose-response	curves,	including	in	oxygen-
hemoglobin	binding	(Hill,	1910),	drug	interactions	on	muscles	(Clark,	1933)	and	receptors	
(Goutelle	et	al.,	2008),	and	in	the	yeast	data	that	we	investigated	in	this	work	(section	1).		That	
is,	the	functional	dependencies	in	our	modeling	scheme	generally	agree	well	with	those	in	
biological	systems.		Furthermore,	by	modifying	arrow	rate	constants	and	other	model	
parameters,	one	can	arrange	that	the	node	steady-state	activity	levels	can	be	essentially	any	
physiologically	sensible	Hill	function	of	the	input	node	(section	2.1).		Thus,	the	functional	
dependencies	in	our	modeling	scheme	have	the	same	quantitative	range	as	those	in	biological	
systems.		As	a	result,	if	a	biological	system	exhibits	some	specific	dose-response	relationship,	
that	relationship	can	probably	be	described	by	Hill	functions,	and,	if	so,	it	can	be	modeled	using	
our	scheme.		Or,	turning	this	around,	if	models	built	in	our	scheme	cannot	exhibit	some	
behavior,	then	biological	systems	with	similar	network	topologies	probably	cannot	either.		This	
is	a	less	strong	statement	than	our	first	justification	enabled,	and	it	makes	our	negative	results	
suggestive	but	not	conclusive.		For	example,	our	result	that	systems	with	linear	topologies	
cannot	produce	DoRA	is	true	for	biological	systems	that	have	Hill	function	dose-response	
relationships,	but	does	not	necessarily	hold	for	those	that	don’t.	

These	ideas	can	also	be	understood	by	considering	spaces	of	dose-response	behaviors.		
Our	modeling	scheme	(nearly	always)	produces	dose-response	behaviors	that	are	Hill	functions	
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and	that	obey	the	constraints	listed	above	in	section	2.1.		This	is	the	dose-response	space	of	our	
modeling	scheme.		Biological	systems	can,	at	least	in	principle,	produce	all	of	the	same	dose-
response	behaviors	and	many	more	as	well.		This	means	that	our	model	dose-response	space	
lies	strictly	within	subset	of	biological	dose-response	space.	
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3.	Model	optimization	and	analysis	

3.1.	The	SWRMS	fit	distance	metric	

To	optimize	the	parameter	values	of	a	given	model,	we	needed	a	metric	with	which	we	
could	quantify	the	difference	between	model	and	target	dose-response	curves.		Most	
importantly,	this	metric	needed	to	accurately	reflect	the	qualitative	concept	of	dose-response	
alignment.		This	led	to	our	identification	of	the	four	following	criteria	that	we	decided	that	a	our	
metric	needed	to	exhibit.		(i)	The	metric	should	return	a	value	of	0	when	the	curves	are	identical	
and	larger	values	for	increasing	differences	between	curves.		(ii)	The	metric	should	be	sensitive	
to	differences	in	curve	EC50	values,	steepnesses	(Hill	coefficients),	baselines,	and	amplitudes.		
The	EC50	and	steepness	values	are	clearly	important	because	they	determine	the	curve	shape.		
We	also	decided	to	include	baselines	and	amplitudes	because	these	are	typically	well-defined	
physical	properties	and	models	that	can	fit	all	physical	properties	are	generally	better	
representations	of	reality	than	those	that	can	fit	only	a	few	of	them.		Also,	as	the	main	text	
describes,	ignoring	the	baseline	and	amplitude	parameters	enables	some	models	to	nominally	
exhibit	DoRA	but	have	zero	amplitude,	making	them	biologically	unrealistic.		(iii)	The	metric	
should	return	finite	values	even	when	the	curves	have	different	baselines	or	amplitudes.		This	
criterion	is	important	because	it	enables	the	metric	to	be	sensitive	to	all	curve	differences	
simultaneously.		Standard	unweighted	least	squares	approaches	do	not	obey	this	criterion.		(iv)	
The	metric	should	be	invariant	to	input	value	units	and	to	whether	input	values	are	plotted	on	
linear	or	logarithmic	scales.		This	criterion	is	important	because	the	concept	of	dose-response	
alignment	is	not	tied	to	a	specific	way	of	graphing	dose-response	curves.		Standard	unweighted	
least	squares	approaches	do	not	obey	this	criterion	either.	

Based	on	these	criteria,	we	developed	the	Slope-Weighted	Root	Mean	Square	(SWRMS)	
distance.		From	the	main	text,	we	defined	it	the	SWRMS	fit	distance	between	model	and	target	
dose-response	curves,	ym(I)	and	yt(I)	respectively,	with	the	equation 
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m
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The	initial	factor	of	100	expresses	the	total	fit	distance,	d,	as	the	percentage	of	the	worst	
possible	fit.		Perfect	agreement	between	two	dose-response	curves	results	in	a	distance	of	0,	
whereas	complete	disagreement	(e.g.	in	the	limit	of	ym	→	0	and	yt	→	1,	for	all	I)	results	in	a	
distance	of	100.		The	ct	and	cm	parameters	equalize	the	weighting	on	the	two	dose-response	
curves	using	their	ranges.	

In	essence,	this	metric	is	a	simple	weighted	sum	of	squared	errors,	very	much	like	the	
standard	χ2	and	“residual	sum	of	squares”	statistics	(Larsen	and	Marx,	2012;	Press	et	al.,	1988).		
For	reference,	χ2	is	conventionally	defined	as	

	 χ 2 =
mi − xi
σ i

⎛
⎝⎜

⎞
⎠⎟
2

i=1

n

∑ 		
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where	xi	values	are	a	set	of	experimental	observations,	mi	values	are	model	values,	σi	values	are	
experiment	standard	deviations,	and	there	are	n	total	observations.		When	used	as	a	goodness-
of-fit	metric,	the	model	is	typical	varied	so	as	to	minimize	the	differences	between	mi	and	xi,	
weighted	by	σi.		(The	residual	sum	of	squares	is	identical,	but	without	the	σi	weighting	factors.)		
The	central	portion	of	the	SWRMS	metric	is	the	same	weighted	sum	of	squares.		In	it,	the	
squares	are	[ym(I)–yt(I)]2	and	the	weights	are,	essentially,	the	sums	of	the	slopes.		The	absolute	
values	of	the	slopes	are	used	because	the	weights	need	to	be	positive,	much	as	they	are	in	the	χ2	
equation.		In	most	cases,	the	dose-response	curves	used	in	this	work	increased	monotonically,	
so	the	absolute	value	computations	became	moot	in	those	cases.		However,	some	dose-
response	curves	decreased	(e.g.	for	T9,	which	includes	a	low-true	positive	feedforward),	making	
the	absolute	value	computations	essential	in	those	cases.		In	practice,	we	used	the	absolute	
values	in	all	cases.		Because	the	dose-response	functions	that	we	compared	were	defined	
continuously	rather	than	at	a	finite	list	of	discrete	data	points,	we	replaced	the	summation	in	
the	χ2	equation	with	an	integral.		This	integral	needed	to	extend	over	the	entire	dose-response	
curves,	so	we	set	its	limits	from	0	to	infinity.		Another	way	of	seeing	why	these	limits	are	
appropriate	is	that	the	weighted	sum	of	squares	needs	to	include	the	entire	response	ranges	of	
both	dose-response	curves	so	that	it	includes	all	response	differences,	and	this	is	only	possible	if	
the	integral	extends	to	infinity.		The	dose-response	slopes	tend	to	zero	as	the	I	value	tends	
towards	infinity,	causing	this	portion	of	the	integral	to	have	a	minimal	influence	(this	is	criterion	
iii,	above).	

In	practice,	we	used	the	SWRMS	metric	as	expressed	above.		However,	a	different	
arrangement	helps	elucidate	its	properties.		For	the	typical	case	that	both	dose-response	curves	
increase	monotonically,	the	metric	rearranges	to 
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Notably,	the	input	value,	I,	does	not	appear	in	this	equation.		This	fact	reflects	the	metric’s	
independence	to	the	input	units	and	also	whether	the	input	is	graphed	on	a	linear	or	logarithmic	
scale	(criterion	iv,	above).	

The	two	SWRMS	equations	can	be	understood	with	reference	to	the	following	figure.		The	
panel	on	the	left	shows	model	and	target	dose-response	curves	as	functions	of	the	input	value.		
The	SWRMS	metric	can	be	computed	with	the	first	equation	by	integrating	the	difference	
between	the	two	curves,	while	weighting	this	difference	using,	approximately,	the	sum	of	the	
curve	slopes,	which	the	shading	depicts.		The	panel	on	the	right	shows	a	parametric	plot	of	ym	as	
a	function	of	yt	in	red.		The	diagonal	line	represents	the	case	ym	=	yt,	so	deviations	from	this	
diagonal	represent	differences	between	the	two	dose-response	curves.		The	SWRMS	metric	is	
computed	here	using	the	second	equation,	now	with	one	integral	summing	the	squared	vertical	
deviations	and	the	other	integral	summing	the	squared	horizontal	deviations	(the	straight	lines	
show	the	integral	slices).		The	overall	deviation	of	the	parametric	curve	from	the	main	diagonal	
is	a	good	qualitative	measure	of	the	goodness	of	fit,	and	one	that	corresponds	closely	to	the	
SWRMS	distance. 
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Although	it	is	reasonably	unimportant	to	its	use	as	a	fitting	metric,	it	is	interesting	to	note	
that	the	SWRMS	distance	obeys	three	of	the	four	properties	required	of	a	metric	for	a	
mathematical	metric	space.		The	properties	are:	(i)	non-negativity,	meaning	that	d(x,y)	≥	0,	(ii)	
identity	of	indiscernibles,	meaning	that	d(x,y)	=	0	if	and	only	if	x	=	y,	(iii)	symmetry,	meaning	that	
d(x,y)	=	d(y,x),	and	(iv)	triangle	inequality,	meaning	that	d(x,y)	+	d(y,z)	≥	d(x,z).		It	is	
straightforward	to	show	that	the	SWRMS	distance	obeys	the	first	three	properties.		However,	by	
trial	and	error,	we	found	that	it	can	fail	the	triangle	inequality.		Our	example	that	failed	was	
based	on	three	Hill	functions,	each	with	baseline	0	and	Hill	coefficient	1:	amplitudes	and	EC50s	
for	the	three	Hill	functions	were	1	and	1	for	Hill	function	x,	0.5	and	1	for	Hill	function	y,	and	0.5	
and	10	for	Hill	function	z,	respectively.		Using	these	numbers,	we	found	that	the	SWRMS	
distances	were	28.8	between	x	and	y,	18.2	between	y	and	z,	and	52.8	between	x	and	z.		The	sum	
of	the	first	two	distances	is	less	than	the	third	by	5.7,	thus	showing	the	failure	of	the	triangle	
inequality.	

Every	model	produced	a	separate	dose-response	curve	for	each	node,	each	of	which	was	
compared	to	the	appropriate	target	function.		We	computed	the	SWRMS	distance	for	the	entire	
model	as	the	arithmetic	mean	of	the	SWRMS	distances	for	the	individual	dose-response	curves	
away	from	their	specific	target	functions.	

A	potential	concern	with	our	use	of	the	SWRMS	distance	is	that	it	may	place	an	excessive	
importance	on	dose-response	curve	amplitudes	as	opposed	to	their	EC50s,	which	might	be	more	
biologically	significant.		We	addressed	this	issue	in	several	ways.		First,	we	used	a	different	
metric	in	preliminary	work	that	quantified	dose-response	curve	differences	by	fitting	Hill	
functions	to	the	model	data	and	then	comparing	those	Hill	function	parameters	to	the	Hill	
function	parameters	of	the	target	curves.		Even	when	we	weighted	this	metric	to	strongly	
emphasize	EC50’s,	rather	than	amplitude	differences,	we	found	the	same	qualitative	results	as	
are	described	in	the	main	text.		Second,	changing	the	dose-response	targets	from	the	4-node	
idealized	targets,	in	which	all	dose-response	amplitudes	equaled	one,	to	the	yeast	PRS	targets,	
in	which	one	amplitude	was	much	less	than	one	(thus	making	it	easier	to	fit),	still	showed	the	
same	qualitative	results.		Finally,	we	also	investigated	several	other	sets	of	yeast	PRS	targets	
that	had	lower	amplitudes	for	the	Prm1	and/or	G-protein	nodes	(APRM1	was	0.35	and	AGprt	was	
0.8)	which	again	made	the	amplitudes	easier	to	fit	but	did	not	affect	qualitative	results.		Thus,	
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the	precise	fit	distances	and	the	optimal	model	parameters	clearly	depend	on	the	fit	metric	
definition,	but	the	qualitative	results	of	this	work	do	not.	

Another	possible	concern	with	our	use	of	the	SWRMS	distance	is	that	it	is	removed	from	
the	quantity	that	is	actually	of	interest,	which	is	information	transmission	through	the	signaling	
system.		We	chose	the	SWRMS	distance	because	the	information	transmission	cannot	be	
computed	without	making	assumptions	about	the	noise	within	the	signaling	system.		(In	the	
absence	of	noise,	essentially	all	possible	combinations	of	dose-response	curves	transmit	
information	completely	perfectly,	making	that	assumption	not	informative.)		We	do	not	have	
adequate	experimental	data	to	estimate	the	noise	levels	for	the	yeast	data,	so	we	decided	to	
avoid	making	assumptions	about	the	noise	throughout	this	work.		Nevertheless,	this	raises	the	
interesting	open	question	about	how	well	the	SWRMS	distance	correlates	with	information	
transmission.	

	

3.2.	The	DoRA-score,	used	in	preliminary	work	

Before	developing	the	SWRMS	distance	metric,	we	quantified	the	difference	between	
model	and	target	dose-response	curves	using	a	different	metric,	a	“DoRA-score.”		To	use	it,	we	
fit	model	dose-response	curves	with	Hill	functions	and	then	compared	the	differences	between	
model	and	target	Hill	function	parameters.		The	equation	is	

	 d = wi , j modeli , j − targeti , j( )2
j∈ B ,A ,E ,N{ }
∑

i∈nodes

∑ 		

where	i	is	an	index	that	scans	over	the	nodes	in	a	model,	j	is	an	index	for	the	Hill	function	
parameter	(B	for	baseline,	A	for	amplitude,	E	for	EC50,	and	N	for	Hill	cooperativity),	wi,j	is	a	matrix	
of	weighting	factors,	modeli,j	is	the	j’th	Hill	parameter	for	the	model	dose-response	curve	for	the	
i’th	node,	and	targeti,j	is	the	j’th	Hill	parameter	for	the	target	dose-response	curve	for	the	i’th	
node.		This	metric	obeyed	the	four	criteria	that	we	considered	essential,	listed	above	in	section	
3.1.		However,	it	also	had	the	problems	of	being	arbitrary	and	not	working	well	when	dose-
response	curves	weren’t	Hill	functions.		In	addition,	it	was	not	clear	how	the	weights	should	be	
chosen.		For	these	reasons,	we	replaced	it	with	the	SWRMS	distance.	

Notably,	we	found	the	same	qualitative	results	with	this	DoRA-score	as	we	found	later	
with	the	SWRMS	distance.		In	particular,	using	this	DoRA-score,	we	found	that	linear	topologies	
and	those	with	most	feedbacks	and	feedforwards	could	not	produce	good	DoRA.		We	also	found	
that	fits	were	substantially	better	when	we	allowed	model	reactions	to	be	cooperative	rather	
than	constraining	them	to	be	non-cooperative.		In	addition,	we	found	that	the	models	with	
push-pull	mechanisms	could	exhibit	DoRA.		Furthermore,	these	qualitative	results	did	not	
change	when	we	varied	the	DoRA-score	weighting	factors;	we	typically	set	all	of	them	to	1,	but	
also	explored	other	options,	including	setting	multiple	values	to	0.	

The	qualitative	similarity	between	the	results	that	we	found	with	the	SWRMS	distance	and	
those	with	the	DoRA-score	suggests	that	the	conclusions	of	this	work	arose	from	genuine	
differences	between	models,	rather	than	artifacts	of	the	SWRMS	distance.	

	

3.3.	Optimization	methods	
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We	optimized	model	parameters	using	a	combination	of	greedy	random	walk	and	
downhill	simplex	methods	(Press	et	al.,	1988),	both	of	which	are	types	of	stochastic	optimization	
(Moles	et	al.,	2003;	Schneider	and	Kirkpatrick,	2006).		In	both	cases,	our	NodeSolver	software	
started	the	optimization	with	user-defined	model	parameters	(or,	sometimes,	random	
parameters)	and	then	iteratively	improved	them	until	SWRMS	fit	distances	stopped	decreasing.		
We	deemed	a	solution	optimal	only	when	we	found	it	repeatedly	from	many	different	starting	
values.	

In	our	greedy	random	walk	method,	NodeSolver	software	computed	the	SWRMS	distance	
for	a	model	with	an	initial	set	of	parameters.		It	then	took	a	trial	step	in	parameter	space	by	
changing	one	randomly	chosen	parameter	by	a	random	displacement	(chosen	from	a	Gaussian	
distribution	with	a	standard	deviation	of	1	initially)	and	computed	the	SWRMS	distance	for	the	
modified	model.		If	this	trial	step	reduced	the	SWRMS	distance,	the	modification	was	kept	and	
the	standard	deviation	for	that	parameter	was	increased	by	20%.		Otherwise,	the	trial	step	was	
rejected,	returning	the	model	to	its	prior	parameters,	and	the	standard	deviation	for	that	
parameter	was	reduced	by	1%.		NodeSolver	repeated	this	procedure	about	10,000	times	for	
each	round	of	fitting,	which	took	a	few	seconds	of	computer	time.		This	procedure	was	slow	but	
very	robust,	meaning	that	it	always	led	to	local	minima.	

Our	downhill	simplex	method	closely	followed	the	procedure	described	in	Numerical	
Recipes	in	C	(Press	et	al.,	1988).		In	brief,	the	algorithm	defines	a	high-dimensional	triangle	which	
has	as	many	vertices	as	there	are	fitting	parameters,	which	is	called	a	simplex,	and	then	
propagates	this	simplex	through	parameter	space	to	the	optimal	location.		NodeSolver	
performed	about	10,000	propagation	steps	for	each	round	of	fitting.		This	procedure	was	fast	
but	our	implementation	of	it	did	not	always	work	reliably	when	models	were	complicated	or	
parameters	were	highly	correlated.	

Simple	models,	such	as	the	two-node	models	with	non-cooperative	reactions	and	only	one	
control	arrow,	generally	required	ten	or	fewer	rounds	of	fitting	with	no	user	input.		Complicated	
models,	such	as	ones	with	all	possible	control	arrows,	ones	with	non-linear	reaction	orders,	and	
those	with	the	yeast	experimental	data,	sometimes	required	fifty	or	more	rounds	of	fitting	with	
intermittent	input	from	us.		This	input	would	typically	entail	fixing	model	parameters	that	
appeared	to	be	fully	optimized	so	that	more	computation	would	be	directed	towards	the	other	
parameters,	setting	bounds	on	the	parameter	search	ranges	to	avoid	local	minima,	adjusting	
parameters	to	get	the	current	search	location	away	from	a	local	minimum	(typically	evidenced	
by	model	dose-response	curves	having	zero	amplitude),	and	changing	the	list	of	fittable	
parameters	to	ones	that	seemed	more	likely	to	lead	to	success	(e.g.	for	a	two-node	model,	we	
typically	fixed	kb	to	1	because	it	is	redundant	with	other	parameters,	but	sometimes	we	got	
better	fitting	results	when	this	was	made	a	fittable	parameter).		This	user	input	adds	bias	to	the	
fitting	procedure,	but	we	believe	that	all	of	our	reported	results	represent	the	global	minima	
based	on	the	fact	that	we	found	them	multiple	times	from	multiple	different	starting	points.	

We	also	tried	to	minimize	SWRMS	distances	using	simulated	annealing	(Schneider	and	
Kirkpatrick,	2006)	and	greedy	random	walk	methods	that	varied	multiple	parameters	with	each	
step.		Those	methods	did	not	prove	to	be	as	useful	as	the	above-mentioned	ones,	at	least	with	
our	implementations	of	them,	and	did	not	figure	in	the	results	in	this	manuscript.	

	

3.4.	Akaike	Information	Criterion	computation	
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To	determine	whether	the	roughly	3-fold	improvements	from	increasing	steepness	were	
significant	rather	than	a	consequence	of	adding	additional	fitting	parameters,	we	computed	
Akaike	Information	Criterion	(AIC)	values	for	each	model	(Document	S1).	It	is	an	assertion	
generally	acknowledged	that	models	with	lower	AIC	values,	which	can	arise	through	better	fits	
and/or	fewer	model	parameters,	represent	the	data	better	(Burnham	and	Anderson,	2002).	
Here,	we	found	that	enabling	changes	in	reaction	order	always	decreased	AIC	values,	with	an	
average	decrease	of	17.6	units.	By	contrast,	adding	control	arrows,	which	also	added	fitting	
parameters,	typically	increased	AIC	values.	Both	results	argue	that	models	that	allowed	different	
reaction	orders	represented	the	target	functions	better	than	those	that	did	not.	

The	Akaike	Information	Criterion	(AIC)	is	a	measure	of	the	ability	of	models	to	fit	data,	
thereby	providing	a	means	for	selecting	between	multiple	candidate	models.		The	AIC	value	is	
given	with	the	equation	(Burnham	and	Anderson,	2002)	

	 AIC = −2 ln L + 2K 		

where	K	is	the	number	of	model	parameters	and	L	is	the	likelihood	of	the	model.		The	likelihood	
is	the	probability	that	the	observed	data	could	have	arisen,	given	the	model.		Models	with	
smaller	AIC	values	are	better	than	those	with	higher	AIC	values,	where	in	this	case	better	means	
that	there	is	less	information	loss	in	representing	the	data	with	the	model	(see	(Burnham	and	
Anderson,	2002)).		The	-2	ln	L	term	in	the	AIC	equation	rewards	models	that	fit	the	data	well	
while	the	2K	term	penalizes	those	that	use	more	parameters	to	do	so.		Thus,	the	AIC	value	
represents	a	balance	between	quality	of	fit	and	model	parsimony	(few	parameters).	

The	AIC	is	not	particularly	practical	in	this	general	form.		To	calculate	it	here,	we	began	
with	the	fact	that	it	is	conventional	to	assume	that	the	data	include	independent	normally	
distributed	errors	with	constant	variance	(Burnham	and	Anderson,	2002).		With	this	assumption,	
the	AIC	becomes	

	 AIC = n ln s2( ) + 2K + C 		

where	n	is	the	number	of	data	points,	s2	is	the	estimated	variance,	and	C	is	a	constant.		The	
actual	value	of	C	is	ignored	here	because	only	the	differences	between	AIC	values	are	relevant.		
Note	that	the	value	of	K	is	the	total	number	of	estimated	model	parameters,	including	the	
variance.		The	value	of	s2	is	the	mean	sum	of	squared	errors	(Burnham	and	Anderson,	2002),	

	 s2 =
1

n
mi − xi( )2

i=1

n

∑ 		

where	mi	and	xi	are	the	model	and	data	values	at	point	i,	as	in	section	3.1.		This	s2	value	is	very	
close	to	the	χ2	value	introduced	above,	which	was	

	 χ 2 =
mi − xi
σ i

⎛
⎝⎜

⎞
⎠⎟
2

i=1

n

∑ 		

Thus,	we	rewrote	the	AIC	equation	for	χ2,	

	 AIC = n ln χ 2 n( ) + 2K + C 		

Additional	constant	terms	got	subsumed	into	C	here.		This	change	relieved	the	assumption	that	
the	variance	is	constant	for	all	data	points	because	the	χ2	statistic	allows	for	a	different	variance	
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at	each	data	point.		The	squared	SWRMS	distance,	d2,	is	a	weighted	sum	of	squares,	just	like	χ2.		
This	means	that	the	AIC	can	also	be	written	as	

	 AIC = n ln d 2 n( ) + 2K + C 		

Yet	more	terms	got	subsumed	into	C.		A	problem	arises	at	this	point.		Our	computation	of	the	
SWRMS	is	performed	with	an	integral	over	an	infinite	number	of	“data	points”,	rather	than	the	
sum	that	is	used	for	the	χ2	statistic.		However,	taking	the	limit	of	n	going	to	infinity	in	the	above	
equation	increases	the	AIC	to	infinity.		More	importantly	though,	it	shifts	all	of	the	emphasis	in	
the	AIC	towards	the	quality	of	the	fit	and	away	from	the	number	of	fit	parameters,	thereby	
negating	the	entire	purpose	of	using	the	AIC.		On	a	deeper	level,	the	problem	with	taking	n	to	
infinity	is	that	the	AIC	derivation	assumed	that	the	n	data	points	have	independent	errors,	
whereas	adjacent	points	in	noise-free	dose-response	curves,	as	used	here,	are	clearly	not	
independent.		This	raises	the	question	of	how	many	independent	points	are	represented	by	a	
single	noise-free	dose-response	curve.		We	concluded	that	there	are	4	points	because	all	of	the	
dose-response	curves	in	this	work	are	4-parameter	Hill	functions;	alternatively,	any	4	points	in	a	
dose-response	graph	are	sufficient	to	uniquely	determine	the	parameters	of	the	4-parameter	
Hill	function	that	includes	them.		Based	on	these	arguments,	we	computed	AIC	values	using	the	
equation	

	 AIC = 4T ln
d 2

4T
⎛
⎝⎜

⎞
⎠⎟
+ 2K 		

where	T	is	the	number	of	nodes	that	are	fit	to	target	functions.	

For	example,	consider	the	2-node	linear	topology,	T1.		Using	non-cooperative	reactions,	
its	SWRMS	distance	was	5.55,	so	d2	was	30.8.		The	fit	included	5	unknown	parameters,	kA,	kIA,	kB,	
kAB,	and	the	SWRMS	distance,	so	K	was	5.		We	fit	both	nodes	A	and	B	to	target	functions	(which	
happened	to	be	identical	to	each	other),	so	T	was	2.		From	these	values	the	AIC	was	20.8.		Using	
the	same	linear	topology	but	with	cooperative	reactions,	its	SWRMS	distance	was	1.86	and	the	
number	of	unknown	parameters	increased	by	2	to	7.		Its	AIC	was	7.3.		This	large	AIC	decrease	
shows	that	including	cooperativity	leads	to	a	qualitatively	better	model.	

From	differences	in	AIC	values,	it	is	possible	to	compute	the	likelihood	that	one	model	
reduces	the	information	loss	when	compared	to	another	model,	which	is	called	the	relative	
likelihood	or	evidence	ratio	(Burnham	and	Anderson,	2002).		It	is	

	 Lr = exp −
ΔAIC

2
⎛
⎝

⎞
⎠ 		

where	∆AIC	is	the	AIC	difference	between	two	models.		Continuing	with	the	above	example,	
exp(-(20.8-7.3)/2)	=	0.001.		This	suggests	that	the	linear	topology	with	cooperativity	is	1000-fold	
more	likely	to	minimize	the	information	loss	from	the	target	functions	than	the	linear	topology	
without	cooperativity.		The	precise	meaning	of	this	result	is	unclear	because	the	target	functions	
are	continuous	noise-free	curves	rather	than	discrete	data	points	with	independent	additive	
Gaussian-distributed	noise,	as	is	assumed	for	the	AIC.		Nevertheless,	it	does	show	that	the	
difference	between	20.8	and	7.3	is	quite	large.	

	

3.5.	Robustness	computation	
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We	tested	each	optimized	model	for	robustness	to	parameter	variation.		When	a	model	is	
optimized,	this	means	that	its	SWRMS	distance	value	is	the	minimum	possible	value	and	that	the	
SWRMS	distance	will	increase	if	parameters	are	moved	away	from	this	optimum	position	in	
parameter	space.		To	test	robustness,	we	varied	the	parameters	to	random	values	that	were	up	
to	3-fold	away	from	their	optimum	values	(see	below)	to	produce	a	trial	model,	and	then	
computed	the	SWRMS	distance	for	the	trial	model.		We	repeated	this	105	times	and	counted	the	
number	of	the	trial	models	for	which	the	SWRMS	value	was	(i)	less	than	3	SWRMS	units	above	
the	distance	for	the	optimal	model	and	(ii)	less	than	3	SWRMS	units	above	0.		In	both	cases,	we	
divided	the	result	by	103	to	yield	the	percent	of	trials	that	were	below	the	respective	SWRMS	
threshold.		We	called	the	first	result,	in	which	the	threshold	is	relative	to	the	optimal	SWRMS	
distance,	the	relative	robustness.		It	tested	the	robustness	of	the	optimal	model	to	parameter	
variation.		That	is,	for	a	topology	that	has	already	been	optimized,	this	tests	how	well	it	will	
exhibit	DoRA	if	the	parameters	move	a	short	distance	away	from	their	optimal	values.		We	
called	the	second	result,	in	which	the	threshold	is	3	units	above	an	SWRMS	distance	of	0,	the	
absolute	robustness.		It	tested	the	likelihood	of	achieving	partial	DoRA	(i.e.	d	<	3)	with	a	given	
topology	when	searching	parameter	space	randomly.		This	absolute	robustness	value	is	
comparable	to	the	“Q-value”	used	by	Yan	et	al.	(Yan	et	al.,	2012).	

To	explain	our	parameter	variation	method,	consider	a	vector	of	optimized	parameters	
{k1,	k2,	k3,	...,	kn},	where	there	are	n	total	parameters.		The	obvious	way	to	vary	the	parameters	
by	up	to	3-fold	variation	is	to	vary	each	one	individually,	in	each	case	picking	a	uniformly	
distributed	random	number	between	1/3	and	3	times	the	optimal	value.		For	example,	k1	would	
be	replaced	by	a	uniformly	distributed	random	number	between	k1/3	and	3k1,	the	same	
procedure	would	apply	to	k2,	and	so	forth.		The	problem	with	this	method	is	that	the	results	are	
highly	dependent	on	dimensionality.		If	there	is	one	parameter,	for	example,	the	maximum	
possible	variation	away	from	the	origin	is	3k1.		However,	if	there	are	two	parameters,	then	the	
maximum	possible	variation	away	from	the	origin	is	{3k1,	3k2},	which	is,	in	some	sense,	farther	
away	from	the	optimum	than	just	3k1.		This	problem	gets	worse	with	higher	dimension	because	
it	becomes	increasingly	likely	for	random	points	to	be	near	one	or	more	of	the	edges	of	the	
parameter	variation	domain.		The	solution	is	not	to	pick	each	parameter’s	variation	
independently	but	to	pick	them	so	that	the	total	variation	is	uniformly	distributed	with	a	3-fold	
variation	maximum.	

This	is	easiest	to	consider	using	the	logarithms	of	the	parameters,	so	the	optimum	
becomes	log	k	=	{log	k1,	log	k2,	log	k3,	...,	log	kn}.		Three-fold	variation	is	now	represented	by	
adding	or	subtracting	log	3.		To	do	so,	we	defined	an	n-dimensional	ball	that	was	centered	at	log	
k	and	had	radius	log	3.		We	picked	random	variables	uniformly	within	the	volume	of	this	ball	as	
the	trial	parameters.		Inverting	the	logs	by	exponentiating	the	values	led	to	the	parameters	that	
we	entered	into	the	model.		This	approach	keeps	a	constant	distribution	of	Euclidean	distances	
of	trial	parameters	about	the	optimal	parameters,	independent	of	the	number	of	parameters.		
In	essence,	this	samples	from	an	n-dimensional	sphere	of	parameter	space	rather	than	an	n-
dimensional	cube.	
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4.	Results	for	two-node	topologies	

4.1	Two-node	topologies	with	single	control	arrows	

This	section	presents	the	optimized	parameters	for	each	two-node	topology.		It	presents	
them	for	models	that	were	constrained	to	use	only	non-cooperative	reactions	and	for	models	
that	could	include	cooperative	reactions	as	well,	meaning	that	we	optimized	the	reaction	orders	
too.		For	some	topologies,	this	section	also	presents	additional	analytical	or	simulation	results.		
In	each	data	table,	asterisks	next	to	parameters	indicate	that	the	parameter	was	included	in	the	
fitting,	while	parameters	without	asterisks	were	constrained	to	the	value	shown. 

 
T1 - linear topology 

 
parameter non-coop. cooperative 

kA 0* 0* 
ka 1 1 
kIA 1* 1* 
nIA 1 1* 
kB 0* 0.134* 
kb 1 1 
kAB 2.234* 6.709* 
nAB 1 2.797* 

node A SWRMS 0 0 
node B SWRMS 11.09 3.72 
overall SWRMS 5.546 1.862 

AIC 20.77 7.31 
rel. robustness 133 20 
abs. robustness 0 0.9 

	

Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

		

	

Substituting	the	optimized	parameters	given	above	(for	both	non-cooperative	and	
cooperative	results)	into	the	steady-state	solution	for	[A]	yields	

 A[ ] = I[ ]
I[ ] + 1

  

This	is	a	Hill	function	with	zero	baseline,	unit	amplitude,	unit	EC50,	and	unit	Hill	cooperativity.		It	
is	identical	to	the	target	function,	so	the	fit	distance	for	node	A	is	0.	

I        A        B 
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The	steady-state	activity	for	node	B	is	a	Hill	function	of	[A],	with	the	following	Hill	function	
parameters: 

 BAB =
kB

kB + kb  
AAB =

kb
kB + kb

 NAB = nAB  
 
E

AB

N
AB =

k
B
+ k

b

k
AB

 

We	substituted	the	steady-state	solution	for	[A]	(using	the	optimized	parameters)	into	the	
steady-state	solution	for	[B]	to	yield	the	dose-response	curve	for	[B]	as	a	function	of	[I].		The	
solution	is	unwieldy	(and	not	a	Hill	function)	if	nAB	≠	1	but	simplifies	to	another	Hill	function	if	nAB	
=	1.		In	this	latter	case,	the	function	and	its	parameters	are	

 B[ ] = kB + I[ ] kB + kAB( )
kB + kb + I[ ] kB + kAB + kb( )   

 BIB =
kB

kB + kb
  AIB =

kABkb
kB + kb( ) kAB + kB + kb( )   NIB = 1   EIB =

kB + kb
kAB + kB + kb

  

For	the	steady-state	activity	of	this	node	to	agree	with	the	target	dose-response	curve,	BIB	needs	
to	equal	0,	while	AIB,	NIB,	and	EIB	all	need	to	equal	1.		The	first	requirement,	for	BIB,	can	be	
achieved	by	setting	kB	to	0,	as	in	fact	is	the	result	of	the	optimal	fit	for	first	order	reactions,	
shown	above.		The	requirement	on	NIB	is	already	achieved	here	as	well.		However,	the	other	two	
parameters	cannot	simultaneously	equal	their	target	values	of	1.		This	becomes	clearer	when	
the	kB	=	0	result	is	substituted	into	their	equations	and	kb	is	set	to	1,	which	can	be	done	without	
loss	of	generality	as	described	in	section	2.1.	

 AIB =
kAB

kAB + 1
  EIB =

1

kAB + 1
  

If	kAB	is	reduced	to	zero,	then	EIB	equals	1,	as	desired,	but	AIB	equals	0.		On	the	other	hand,	
increasing	kAB	towards	infinity	causes	AIB	to	equal	1	but	then	EIB	equals	0.	

The	following	figures	show	this	trade-off	between	a	sufficiently	large	amplitude	and	a	
sufficiently	large	EC50.		In	the	left	panel,	the	black	dashed	line	represents	the	target	function,	the	
red	dashed	line	is	the	dose-response	function	for	node	A	(ka	=	1,	kA	=	0,	kIA	=	1,	and	nIA	=	1)	and	
the	orange	lines	are	possible	dose-response	functions	for	node	B	(kb	=	1,	kB	=	0,	nAB	=	1,	and	kAB	
differs	for	the	curves;	reading	from	left	to	right,	its	values	are	200,	20,	2,	0.2,	and	0.02,	
respectively).		‘+’	symbols	in	the	figure	depict	the	half-maximum	points,	which	give	the	EC50	
values.		The	inset	shows	a	parametric	plot	of	the	node	B	response	as	a	function	of	the	node	A	
response,	where	the	diagonal	line	represents	perfect	alignment.		The	right	panel	graphs	the	
node	A	and	B	Hill	function	amplitudes	on	the	y-axis	against	their	EC50	values	on	the	x-axis.		The	
red	point	represents	the	Hill	function	parameters	for	node	A,	which	is	the	same	as	those	for	the	
target	function.		The	orange	points	represent	the	node	B	parameters	for	500	different	kAB	
values,	chosen	randomly	between	0.01	and	100.		For	the	system	to	exhibit	DoRA,	it	would	have	
to	be	possible	for	an	orange	dot	to	be	at	the	location	of	the	red	dot,	which	clearly	does	not	
happen. 
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The	next	figure	illustrates	the	role	of	the	kB	parameter.		The	red	line	and	dot	represent	the	
dose-response	function	for	node	A,	using	the	same	parameters	as	before,	and	also	represent	the	
target	dose-response	function.		The	orange	lines	and	dots	represent	node	B	(left	panel:	kb	=	1,	
kAB	=	1,	nAB	=	1,	and	kB	values,	from	bottom	to	top,	are	0,	0.5,	1,	2,	5,	and	100;	right	panel:	kb	=	1,	
nAB	=	1,	and	kAB	and	kB	were	randomly	chosen	between	0.01	and	100).		These	show	that	
increasing	kB	increases	the	node	B	baselines	and	decreases	the	node	B	amplitudes	but	do	not	
improve	the	ability	of	node	B	to	equal	the	target	function.	

 

  
 
The	next	figure	illustrates	the	role	of	the	reaction	order,	nAB,	showing	how	increasing	it	

enables	a	better	fit	to	the	target	function.		The	red	point	represents	the	dose-response	of	node	
A	using	the	same	parameters	as	before,	which	is	also	the	target	function.		The	orange	points	
represent	dose-responses	of	node	B,	each	for	500	randomly	chosen	kAB	values	between	0.01	to	
100.		The	nAB	values	for	these	lines	are	0.5	for	the	left	line,	1	for	the	middle	line	(identical	to	
ones	above),	and	3	for	the	right	line	(also,	kb	=	1	and	kB	=	0).	
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This	figure	shows	that	increasing	the	reaction	order	of	the	arrow	from	A	to	B	simultaneously	
increases	the	amplitude	and	EC50	for	the	node	B	dose-response	curve.	

 
T2 - negative feedback 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0.00154* 0* 
ka 1 1 1 1 
kIA 1.9504* 1* 1.958* 1* 
nIA 1 1 1.219* 1* 
kB 0* 0* 0.125* 0.134* 
kb 1 1 1 1 
kAB 2.203* 2.234* 6.861* 6.709* 
nAB 1 1 2.769* 2.797* 
kBa 2 0* 2 0* 
nBa 1 1 1 1* 

node A SWRMS 2.00 0 0.878 0 
node B SWRMS 12.42 11.09 3.152 3.72 
overall SWRMS 7.21 5.546 2.01 1.862 

AIC 24.97 22.77 8.57 11.31 
rel. robustness 200 132 48 46 
abs. robustness 0 0 2 2 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka + kBa B[ ]nBa( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka + kBa B[ ]nBa

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

		

	

We	were	initially	surprised	that	this	negative	feedback	did	not	help	produce	DoRA.		In	
retrospect,	we	realized	that	it	did	not	because	feedback	from	a	downstream	node	to	an	

I        A        B 
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upstream	node	does	not	change	the	effect	of	the	upstream	node	on	the	downstream	node.		In	
this	particular	case,	the	negative	feedback	lowers	the	activity	of	node	A,	but	does	not	change	
the	effect	of	A	on	B.		Restated	yet	again,	the	steady-state	activity	of	B	is	

 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

 , 

independent	of	the	presence	of	the	feedback.		This	is	the	same	function	that	arose	for	the	linear	
topology	(T1),	with	the	same	result,	which	is	that	[B]	cannot	be	made	to	equal	[A].		Yet	another	
way	of	seeing	this	is	that	the	negative	feedback	does	not	affect	the	dose-response	curve	of	B	
relative	to	that	of	A,	meaning	that	it	does	not	affect	the	alignment	of	the	two	dose-response	
curves.		This	finding	applied	to	all	four	types	of	feedbacks	that	originated	at	downstream	nodes	
and	ended	at	upstream	nodes.	

 
T3 - positive feedback 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 0.696* 1* 0.154* 1* 
nIA 1 1 2.129* 1* 
kB 0* 0* 0.112* 0.134* 
kb 1 1 1 1 
kAB 0.508* 2.234* 6.325* 6.709* 
nAB 1 1 3.154* 2.797* 
kBA 2 0* 2 0* 
nBA 1 1 1 1* 

node A SWRMS 6.45 0 5.63 0 
node B SWRMS 33.16 11.09 4.45 3.72 
overall SWRMS 19.81 5.546 5.04 1.862 

AIC 41.14 22.77 23.24 11.31 
rel. robustness 590 133 13 31 
abs. robustness 0 0 0 1.5 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA + kBA B[ ]nBA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA + kBA B[ ]nBA

kA + kIA I[ ]
nIA + kBA B[ ]nBA + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

		

	

I        A        B 
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Positive	feedback	leads	to	bistability	in	many	systems,	so	we	investigated	whether	it	does	
here	as	well.		Using	equations	from	section	2.1	(and	assuming	that	kA	and	kB	equal	0	and	that	nIA	
and	nAB	equal	1),	the	node	steady-state	activities	are	

 A[ ] = kIA I[ ] + kBA B[ ]
kIA I[ ] + kBA B[ ] + ka

 B[ ] = kAB A[ ]
kAB A[ ] + kb

 

Substituting	the	latter	equation	into	the	former	leads	to	

 A[ ] = kIAkAB I[ ] + kABkBA( ) A[ ] + kIAkb I[ ]
kIAkAB I[ ] + kABkBA( ) A[ ] + kIAkb I[ ] + ka

 

For	notational	convenience,	define	

 c1 = kIAkAB I[ ] + kABkBA  c2 = kIAkb I[ ]  

These	simplify	the	prior	equation	to	

 
  

A[ ] = c
1

A[ ] + c
2

c
1

A[ ] + c
2
+ k

a

 

Solving	for	[A]	yields	

 
  

A[ ] = − c
2
− c

1
+ k

a( ) ± 4c
1
c

2
+ c

2
− c

1
+ k

a( )2

2c
1

 

This	solution	is	only	sensible	when	[A]	is	a	non-negative	number.		If	c1	and	c2	are	greater	than	
zero,	then	taking	the	negative	option	for	the	±	symbol	always	yields	a	negative	value	for	[A]	
because	the	square	root	term	is	always	larger	than	the	absolute	value	of	(c2-c1+ka).		Thus,	only	
the	positive	option	is	sensible.		The	positive	option	can	be	seen	to	yield	non-negative	values	for	
[A]	for	any	c1,	c2,	and	ka	values,	meaning	that	there	is	a	single	solution	when	c1	and	c2	are	greater	
than	zero.		From	its	definition,	c1	cannot	equal	zero.		However,	if	c2	equals	zero	(only	possible	
when	kb,	kIA,	or	[I]	equal	zero),	then	the	solution	is	bistable	with	solutions	[A]	=	0	and	[A]	>	0.	

 

T4 - negative feedforward 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0.142* 0.134* 
kb 1 1 1 1 
kAB 3.972* 2.234* 18.221* 6.709* 
nAB 1 1 3.091* 2.797* 
kAb 2 0* 2 0* 

I        A        B 
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nAb 1 1 1 1* 
node A SWRMS 0 0 0 0 
node B SWRMS 15.94 11.09 4.22 3.72 
overall SWRMS 7.97 5.546 2.11 1.862 

AIC 26.57 22.77 9.29 11.31 
rel. robustness 158 132 19 32 
abs. robustness 0 0 0.3 1.5 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb + kAb A[ ]nAb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb + kAb A[ ]nAb

		

 
T5 - positive feedforward 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0* 0.0381* 
kb 1 1 1 1 
kAB 0.234* 2.234* 19.331* 17.491* 
nAB 1 1 8.76* 9.326* 
kAB2 2 0* 2 2.948* 
nAB2 1 1 1 1.659* 

node A SWRMS 0 0 0 0 
node B SWRMS 11.09 11.09 4.63 0.839 
overall SWRMS 5.546 5.546 2.31 0.42 

AIC 20.77 22.77 10.78 -12.53 
rel. robustness 343 132 95 17 
abs. robustness 0 0 5 9 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kAB2 A[ ]nAB 2( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kAB2 A[ ]nAB 2
kB + kAB A[ ]nAB + kb

		

I        A        B 
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T6 - low-true negative feedback 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0.0281* 0* 0* 0* 
ka 1 1 1 1 
kIA 1.88* 1* 1.944* 1* 
nIA 1 1 0.779* 1* 
kB 0* 0* 0.122* 0.134* 
kb 1 1 1 1 
kAB 2.314* 2.234* 6.001* 6.709* 
nAB 1 1 2.585* 2.797* 
kba 2 0* 2 0* 
nba 1 1 1 1* 

node A SWRMS 1.76 0 0.884 0 
node B SWRMS 9.96 11.09 4.19 3.72 
overall SWRMS 5.86 5.546 2.535 1.862 

AIC 21.65 22.77 12.25 11.31 
rel. robustness 234 134 26 32 
abs. robustness 0 0 0.2 1.5 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka + kba b[ ]nba( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka + kba b[ ]nba

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

		

 
T7 - low-true positive feedback 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 0.000001* 1* 0.366* 1* 
nIA 1 1 1.812* 1* 
kB 0* 0* 0* 0.134* 
kb 1 1 1 1 
kAB 1.939* 2.234* 17.86* 6.709* 
nAB 1 1 6.054* 2.797* 
kbA 2 0* 2 0* 

I        A        B 
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nbA 1 1 1 1* 
node A SWRMS 19.83 0 18.4 0 
node B SWRMS 19.8 11.09 9.97 3.72 
overall SWRMS 19.81 5.546 14.18 1.862 

AIC 41.14 22.77 39.80 11.31 
rel. robustness 1000 132 227 31 
abs. robustness 0 0 0 1.5 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA + kbA b[ ]nbA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA + kbA b[ ]nbA

kA + kIA I[ ]
nIA + kbA b[ ]nbA + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

		

 
T8 - low-true negative feedforward (push-pull) 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0.288* 0* 
kb 1 0* 1 0* 
kAB 4.443* 1* 8.035* 1* 
nAB 1 1 2.104* 1* 
kab 2 1* 2 1* 
nab 1 1 1 1* 

node A SWRMS 0 0 0 0 
node B SWRMS 6.37 0 2.937 0 
overall SWRMS 3.187 0 1.468 0 

AIC 11.91 -∞ 3.51 -∞ 
rel. robustness 110 60 24 7 
abs. robustness 0 60 3 7 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb + kab a[ ]nab( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb + kab a[ ]nab

		

I        A        B 
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The	following	analysis	shows	that	this	topology	yields	perfect	DoRA.		The	steady-state	
activity	of	node	A,	from	the	analysis	of	topology	T1	and	using	the	optimized	parameters	given	
here,	is	identical	to	the	target	function,	in	which	the	baseline	is	0	and	the	amplitude,	EC50,	and	
Hill	cooperativity	all	equal	1.		The	steady-state	activity	of	node	B	is	

 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb + kab a[ ]nab

  

Setting	the	model	parameters	to	those	that	were	found	in	the	optimized	results	(kB	=	kb	=	0,	kAB	=	
kab,	and	nAB	=	nab	=	1)	simplifies	the	node	B	activity	to	

 
 

B[ ] = A[ ]
A[ ] + a[ ]   

We	also	assumed	throughout	this	work	that	the	total	concentration	of	each	node	equals	one,	
which	further	simplifies	this	equation	to	

  B[ ] = A[ ]   

This	is	the	DoRA	condition.		Furthermore,	because	the	activity	of	node	A	was	already	shown	to	
equal	the	target	function,	this	shows	that	the	node	B	activity	also	equals	the	target	function.		
Note	that	the	solution	only	arises	if	all	of	the	conditions	listed	above	are	true.		This	is	the	only	
solution	for	this	model,	which	implies	that	the	model	does	not	exhibit	bistability.	

 

T9 - low-true positive feedforward 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0.248* 0* 
ka 1 1 1 1 
kIA 1* 1* 0.606* 1* 
nIA 1 1 1.442* 1* 
kB 0* 0* 0* 0.134* 
kb 1 1 1 1 
kAB 1.529* 2.234* 13.044* 6.709* 
nAB 1 1 5.319* 2.797* 
kaB 2 0* 2 0* 
naB 1 1 1 1* 

node A SWRMS 0 0 4.98 0 
node B SWRMS 32.47 11.09 21.57 3.72 
overall SWRMS 16.23 5.546 13.28 1.862 

AIC 37.96 22.77 38.74 11.31 
rel. robustness 263 132 374 30 
abs. robustness 0 0 0 1.2 

 

I        A        B 
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Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kaB a[ ]naB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kaB a[ ]naB
kB + kAB A[ ]nAB + kaB a[ ]naB + kb

		

 
T10 - negative control arrow 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0.164* 0.119* 
kb 1 1 1 1 
kAB 4.331* 2.234* 19.498* 8.092* 
nAB 1 1 3.218* 2.811* 
kBb 2 0* 2 18.996* 
nBb 1 1 1 7.274* 

node A SWRMS 0 0 0 0 
node B SWRMS 13.374 11.09 3.62 3.04 
overall SWRMS 6.687 5.546 1.81 1.52 

AIC 23.77 22.77 6.86 8.06 
rel. robustness 247 133 23 23 
abs. robustness 0 0 1.2 1.6 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb + kBb B[ ]nBb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb + kBb B[ ]nBb

		

 
T11 - positive control arrow 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 

I        A        B 

  

I        A        B 
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kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0* 0.0633* 
kb 1 1 1 1 
kAB 0.2733* 2.234* 19.729* 3.7515* 
nAB 1 1 8.816* 1.9432* 
kBB 2 0* 2 18.8931* 
nBB 1 1 1 11.3565* 

node A SWRMS 0 0 0 0 
node B SWRMS 26.74 11.09 14.598 1.535 
overall SWRMS 13.37 5.546 7.299 0.767 

AIC 34.85 22.77 29.17 -2.87 
rel. robustness 360 134 76 6 
abs. robustness 0 0 0 1.6 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kBB B[ ]nBB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kBB B[ ]nBB
kB + kAB A[ ]nAB + kBB B[ ]nBB + kb

		

 
T12 - low-true negative control arrow 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0.3246* 0* 
kb 1 0* 1 0* 
kAB 4.4909* 1* 8.1498* 1* 
nAB 1 1 2.1829* 1* 
kbb 2 1* 2 1* 
nbb 1 1 1 1* 

node A SWRMS 0 0 0 0 
node B SWRMS 8.157 0 3.526 0 
overall SWRMS 4.079 0 1.763 0 

AIC 15.86 -∞ 6.44 -∞ 
rel. robustness 96 17 17.48 0.6 
abs. robustness 0 17 0.83 0.6 

 

I        A        B 
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Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb + kbb b[ ]nbb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb + kbb b[ ]nbb

		

	

We	investigated	this	model	analytically.		The	steady-state	activity	of	node	A	is	identical	to	
that	given	above	for	topology	T1,	aligning	perfectly	with	the	target	function.		The	steady-state	
activity	for	node	B	is	

 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb + kbb b[ ]nbb

  

Using	the	parameters	identified	in	the	optimization	process	(kB	=	kb	=	0,	kAB	=	kbb,	and	nAB	=	nbb	=	
1)	this	simplifies	to	

 
 

B[ ] = A[ ]
A[ ] + b[ ] =

A[ ]
A[ ] + 1− B[ ]   

  0 = B[ ]2
− A[ ] B[ ]− B[ ] + A[ ] = B[ ]− A[ ]( ) B[ ]− 1( )   

The	factors	in	the	final	equality	shows	that	there	are	two	solutions	for	the	node	B	activity	level.		
They	are	[B]	=	[A],	which	is	perfect	DoRA,	or	[B]	=	1,	which	is	B	in	its	fully	active	state.		This	
means	that	if	node	B	is	not	fully	active,	then	its	activity	will	adjust	to	become	exactly	equal	to	
that	of	node	A.		However,	if	node	B	becomes	fully	active,	either	because	it	was	driven	there	by	
node	A	or	because	of	some	external	influence,	then	it	will	get	stuck	in	this	state	and	will	not	
deactivate,	independent	of	the	node	A	activity.		This	result	implies	that	the	node	B	activity	is	
bistable	for	all	values	of	[A].	

 
T13 - low-true positive control arrow 

 
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0* 0* 
kb 1 1 1 1 
kAB 1.0473* 2.234* 20.729* 6.794* 
nAB 1 1 7.255* 2.762* 
kbB 2 0* 2 0.144* 
nbB 1 1 1 0.531* 

node A SWRMS 0 0 0 0 

I        A        B 
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node B SWRMS 25.92 11.09 14.648 3.716 
overall SWRMS 12.96 5.546 7.324 1.858 

AIC 34.35 22.77 29.22 11.28 
rel. robustness 343 134 75 31 
abs. robustness 0 0 0 1.5 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kbB b[ ]nbB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kbB b[ ]nbB
kB + kAB A[ ]nAB + kbB b[ ]nbB + kb

		

 

T14 - positive feedback / low-true negative feedback, arrow to arrow 

  
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0.0581* 0.1398* 0.0381* 
kb 1 1 1 1 
kAB 1.189* 0* 5.997* 17.491* 
nAB 1 1 3.883* 9.326* 
kABB 2 4.2744* 2 2.948* 
nABB 1,1 1,1 1,1 1.659,0* 

node A SWRMS 0 0 0 0 
node B SWRMS 8.554 6.557 3.729 0.839 
overall SWRMS 4.277 3.279 1.864 0.42 

AIC 16.62 14.37 7.33 -10.53 
rel. robustness 172 92 34 16 
abs. robustness 0 0 1.3 9 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kABB A[ ]nABB 1 B[ ]nABB 2( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kABB A[ ]nABB 1 B[ ]nABB 2
kB + kAB A[ ]nAB + kABB A[ ]nABB 1 B[ ]nABB 2 + kb

		

 
T15 - negative feedback / low-true positive feedback, arrow to arrow 

I        A        B 

 
I        A        B 
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 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0* 0.0381* 
kb 1 1 1 1 
kAB 1.284* 2.234* 12.018* 2.948* 
nAB 1 1 4.832* 1.659* 
kAbB 2 0* 2 17.491* 
nAbB 1,1 1,1 1,1 9.326,0* 

node A SWRMS 0 0 0 0 
node B SWRMS 13.016 11.09 2.482 0.839 
overall SWRMS 6.508 5.546 1.241 0.419 

AIC 23.33 22.77 0.82 -10.55 
rel. robustness 288 132 28 17 
abs. robustness 0 0 6 10 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kAbB A[ ]nAbB 1 b[ ]nAbB 2( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kAbB A[ ]nAbB 1 b[ ]nAbB 2
kB + kAB A[ ]nAB + kAbB A[ ]nAbB 1 b[ ]nAbB 2 + kb

		

 
T16 - positive feedback / low-true negative feedback, arrow to arrow 

  
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0.0469* 0* 0* 0* 
ka 1 1 1 1 
kIA 0* 1* 0.164* 1* 
nIA 1 1 0.2027* 1* 
kB 0* 0* 0.161* 0.1345* 
kb 1 1 1 1 
kAB 2.1744* 2.234* 3.847* 6.709* 
nAB 1 1 2.2848* 2.797* 
kIBA 2 0* 2 0* 
nIBA 1,1 1,1 1,1 1,1* 

node A SWRMS 3.563 0 4.69 0 
node B SWRMS 9.689 11.09 5.863 3.724 

I        A        B 

  
I        A        B 

 

I        A        B 
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overall SWRMS 6.626 5.546 5.278 1.862 
AIC 23.62 22.77 23.98 13.31 

rel. robustness 366 134 282 31 
abs. robustness 0 0 0 1.4 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA + kIBA I[ ]
nIBA 1 B[ ]nIBA 2( ) − A[ ] ka( ) 	  

!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA + kIBA I[ ]

nIBA 1 B[ ]nIBA 2
kA + kIA I[ ]

nIA + kIBA I[ ]
nIBA 1 B[ ]nIBA 2 + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

		

 
T17 - negative feedback / low-true positive feedback, arrow to arrow 

  
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 0.0247* 1* 0.058* 1* 
nIA 1 1 2.576* 1* 
kB 0* 0* 0.0878* 0.1345* 
kb 1 1 1 1 
kAB 2.0929* 2.234* 9.049* 6.709* 
nAB 1 1 3.338* 2.797* 
kIbA 2 0* 2 0* 
nIbA 1,1 1,1 1,1 1,1* 

node A SWRMS 3.2897 0 5.098 0 
node B SWRMS 13.458 11.09 1.5904 3.724 
overall SWRMS 8.374 5.546 3.344 1.862 

AIC 27.37 22.77 16.68 13.31 
rel. robustness 626 131 276 31 
abs. robustness 0 0 0 1.6 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA + kIbA I[ ]
nIbA 1 b[ ]nIbA 2( ) − A[ ] ka( ) 		  

!B[ ] = b[ ] kB + kAB A[ ]nAB( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA + kIbA I[ ]

nIbA 1 b[ ]nIbA 2
kA + kIA I[ ]

nIA + kIbA I[ ]
nIbA 1 b[ ]nIbA 2 + ka

		 B[ ] = kB + kAB A[ ]nAB
kB + kAB A[ ]nAB + kb

		

 

T18 - negative feedforward / low-true positive feedforward, arrow to arrow 

I        A        B 

  
I        A        B 
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 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0* 0* 0.0381* 
kb 1 1 1 1 
kAB 1.494* 2.234* 11.726* 17.491* 
nAB 1 1 4.757* 9.326* 
kaAB 2 0* 2 2.948* 
naAB 1,1 1,1 1,1 0,1.659* 

node A SWRMS 0 0 0 0 
node B SWRMS 15.277 11.09 2.838 0.839 
overall SWRMS 7.638 5.546 1.419 0.420 

AIC 25.89 22.77 2.96 -10.53 
rel. robustness 225 133 24 27 
abs. robustness 0 0 3.7 16 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kaAB a[ ]naAB 1 A[ ]naAB 2( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kaAB a[ ]naAB 1 A[ ]naAB 2
kB + kAB A[ ]nAB + kaAB a[ ]naAB 1 A[ ]naAB 2 + kb

		

 
T19 - positive feedforward / low-true negative feedforward, arrow to arrow 

  
 non-coop. non-coop. cooperative cooperative 

parameter control fixed control fit control fixed control fit 
kA 0* 0* 0* 0* 
ka 1 1 1 1 
kIA 1* 1* 1* 1* 
nIA 1 1 1* 1* 
kB 0* 0.0377* 0.1653* 0.0381* 
kb 1 1 1 1 
kAB 1.201* 0* 6.797* 17.491* 
nAB 1 1 4.166* 9.326* 
kAAB 2 4.619* 2 2.948* 
nAAB 1,1 1,1 1,1 1.654,0* 

node A SWRMS 0 0 0 0 
node B SWRMS 7.302 4.794 3.217 0.839 

I        A        B 

  
I        A        B 
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overall SWRMS 3.651 2.397 1.609 0.420 
AIC 14.08 9.35 4.97 -10.53 

rel. robustness 207 153 47 16 
abs. robustness 0 11 4.6 9 

 
Differential	equations	and	steady-state	node	activities:	

 
!A[ ] = a[ ] kA + kIA I[ ]

nIA( ) − A[ ] ka( ) 		  
!B[ ] = b[ ] kB + kAB A[ ]nAB + kAAB A[ ]nAAB 1 A[ ]nAAB 2( ) − B[ ] kb( ) 		

A[ ] = kA + kIA I[ ]
nIA

kA + kIA I[ ]
nIA + ka

		 B[ ] = kB + kAB A[ ]nAB + kAAB A[ ]nAAB 1 A[ ]nAAB 2
kB + kAB A[ ]nAB + kAAB A[ ]nAAB 1 A[ ]nAAB 2 + kb

		

	

4.2.	Robustness	of	two-node	topologies	

To	better	understand	the	robustness	parameters	that	we	quantified	and	reported	above,	
we	looked	for	correlations	between	their	values	and	the	optimal	SWRMS	distances.		The	
following	graphs	show	the	relative	robustness	values.		As	described	above,	the	relative	
robustness	for	a	particular	model	is	the	percent	of	trial	models	that	had	SWRMS	distances	less	
than	3	units	greater	than	the	optimal	SWRMS	distance.		This	tests	the	robustness	of	an	
optimized	model	to	parameter	variation.	

	

	 	
The	two	graphs	present	the	same	data	but	use	either	linear	and	log	scales	to	show	the	results	
more	clearly.		Colors	are	the	same	as	in	Figure	3	of	the	main	text	(green	for	non-cooperative	
models,	blue	for	cooperative;	light	colors	for	fixed	control	arrows	and	dark	colors	for	fit	control	
arrows).		These	graphs	show	a	positive	correlation	between	robustness	and	optimal	SWRMS	
distance.		In	these	results,	the	linear	topology,	T1,	and	the	push-pull	topology,	T8,	are	typical;	all	
of	their	data	points	lie	close	to	the	main	diagonal.		In	particular,	the	fully	optimized	push-pull	
topology	has	an	SWRMS	distance	of	0	and,	correspondingly,	a	very	low	robustness	of	0.6%.		This	
low	robustness	shows	that	it	is	highly	sensitive	to	parameter	variation.	

To	better	understand	this	correlation,	we	considered	the	SWRMS	distance	as	a	function	of	
parameter	space,	visualizing	the	function	as	a	curved	surface.		This	surface	has	a	depression	that	
is	centered	around	the	region	where	the	parameters	are	optimal,	and	a	minimum	at	the	optimal	
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parameters.		The	correlation	shows	that	topologies	that	produce	deep	depressions	in	the	
SWRMS	surface	(e.g.	the	push-pull	topology)	tend	to	have	narrow	depressions,	whereas	those	
that	produce	small	depressions	in	the	SWRMS	surface	tend	to	have	broad	depressions.	

A	somewhat	different	picture	emerges	from	the	absolute	robustness	values.		The	absolute	
robustness	is	the	percent	of	trial	models	that	had	SWRMS	distances	below	a	value	of	3.		This	
tested	the	likelihood	that	a	model	with	randomly	chosen	parameters	would	exhibit	partial	
DoRA.		The	following	figure	shows	that	absolute	robustness	values	generally	correlate	inversely	
with	the	optimal	SWRMS	distance.	

	 	
As	before,	blue	dots	represent	the	models	with	both	control	arrows	and	cooperativity	
optimized.		Data	for	models	optimized	in	other	ways	are	not	shown	for	clarity,	but	generally	
agreed	with	the	same	trend.		The	line	shown	here	was	not	fit	to	the	data,	but	simply	added	to	
guide	the	eye.		The	two	points	that	do	not	lie	on	the	line	are	for	T8	(robustness	of	0.6),	the	push-
pull	topology,	and	T12	(robustness	of	0.06),	which	also	includes	a	low-true	negative	arrow	and	
achieves	DoRA	in	a	similar	manner.		The	inverse	correlation	found	here	shows	that,	in	general,	
models	that	are	better	at	exhibiting	DoRA	also	have	a	greater	range	of	parameters	for	which	
they	exhibit	partial	DoRA.		Considering	the	SWRMS	surface	as	a	function	of	parameter	space,	
this	shows	that	the	width	of	a	depression	at	a	fixed	height	above	the	baseline	(SWRMS	distance	
of	0)	tends	to	increase	as	the	depression	gets	deeper,	much	as	one	would	expect	for	a	
depression	that	has	sloped	sides.		However,	topologies	T8	and	T12	are	exceptions.		For	them,	
relatively	few	randomly	chosen	parameter	sets	yielded	partial	DoRA.		This	implies	that	the	
depressions	in	their	SWRMS	surfaces	are	particularly	narrow.		This	agrees	with	the	results	for	
the	relative	robustness,	where	we	found	that	these	topologies	are	particularly	sensitive	to	
parameter	variation.	

	
4.3.	Control	arrows	act	independently	

We	tested	whether	any	two-node	topology	with	multiple	control	arrows	could	produce	
better	DoRA	than	those	with	single	arrows.	To	do	so,	we	started	with	a	topology	with	a	single	
control	arrow	and	then	added	all	control	arrows	that	had	produced	the	same	or	larger	SWRMS	
distances	when	used	alone.	Upon	re-optimization,	we	found	that	these	additional	arrows	led	to	
negligible	improvement	in	every	case	(see	below).	For	example,	the	SWRMS	distance	for	T14	
was	3.28	and	the	distance	for	the	same	topology	plus	control	arrows	from	all	single-arrow	
topologies	that	produced	worse	fits	was	3.22.	This	showed	that	control	reactions	cannot	work	in	
synergy	to	produce	DoRA	in	two-node	models.	
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The	following	table	presents	optimized	model	parameters	for	several	two-node	models	
that	included	multiple	control	arrows.		Each	of	these	models	used	non-cooperative	reactions.		‘x’	
values	in	the	table	represent	arrows	that	were	not	included	in	the	model.		Each	column	
represents	one	model.		The	column	labeled	“T1+worse”	is	for	topology	T1,	which	is	the	linear	
topology,	plus	all	control	arrows	that	did	not	reduce	the	SWRMS	fit	distance	to	below	that	of	T1	
when	used	alone.		For	example,	adding	negative	feedback	to	T1,	creating	topology	T2,	did	not	
lower	the	SWRMS	fit	distance,	so	it	was	a	“worse”	arrow	and	was	included	in	the	“T1+worse”	
model.		On	the	other	hand,	adding	a	low-true	negative	feedforward	to	T1,	creating	topology	T8,	
did	lower	the	SWRMS	fit	distance,	so	it	was	not	a	“worse”	arrow	and	was	not	included	in	this	
particular	model.		The	other	models	listed	here	are	analogous.		The	last	rows	of	the	table	
present	the	SWRMS	fit	distances	for	nodes	A	and	B	and	for	the	overall	model.		The	final	“control	
distance”	row	presents	the	SWRMS	fit	distance	for	the	same	topology	but	without	any	of	the	
“worse”	arrows.		For	example,	the	control	distance	for	the	“T1+worse”	model	is	simply	the	
SWRMS	fit	distance	for	topology	T1. 

 
 parameter T1 T8 T12 T14 T19 

parameter description +worse +worse +worse +worse +worse 
kA A activation 0 0 0 0 0 
kB B activation 0 0 0 0 0 
ka A inactivation 1 1 1 1 1 
kb B inactivation 1 0 0 1 1 
kIA core arrow 1 1 1 1 1 
kAB core arrow 2.234 1 1 0 0 
kBa in T2, n.fb. 0 0 0 0.045 0 
kAb in T3, p.fb. 0.203 0 0 0 0 
kAb in T4, n.ff. 0 0 0 0 0 
kAB2 in T5, p.ff. 0 0 0 0 0 
kba in T6, lt.n.fb. 0.867 0 0 0.031 0 
kbA in T7, lt.p.fb. 0 0 0 0 0 
kab in T8, lt.n.ff. x 1 x x x 
kaB in T9, lt.p.ff. 0 0 0 0 0 
kBb in T10, n. 0 0 0 0 0 
kBB in T11, p. 0 0 0 0 0 
kbb in T12, lt.n. x 0 1 x x 
kbB in T13, lt.p. 0 0 0 0.067 0.046 
kABB in T14, p.fb. x 0 0 4.370 0 
kAbB in T15, n.fb. 0 0 0 0 0 
kIBA in T16 0.203 0 0 0.045 0 
kIbA in T17 0.415 0 0 0.031 0 
kAaB in T18 0 0 0 0 0 
kAAB in T19 x 0 0 x 4.672 

node A SWRMS  0 0 0 0 0 
node B SWRMS  11.091 0 0 6.449 4.741 
overall SWRMS  5.545 0 0 3.225 2.371 

comparison SWRMS  5.546 0 0 3.279 2.397 



Andrews,	Peria,	Yu,	Colman-Lerner,	and	Brent,	Cell	Systems,	2016	

 

42	

 

Key	to	abbreviations	in	the	parameter	description	column:	lt.	=	low-true,	n.	=	negative,	p.	=	
positive,	fb.	=	feedback,	and	ff.	=	feedforward.	

	

These	results	show	that	control	arrows	act	essentially	independently	of	each	other	as	opposed	
to	acting	synergistically.	More	specifically,	if	two	control	arrows	do	not	cause	the	network	to	
exhibit	DoRA	by	when	used	separately,	then	they	also	do	not	cause	the	network	to	exhibit	DoRA	
when	used	together.		This	test	investigated	all	possible	pairs	of	control	arrows.	
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5.	Results	for	four-node	toplogies	

5.1	Idealized	target	functions	

The	following	table	presents	the	parameters	for	several	4-node	models	that	we	fit	to	
idealized	target	functions.		The	main	text	discusses	the	models	and	the	left	column	of	Figure	4	
presents	their	dose-response	functions. 

 
 parameter Figure 4A Figure 4B Figure 4C Figure 4D Figure 4E 

parameter description linear cooperative pos. ff. push-pull pull reaction 
kA A activation 0 0 0 0 0 
kB B activation 0 0.151 0 0 0 
kC C activation 0 0.177 0 0 0 
kD D activation 0 0.186 0 0 0 
ka A inactivation 1 1 1 1 1 
kb B inactivation 1 1 1 0 1 
kc C inactivation 1 1 1 0 1 
kd D inactivation 1 1 1 0 0 
kIA rate, I→A 1 1 1 1 1 
kAB rate, A→B 2.032 6.201 2.234 1 2.041 
kBC rate, B→C 1.858 6.316 0 1 1.866 
kCD rate, C→D 1.784 6.305 0 1 1 
nIA order, I→A 1 1 1 1 1 
nAB order, A→B 1 2.745 1 1 1 
nBC order, B→C 1 2.851 1 1 1 
nCD order, C→D 1 2.880 1 1 1 
kAC p.ff., A→C x x 2.234 x x 
kAD p.ff., A→D x x 2.234 x x 
kab lt.n.ff., A→B x x x 1 x 
kbc lt.n.ff., B→C x x x 1 x 
kcd lt.n.ff., C→D x x x 1 x 
kad lt.n.ff., A→D x x x x 1.046 

A SWRMS  0 0 0 0 0 
B SWRMS  11.307 3.835 11.091 0 11.286 
C SWRMS  16.037 5.526 11.091 0 16.038 
D SWRMS  19.040 6.730 11.091 0 6.631 

overall 
SWRMS  11.596 4.023 8.318 0 8.489 

 
5.2	Yeast	dose-response	data	target	functions	

The	following	table	presents	the	parameters	for	several	4-node	models	that	we	fit	to	
target	functions	that	we	created	from	experimental	yeast	dose-response	data.		These	target	
functions	are	described	in	section	1.		The	main	text	discusses	the	models	and	the	right	column	of	
Figure	4	presents	their	dose-response	functions. 
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 parameter Figure 4F Figure 4G Figure 4H Figure 4I Figure 4J 

parameter description linear cooperative p.ff. push-pull push-pull,  
cooperative 

kR R activation 0 0 0 0 0 
kG G activation 0 0 0 0 0.001 
kF F activation 0.177 0.140 0.198 0.138 0 
kP P activation 0 0.208 0 0 0.006 
kr R inactivation 1 1 1 1 1 
kg G inactivation 1 1 1 0 0 
kf F inactivation 1 1 1 1 0.018 
kp P inactivation 1 1 1 0 0 
kαR rate, α→R 0.2 0.2 0.2 0.2 0.2 
kRG rate, R→G 2.307 8.675 2.336 1 0.790 
kGF rate, G→F 1.255 0.762 1.167 1.626 0.957 
kFP rate, F→P 2.015 2.371E5 0 0.461 5232 
nαR order, α→R 1 1 1 1 1 
nRG order, R→G 1 2.763 1 1 1.306 
nGF order, G→F 1 0.224 1 1 0.263 
nFP order, F→P 1 14.258 1 1 18.491 
kRF p.ff., R→F x x 0 x x 
kRP p.ff., R→P x x 3.444 x x 
krg lt.n.ff., R→G x x x 0.900 0.792 
kgf lt.n.ff., G→F x x x 0 1.010 
kfp lt.n.ff., F→P x x x 0.313 0.878 
nrg lt.n.ff. order x x x 1 1.483 
ngf lt.n.ff. order x x x 1 0.036 
nfp lt.n.ff. order x x x 1 9.374 

R SWRMS  0 0 0 0 0 
G SWRMS  14.236 4.524 14.247 5.212 0.976 
F SWRMS  1.274 0.588 1.012 5.861 0.363 
P SWRMS  21.698 4.946 9.617 13.987 0.504 

overall 
SWRMS  9.303 2.514 6.219 6.265 0.461 
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6.	Robustness	of	results	to	changes	in	input	data,	fitting	metric,	and	parameter	values	

6.1	Robustness	to	input	data	and	fitting	metric	

The	similarity	between	our	results	from	target	dose-response	curves	that	were	perfectly	
aligned	and	from	the	imperfectly	aligned	experimental	data	suggested	that	our	results	might	be	
reasonably	general.	In	support	of	this,	we	found	essentially	the	same	results	for	the	2-node	and	
4-node	idealized	models.	Furthermore,	we	found	qualitatively	identical	results	in	two	
preliminary	studies.	In	one,	we	set	the	amplitude	of	the	PRM1	node	to	0.35	instead	of	0.95.	In	
another,	we	used	a	different	fitting	metric,	defining	it	as	the	root	mean	squared	differences	
between	the	parameters	of	a	Hill	function	fit	to	the	model	and	the	parameters	of	the	target	
curves	(the	DoRA-score,	described	in	section	3.2).	

	

6.2	Robustness	to	parameter	variation	

We	also	tested	the	robustness	of	optimized	models	to	parameter	variation.	In	each	case,	
we	created	a	set	of	105	“trial	models”	by	varying	the	optimal	parameters	by	up	to	3-fold.	We	
computed	the	fraction	of	these	trial	models	that	had	SWRMS	distances	within	3	units	of	the	
optimum	value	(Document	S1).	From	this	survey,	we	found	that	the	models	that	fit	the	targets	
better,	such	as	the	push-pull	mechanism	(T8)	were	generally	more	sensitive	to	parameter	
variation	than	those	that	fit	the	targets	poorly,	such	as	the	linear	topology	(T1).	This	observation	
held	for	all	fits	to	two-node	models,	including	those	in	which	we	only	fit	some	of	the	
parameters.	Rephrased:	if	one	pictures	the	value	of	the	SWRMS	metric	as	a	surface	in	parameter	
space,	our	results	show	that	deeper	minima	in	this	surface	are	also	narrower.	This	finding	
suggested	that	the	high	sensitivity	of	the	push-pull	model	arose	from	the	fact	that	it	fit	the	
target	function	well,	as	opposed	to	some	particular	attribute	of	its	topology.	
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7.	Michaelis-Menten	kinetics	

7.1	Simplified	Michaelis-Menten,	linear	topology	

We	defined	the	simplified	Michaelis-Menten	approach	as	the	assumption	of	Henri-
Michaelis-Menten	kinetics,	but	without	an	explicit	treatment	of	enzyme-substrate	complexes.		
The	following	analysis	shows	that	topology	T1	can	exhibit	perfect	DoRA	when	assuming	
simplified	Michaelis-Menten	kinetics.	

For	convenience,	we	assumed	that	there	is	no	uncatalyzed	activation	of	either	node	A	or	
node	B,	meaning	that	kA	=	kB	=	0.		We	also	assumed	first	order	kinetics,	meaning	that	nIA	=	nAB	=	
0.		Although	we	assumed	in	most	of	our	work	that	the	total	amount	of	each	species	is	equal	to	1,	
we	did	not	make	that	assumption	here;	instead,	we	set	the	total	amount	of	node	A	to	[A]tot.	and	
the	total	amount	of	node	B	to	[B]tot..		Using	these	assumptions	and	the	conventional	equations	
for	Michaelis-Menten	kinetics	at	steady-state,	the	net	formation	rates	of	A	and	B	are 

  
!A[ ] = kc ,IA I[ ] a[ ]

a[ ] + KM ,IA

− ka A[ ]  
 
!B[ ] = kc ,AB A[ ] b[ ]

KM ,AB + b[ ]
− kb B[ ]  

 
These	equations	include	the	new	parameters:	kc,IA	and	kc,AB	are	the	Michaelis-Menten	catalytic	
rate	constants	for	activation	of	node	A	by	I,	and	activation	of	node	B	by	A,	respectively.		Also,	
KM,IA	and	KM,AB	are	the	Michaelis	constants	for	these	two	reactions.		At	steady-state,	both	net	
formation	rates	equal	zero.	

Focus	first	on	the	node	A	equation.		It	is	easy	to	simplify	in	two	limits.		First,	consider	the	
limit	of	low	saturation,	in	which	KM,IA	is	much	larger	than	[A]tot..		To	do	so,	we	defined	kIA	=	
kc,IA/KM,IA,	substituted	this	into	the	node	A	net	formation	rate	equation,	and	set	the	result	to	zero	
for	the	steady-state	condition,	which	gave 

 
  
0 =

k
IA

K
M ,IA

I[ ] a[ ]
a[ ] + K

M ,IA

− k
a

A[ ]   

Next,	we	took	the	limit	that	KM,IA	is	increased	towards	infinity,	which	led	to	

   0 = k
IA

I[ ] a[ ]− k
a

A[ ]   

This	result	is	identical	to	the	steady-state	equation	for	the	simple	mass	action	approach	
considered	in	the	rest	of	this	work.		It	shows	that	the	simple	mass	action	approach	is	consistent	
with	the	simplified	Michaelis-Menten	approach,	but	makes	the	assumption	of	low	enzyme	
saturation	(i.e.	KM	values	are	much	larger	than	species	concentrations).		In	section	4.1,	we	solved	
this	equation	to	show	that	node	A	aligns	perfectly	with	the	target	function	if	ka	=	kIA	=	1.	

The	net	formation	rate	of	node	A	is	also	easy	to	simplify	in	the	opposite	limit	of	strong	
enzyme	saturation,	in	which	KM,IA	is	much	smaller	than	[A]tot..		We	took	this	limit	by	starting	with	
the	net	formation	rate	equation	again,	decreasing	KM,IA	to	zero,	and	setting	the	result	to	zero	for	
the	steady-state	condition,	which	yielded 

   0 = k
c ,IA

I[ ]− k
a

A[ ]   

This	result	solves	to	
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A[ ] = k
c ,IA

k
a

I[ ]   

This	is	not	a	Hill	function,	which	implies	that	the	node	A	activity	cannot	align	with	the	target	
dose-response	curve	in	the	limit	of	high	enzyme	saturation.	

We	also	solved	for	the	steady-state	node	A	activity	between	these	two	limits	of	low	and	
high	enzyme	saturation.		The	result	is	lengthy	so	we	do	not	present	it	here.		However,	
importantly,	it	is	not	a	Hill	function.		Together,	these	results	show	that	the	node	A	activity	can	
only	agree	with	its	target	function,	while	assuming	simplified	Michaelis-Menten	kinetics,	in	the	
limit	of	low	enzyme	saturation,	which	is	also	the	limit	that	we	investigated	throughout	the	rest	
of	this	work.	

Focus	next	on	the	node	B	equation.		It	is	structurally	identical	to	the	node	A	equation,	so	it	
has	the	same	solutions.		As	a	result,	we	simply	present	them	here	rather	than	re-deriving	them.		
In	the	limit	of	low	saturation,	meaning	that	KM,AB	is	much	greater	than	[B]tot.,	the	steady-state	
equation	is 

   0 = k
AB

I[ ] b[ ]− k
b

B[ ]   

This	uses	the	definition	kAB	=	kc,AB/KM,AB.		As	before,	this	result	is	identical	to	the	simple	mass	
action	approach	that	we	used	in	the	rest	of	this	work,	showing	again	that	the	simple	mass	action	
approach	is	equivalent	to	the	simplified	Michaelis-Menten	approach	with	the	assumption	of	low	
enzyme	saturation.		Section	4.1	shows	that	use	of	this	steady-state	equation	does	not	allow	the	
node	B	activation	to	align	with	the	target	function.		The	opposite	limit	of	high	enzyme	
saturation,	meaning	that	KM,AB	is	much	less	than	[B]tot.,	leads	to	the	solution	

 
  

B[ ] = k
c ,AB

k
b

A[ ]   

Including	the	total	species	concentrations	changes	the	equation	slightly	to	

 
  

B[ ]
B[ ]

tot .

=
k

c ,AB
A[ ]

tot .

k
b

B[ ]
tot .

A[ ]
A[ ]

tot .

  

The	above	equation	now	shows	that	the	dose-response	curve	for	node	B	is	identical	to	that	for	
node	A,	meaning	perfect	DoRA,	if	kc,AB[A]tot.	=	kb[B]tot..		Because	we	already	stated	that	the	node	
A	activity	can	align	perfectly	with	the	target	function,	this	shows	that	the	node	B	activity	can	
also	align	perfectly	with	the	target	function.	

These	results	show	that	topology	T1	can	exhibit	perfect	DoRA	when	implemented	using	
simplified	Michaelis-Menten	kinetics.		Topology	T1	does	so	when	node	A	is	in	the	unsaturated	
limit,	where	its	kinetics	are	identical	to	those	of	the	simple	mass	action	approach,	and	when	
node	B	is	in	the	saturated	limit.		This	saturated	limit	is	the	“zeroth	order	regime”	described	by	
Goldbeter	and	Koshland	(Goldbeter	and	Koshland).	

	

7.2	Full	Michaelis-Menten,	linear	topology	
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This	section	investigates	topology	T1	again,	but	using	what	the	main	text	labels	the	“full	
Henri-Michaelis-Menten”	approach.		Its	only	difference	from	the	simplified	Michaelis-Menten	
approach	described	above	is	that	it	treats	the	enzyme-substrate	complexes	explicitly.	

First,	we	assumed	Henri-Michaelis-Menten	mechanisms	for	both	node	A	activation	and	
node	B	activation	and	simulated	the	resulting	reaction	network	using	COPASI.		The	reaction	
network	was 

 
 
I+ a k f ,IA

kr ,IA
! ⇀!!↽ !!!! Ia    Ia

kc ,IA⎯ →⎯⎯ I + A     A
ka⎯ →⎯ a   

 
 
A+ b k f ,AB

kr ,AB
! ⇀!!!↽ !!!! Ab   ,Ab A Bc ABk⎯⎯⎯→ +   B bbk⎯⎯→   

We	simulated	each	of	these	reactions	using	mass	action	kinetics.		We	also	defined	the	total	
concentrations	for	the	two	species	as	[A]tot.	and	[B]tot..		We	defined	responses	in	this	case	as	the	
total	fraction	of	the	active	state	of	each	species,	independent	of	whether	it	was	free	or	part	of	a	
complex.		We	did	not	have	software	that	would	automatically	optimize	the	rate	constants	in	this	
network,	minimizing	the	SWRMS	distance	between	the	network’s	steady-state	dose-response	
curves	and	the	target	functions,	so	we	did	the	optimization	manually.		To	do	so,	we	computed	
steady-state	dose-response	curves	using	COPASI,	copied	the	results	into	an	Excel	spreadsheet	
that	computed	SWRMS	distances,	and	then	adjusted	parameters	and	repeated	until	we	found	
the	best	possible	fit.		We	followed	the	greedy	random	walk	approach,	described	above.		This	
required	about	40	iterations,	first	to	identify	the	best	fit	and	then	to	verify	that	it	was	a	local	
minimum	in	parameter	space.		We	found	that	the	best	fit	could	arise	from	many	different	
parameter	sets,	one	of	which	was:	kf,IA	=	1,	kr,IA	=	0,	kc,IA	=	1000,	ka	=	1,	kf,AB	=	2.234,	kr,AB	=	0,	kc,AB	
=	1000,	kb	=	1,	[A]tot.	=	1,	and	[B]tot.	=	1.		All	of	these	best	fits	had	a	SWRMS	distance	of	5.55.		
Inspection	of	these	results	showed	that	all	of	them	were	essentially	identical	to	the	simple	mass	
action	result	(leading	to	the	same	fit	distance)	and	that	they	differed	from	each	other	in	ways	
that	did	not	affect	the	dose-response	curves	(e.g.	changing	[A]tot.	did	not	affect	the	dose-
response	curves).	

To	better	understand	these	results,	we	defined	Michaelis	constants	for	the	reactions	in	
the	usual	way, 

 
  
K

M ,IA
=

k
r ,IA

+ k
c ,IA

k
f ,IA

  
  
K

M ,AB
=

k
r ,AB

+ k
c ,AB

k
f ,AB

  

In	our	best	fit,	KM,IA	was	much	larger	than	[A]tot.	and	KM,AB	was	much	larger	than	[B]tot.,	meaning	
that	both	enzymes	were	in	their	unsaturated	limits.		For	both	Henri-Michaelis-Menten	reactions,	
the	reverse	rate	constant	equaled	zero	and	the	catalytic	rate	constant	was	much	larger	than	the	
forward	rate	constant,	which	made	the	forward	reaction	the	rate-limiting	step.		With	this	
identification,	the	reactions	simplify	to	

 ,I a I Af IAk+ ⎯⎯⎯→ +    A aak⎯⎯→    Ia[ ] ≈ 0   

 ,A b A Bf ABk+ ⎯⎯⎯→ +    B bbk⎯⎯→    Ab[ ] ≈ 0   

These	are	exactly	the	same	as	the	reactions	of	the	simple	mass	action	approach.	

Thus,	when	modeled	using	the	full	Henri-Michaelis-Menten	approach,	topology	T1	is	best	
able	to	exhibit	DoRA,	meaning	that	the	SWRMS	fit	distance	between	its	dose-response	curves	
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and	the	target	functions	is	minimized,	when	both	enzymes	are	in	limit	of	low	enzyme	saturation.		
This	solution	is	identical	to	the	simple	mass	action	approach.		This	solution	is	also	identical	to	
the	simplified	Michaelis-Menten	approach,	when	it	is	considered	in	this	low	saturation	limit.		
However,	importantly,	we	found	that	SWRMS	fit	distances	increased	with	A	enzyme	saturation	
in	this	full	Henri-Michaelis-Menten	approach,	in	marked	contrast	to	the	finding	that	A	enzyme	
saturation	can	lead	to	perfect	DoRA	in	the	simplified	Michaelis-Menten	approach.	

We	further	investigated	the	behavior	of	this	full	Henri-Michaelis-Menten	approach.		To	do	
so,	we	started	by	simplifying	the	reaction	network	by	using	simple	mass	action	kinetics	for	node	
A,	thus	effectively	fixing	the	saturation	of	enzyme	I,	the	input,	to	a	low	level.		The	resulting	
network	is	shown	in	the	main	text	Figure	5B.		This	simplification	did	not	affect	the	optimal	result	
at	all,	but	helped	us	to	focus	on	the	interesting	behavior,	which	is	the	saturation	of	enzyme	A.		
The	following	figure	shows	steady-state	dose-response	curves	from	COPASI	simulations	of	this	
network.		On	the	left,	we	used	essentially	the	optimal	parameters	listed	above,	leading	to	low	
enzyme	saturation	(kIA	=	1,	ka	=	1,	kf,AB	=	2.234,	kr,AB	=	0,	kc,AB	=	1000,	kb	=	1,	[A]tot.	=	1,	and	[B]tot.	=	
1).		On	the	right,	we	used	parameters	for	the	same	node	B	activation	rate	but	using	high	enzyme	
saturation	(kIA	=	1,	ka	=	1,	kf,AB	=	1000,	kr,AB	=	1,	kc,AB	=	2.234,	kb	=	1,	[A]tot.	=	1,	and	[B]tot.	=	1).		In	
both	figure	panels,	the	black	dashed	line	is	the	target	function,	the	red	dotted	line	is	[A],	the	
large	red	spots	are	[Ab],	the	red	solid	line	is	total	active	A	which	is	[A]+[Ab],	and	the	orange	line	
is	[B]. 

 
Comparison	of	these	figure	panels	shows	the	effects	of	enzyme	saturation.		In	particular,	they	
show	that	the	activity	level	of	node	A	changes	with	the	different	parameters,	despite	the	facts	
that	the	node	A	parameters	are	exactly	the	same	in	both	cases	and	there	is	no	explicit	feedback	
in	topology	T1	from	node	B	to	node	A.		We	realized	that	this	change	arises	because	the	
complexation	between	A	and	b	shifts	the	equilibrium	for	node	A	towards	its	active	state,	and	
that	this	phenomenon	is	the	same	as	that	described	previously	as	retroactivity	or	hidden	
feedback	(Ventura	et	al.);	(Del	Vecchio	et	al.).		We	also	realized	that	this	equilibrium	shift	for	
node	A	causes	a	decrease	in	the	node	B	EC50,	thus	worsening	its	alignment	with	the	target.		
Furthermore,	the	complexation	sequesters	b	into	Ab	complexes,	which	limits	the	total	activation	
of	node	B,	seen	in	the	right	panel	at	high	input	levels.	

	

7.3	Full	Michaelis-Menten,	topology	with	negative	feedback	
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We	also	investigated	topology	T2,	which	includes	a	negative	feedback	control	arrow	from	
node	B	to	node	A,	using	full	Henri-Michaelis-Menten	kinetics.		In	this	investigation,	we	treated	
the	activation	of	node	A	from	the	input	using	simple	mass	action	kinetics,	but	then	explicitly	
treated	all	enzyme-substrate	complexes	for	the	interactions	between	nodes	A	and	B.		The	use	of	
simple	mass	action	kinetics	for	the	activation	of	A	from	the	input	is	supported	by	the	findings	
shown	above	(section	7.2)	that	(i)	this	is	identical	to	its	treatment	using	full	Henri-Michaelis-
Menten	kinetics	when	taken	in	the	limit	of	low	enzyme	saturation,	and	(ii)	when	the	same	
reaction	in	topology	T1	was	modeled	using	full	Henri-Michaelis-Menten	kinetics,	it	could	only	fit	
the	target	function	when	in	this	limit	of	low	enzyme	saturation.	

This	topology	T2	reaction	network	included	a	positive	arrow	from	node	A	to	node	B	in	
which	A	is	the	enzyme	and	b	is	the	substrate.		It	also	included	a	negative	arrow	from	B	to	A	in	
which	B	is	the	enzyme	and	A	is	the	substrate.		The	chemical	reactions	were	

	 I + a kIA⎯ →⎯ I + A 		 	 	 	 	 	 A ka⎯→⎯ a 		

	
 
A + b

k f ,AB

kr ,AB

! ⇀!!↽ !!! Ab 	 		 Ab kc ,AB⎯ →⎯ A + B 		 	 B kb⎯→⎯ b 		

	
 
A + B

k f ,Ba

kr ,Ba

! ⇀!!↽ !!! AB 		 	 AB kc ,Ba⎯ →⎯ B+ a 		

The	first	row	shows	activation	of	A	from	I	and	inactivation	of	A,	the	second	row	shows	activation	
of	B	from	A	and	inactivation	of	B,	and	the	third	row	shows	negative	feedback	from	B	to	A.		We	
defined	the	Michaelis	constants	for	this	network	in	the	usual	way,	with	

	 KM ,AB =
kr ,AB + kc ,AB

k f ,AB

		 	 KM ,Ba =
kr ,Ba + kc ,Ba

k f ,Ba

		

We	optimized	the	rate	constants	in	this	reaction	network	as	described	in	section	7.2.		
First,	by	using	large	kc,AB	and	kc,Ba	values,	we	imposed	low	saturation.		In	this	case,	optimization	
led	to	the	same	result	found	with	the	simple	mass	action	kinetics	in	which	the	best	result	had	
the	negative	feedback	effectively	removed.		In	this	case,	the	SWRMS	distance	was	5.55,	in	
agreement	with	the	simple	mass	action	value	(section	4.1).	

Next,	we	relaxed	this	constraint	to	allow	for	high	enzyme	saturation.		Further	optimization	
led	to	a	nearly	perfect	DoRA	(d	=	0.118).		The	optimal	parameter	values	were:	kIa	=	1,	ka	=	1,	kf,AB	
=	4,	kr,AB	=	0,	kc,AB	=	105,	kb	=	1,	kf,Ba	=	105,	kr,Ba	=	0,	and	kc,Ba	=	1.		For	the	optimum	parameters,	
KM,AB	=	25,000	and	KM,Ba	=	10-5.		This	result	shows	that	the	forward	arrow	from	A	to	B	is	in	the	
unsaturated	limit	and	the	negative	feedback	arrow	from	B	to	A	is	in	the	saturated	limit.		In	
agreement	with	this,	computations	showed	that	the	steady-state	concentration	of	the	Ab	
complex	was	always	essentially	zero	and	the	steady-state	concentration	of	the	AB	complex	was	
always	much	greater	than	that	of	uncomplexed	B.		In	more	detail,	if	there	was	no	input	value,	
then	the	system	had	all	of	node	A	in	the	‘a’	form	and	all	of	node	B	in	the	‘b’	form.		At	higher	
input	values,	the	input	converted	a	to	A;	the	resulting	A	then	enzymatically	converted	b	to	B,	
and	then	all	of	the	A	and	B	combined	into	AB	complexes.		At	these	intermediate	input	levels,	the	
a,	b,	and	AB	species	were	highly	populated	(present	in	high	amounts),	while	the	amounts	of	the	
A,	B,	and	Ab	species	were	negligible.		Finally,	with	saturating	input,	all	molecules	from	both	
nodes	were	bound	together	in	AB	complexes.	

This	result	showed	that	essentially	perfect	DoRA	can	arise	in	a	reaction	network	that	has	a	
negative	feedback	loop	in	it	when	it	is	modeled	using	full	Henri-Michaelis-Menten	kinetics.		
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Inspection	showed	that	the	negative	feedback	loop	did	not	act	as	we	had	anticipated,	by	using	
the	signal	from	node	B	to	decrease	the	activity	of	node	A.		Instead,	it	acted	through	tight	binding	
between	A	and	B.		This	suppressed	the	formation	of	B	when	A	values	were	low	and	promoted	
the	formation	of	B	when	A	values	were	high,	both	of	which	promoted	alignment	of	node	B	with	
node	A.	

Another	(and	complementary)	understanding	of	this	network	is	that	it	produces	DoRA	
using	negative	feedback	that	included	a	comparator-adjustor	mechanism.		In	this	view,	tight	
binding	between	A	and	B	creates	a	comparator	between	and	A	and	B	amounts.		If	there	is	more	
A	than	B,	then	there	is	unbound	A;	those	A	molecules	enzymatically	convert	b	to	B,	thus	
adjusting	the	amount	of	B	upwards	and	reducing	the	difference	between	A	and	B.		On	the	other	
hand,	if	there	is	more	B	than	A,	then	there	is	unbound	B;	those	B	molecules	are	not	stabilized	by	
the	AB	complex,	so	they	spontaneously	deactivate	back	to	b.		This	conversion	of	B	to	b	adjusts	
the	amount	of	B	downwards,	again	reducing	the	difference	between	A	and	B.	

	

7.4	Full	Michaelis-Menten,	topology	with	push-pull	

We	performed	a	similar	analysis	with	topology	T8,	which	includes	a	push-pull	mechanism,	
to	see	how	its	steady-state	dose-response	behavior	changes	when	investigated	with	full	Henri-
Michaelis-Menten	kinetics.		As	above	in	section	7.3,	we	treated	the	activation	of	node	A	using	
simple	mass	action	kinetics	and	treated	both	arrows	between	nodes	A	and	B	using	explicit	
ezyme-substrate	complexes.		The	chemical	reactions	for	this	network	are	

	 I + a kIA⎯ →⎯ I + A 		 	 	 	 	 	 A ka⎯→⎯ a 		

	
 
A + b

k f ,AB

kr ,AB

! ⇀!!↽ !!! Ab 	 		 Ab kc ,AB⎯ →⎯ A + B 		 	 B kb⎯→⎯ b 		

	
 
a + B

k f ,ab

kr ,ab

! ⇀!!↽ !!! aB 		 	 aB kc ,ab⎯ →⎯ a + b 		

As	before,	the	first	row	shows	activation	of	A	from	I	and	inactivation	of	A,	and	the	second	row	
shows	activation	of	B	from	A	and	inactivation	of	B.		Here,	the	third	row	shows	the	“pull”	
reaction,	in	which	‘a’	acts	as	an	enzyme	that	converts	substrate	B	to	product	b.		The	Michaelis	
parameters	for	the	two	Michaelis-Menten	reactions	are	

	 KM ,AB =
kr ,AB + kc ,AB

k f ,AB

		 	 KM ,ab =
kr ,ab + kc ,ab
k f ,ab

		

As	the	main	text	and	section	4.1	describe,	the	push-pull	topology	can	exhibit	perfect	DoRA	
when	modeled	using	simple	mass	action	kinetics.		Because	full	Henri-Michaelis-Menten	kinetics	
become	identical	to	simple	mass	action	kinetics	in	the	limit	of	unsaturated	reactions,	we	
anticipated	that	this	network	would	also	exhibit	perfect	DoRA	when	both	KM	values	are	large.		
Indeed,	the	following	rate	constants	led	to	essentially	perfect	DoRA	(d	=	10-3):	kIA	=	1,	ka	=	1,	kf,AB	
=	1,	kr,AB	=	0,	kc,AB	=	105,	kf,ab	=	1,	kr,ab	=	0,	kc,ab	=	105;	using	these	parameters,	KM,AB	=	KM,ab	=	105.	

We	wondered	whether	the	same	network	could	also	produce	DoRA	when	not	in	this	
unsaturated	limit.		To	test	this,	we	tried	decreasing	the	kc,AB	and/or	kc,ab	values	in	order	to	
increase	saturation.		Both	led	to	worse	fits.		Changing	the	kf,AB,	kf,ab,	kr,AB,	and	kr,ab	values	also	led	
to	worse	fits.		We	also	tried	exploring	points	in	parameter	space	that	were	quite	distant	from	
this	optimum	to	see	if	those	parameter	combinations	could	produce	good	DoRA,	but	again	fits	
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were	invariably	worse.		Finally,	we	performed	optimization	from	those	distant	points	using	the	
greedy	random	walk	method.		We	found	that	the	parameters	reverted	towards	the	optimum	
given	above.		From	these	results,	we	concluded	that	the	push-pull	mechanism	only	produces	
perfect	DoRA	when	all	of	its	reactions	are	in	the	unsaturated	limit.	
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8.	Negative	feedback	can	produce	linear	input-output	relationships	

8.1	General	theory	

Figure	6A	presents	a	general	negative	feedback	system.		This	is	a	standard	system	that	is	
presented	in	many	control	theory	textbooks	(e.g.	(Astrom	and	Murray,	2008;	Franklin	et	al.,	
1994)).		An	operational	amplifier	that	is	wired	as	a	voltage	follower	is	a	particularly	important,	
and	widely	studied,	instance	of	this	general	system	(Horowitz	and	Hill,	1989).		Here,	we	present	
the	mathematics	that	shows	that	the	output	can	exactly	track	the	input	for	this	system	and	what	
conditions	produce	this	behavior.		See	control	theory	(Astrom	and	Murray,	2008;	Franklin	et	al.,	
1994)	or	electronics	(Horowitz	and	Hill,	1989)	textbooks	for	further	details.	

Define	the	input	value	as	Vin	and	the	output	value	as	Vout	(for	the	voltage	follower,	both	
values	are	voltages).			Assume	that	the	comparator-adjuster	simply	computes	the	difference	
between	the	input	and	output	values,	multiplies	that	difference	by	gain	G,	and	outputs	that	
result.		The	production	of	said	output	may	require	more	power	than	is	available	from	the	input	
signal;	assume	that	the	amplifier	has	the	capability	to	direct	to	the	output	as	much	power	as	
may	be	needed.	With	these	assumptions,	the	output	value	is	equal	to	the	output	from	the	
comparator-adjuster,	which	is 

  Vout
= G V

in
−V

out
( )   

Solving	for	Vout	yields	

 
  
V

out
=

GV
in

G + 1
  

This	equation	shows	that	Vout	=	Vin,	meaning	that	the	output	exactly	tracks	the	input,	in	the	limit	
that	the	gain	G	approaches	infinity,	i.e.	as	the	responsiveness	of	the	comparator-adjuster	to	
input-output	discrepancies	becomes	very	large.			Even	with	less	gain,	Vout	is	still	directly	
proportional	to	Vin,	but	has	a	lower	value.	

	

8.2	Conceptual	two-node	signaling	system	with	negative	feedback	

Figure	6B	shows	a	two-node	signaling	system	designed	to	produce	perfect	DoRA	using	
feedback	and	a	comparator-adjuster.		This	system	is	reasonably	similar	to	the	general	negative	
feedback	system	described	above,	but	has	some	additional	complexities	due	to	the	Hill	function	
dependencies	of	the	two	nodes.	

The	steady-state	node	A	activity,	assuming	simple	mass	action	kinetics	and	that	there	is	no	
uncatalyzed	activation	(see	section	2),	is 

 
  

A[ ]
A

tot .[ ] =
k

IA
I[ ]

k
IA

I[ ] + k
a

  

This	is	a	simple	Hill	function.	

We	compute	the	node	B	activity	with	two	different	sets	of	assumptions.		First,	to	create	a	
system	that	is	mathematically	closer	to	the	general	negative	feedback	case,	we	assume	that	the	
output	of	the	comparator-adjuster	can	be	negative	as	well	as	positive.		This	is	mathematically	
simple	(but,	if	the	output	is	molecular,	does	not	make	physical	sense).		With	this	assumption,	
the	steady-state	node	B	activity	follows	the	same	form	as	the	node	A	activity	(and	that	
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presented	in	section	2,	above)	but	with	the	forward	reaction	rate	driven	by	the	output	of	the	
comparator-adjuster.		Consider	the	comparator-adjuster	output	as	G,	the	gain	factor,	times	the	
difference	between	the	comparator-adjuster	inputs.		With	this,	the	steady-state	node	B	activity	
is	

 

  

B[ ]
B

tot .[ ] =
G

A[ ]
A

tot .[ ] −
B[ ]

B
tot .[ ]

⎛
⎝⎜

⎞
⎠⎟

G
A[ ]

A
tot .[ ] −

B[ ]
B

tot .[ ]
⎛
⎝⎜

⎞
⎠⎟
+ k

b

  

If	the	gain	factor	is	increased	towards	infinity,	then	the	kb	term	in	the	denominator	becomes	
irrelevant	and	so	can	be	dropped.		In	this	limit,	this	equation	simplifies	and	then	factors	to	yield	

 

  

B[ ]
B

tot .[ ]
A[ ]

A
tot .[ ] −

B[ ]
B

tot .[ ]
⎛
⎝⎜

⎞
⎠⎟
=

A[ ]
A

tot .[ ] −
B[ ]

B
tot .[ ]

⎛
⎝⎜

⎞
⎠⎟

A[ ]
A

tot .[ ] −
B[ ]

B
tot .[ ]

⎛
⎝⎜

⎞
⎠⎟

B[ ]
B

tot .[ ] − 1
⎛
⎝⎜

⎞
⎠⎟
= 0

  

This	result	shows	that	there	are	two	solutions	for	the	node	B	activity,	which	are	

 

  

B[ ]
B[ ]

tot .

=

A[ ]
A[ ]

tot .

1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

  

The	former	solution	represents	perfect	DoRA.		The	second	solution	is	an	artifact	of	our	
assumption	that	the	comparator-adjuster	output	can	be	negative	and	that	the	gain	is	so	large	
that	kb	can	be	ignored.		The	important	result	is	that	this	system	can	produce	perfect	DoRA	with	
the	assumptions	given,	provided	that	the	comparator-adjuster	produces	a	highly	amplified	
output.		Again,	however,	if	we	assume	that	the	output	of	the	comparator-adjuster	is	molecular,	
the	idea	that	it	can	be	negative	is	physically	unreasonable.	

Due	to	the	need	to	posit	positive	values	for	a	molecular	output,	we	visited	this	problem	
again,	but	with	a	slightly	different	comparator-adjuster	output.		Suppose	the	output	is	a	gain	
factor	times	the	difference	between	the	inputs,	if	this	value	is	positive,	and	is	zero	otherwise.		In	
this	case,	the	rate	of	change	of	the	node	B	activity	is 

 

  

d B[ ]
dt

= G

A[ ]
A[ ]

tot .

−
B[ ]

B[ ]
tot .

if 
B[ ]

B[ ]
tot .

<
A[ ]

A[ ]
tot .

0 else

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

b[ ]− k
b

B[ ]   

This	dynamical	system	will	have	a	stable	point	at	the	DoRA	condition,	

 
  

B[ ]
B[ ]

tot .

=
A[ ]

A[ ]
tot .
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if	d[B]/dt	<	0	whenever	[B]/[B]tot.	>	[A]/[A]tot.	and	also	d[B]/dt	>	0	whenever	[B]/[B]tot.	<	[A]/[A]tot..		
Substituting	these	conditions	into	the	above	rate	equation	leads	to	the	two	following	
requirements	

 
  
G

A[ ]
A[ ]

tot .

−
B[ ]

B[ ]
tot .

⎛
⎝⎜

⎞
⎠⎟

B[ ]
tot .
− B[ ]( ) − k

b
B[ ] > 0   whenever 

  

B[ ]
B[ ]

tot .

<
A[ ]

A[ ]
tot .

  

   −k
b

B[ ] < 0       whenever 
  

B[ ]
B[ ]

tot .

>
A[ ]
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The	second	condition	implies	that	kb	>	0,	which	is	what	we	were	assuming	anyhow.		The	first	
condition	can	only	be	satisfied	for	all	[B]	if	G	>>	kb.		With	this	condition,	it	is	satisfied.		The	
system	is	physically	reasonable	because	all	chemical	concentrations	are	positive.		Nevertheless,	
it	is	still	schematic	because	we	did	not	specify	a	biochemical	mechanism	for	the	comparator-
adjuster.	

These	results	show	that	that	DoRA	can	arise	from	a	physically	reasonable	chemical	
reaction	system	that	uses	negative	feedback	and	includes	a	comparator-adjuster.		We	
intentionally	designed	this	system	to	be	similar	to	an	operational	amplifier	that	is	wired	as	a	
voltage	follower,	described	above	in	section	8.1,	to	show	that	a	similar	mechanism	could	work	in	
biology.		There	are	biological	systems	in	prokaryotes,	such	as	regulation	of	TetR	and	controlled	
genes	in	transposon	Tn10,		that	operate	along	these	lines,	and	there	is	one	eukaryotic	system	
that	operates	at	a	cellular	level,	built	by	human	engineers	in	the	past	decade	and	described	
below.		In	addition,	in	this	work,	we	showed	above	in	section	7.3	that	topology	T2,	when	
modeled	with	full	Henri-Michaelis-Menten	kinetics,	can	also	exhibit	DoRA	using	negative	
feedback	and	a	comparator-adjustor	mechanism.		It	is	possible	that	examination	of	evolved	
cellular	systems	will	reveal	instances	where	such	feedback	control	operates.	

 
8.3	A	human-built	example	of	linear	input-output	using	negative	feedback	

Nevozhay	et	al.	(Nevozhay	et	al.,	2009)	and	Figure	6C,	main	text,	recently	engineered	a	
biochemical	system	that	aligns	output	with	input.		The	system,	which	mimics	the	control	logic	in	
the	bacterial	transposon	Tn10,	operates	in	yeast	cells.		It	causes	expression	of	the	yEGFP	
fluorophore	to	vary	linearly	with	the	extracellular	concentration	of	anhydrotetracycline	(ATc).		
ATc	diffuses	into	(and	out	of)	yeast	cells	relatively	slowly.		ATc		binds	the	tetracycline	repressor,	
TetR,	tightly,	and	on	binding	inactivates	it.			This	interaction	effectively	compares	the	
concentration	of	ATc	and	TetR.		Consider	a	cell	in	which,	due	to	an	increase	in	extracellular	
concentration,	intracellular	concentration	of	ATc	rises,	and	becomes	greater	than	that	of	TetR.		
Under	this	condition,	all	TetR	is	bound	and	inactivated,	while	some	ATc	is	free.		Because	all	TetR	
is	inactivated,	expression	of	yEGFP	is	not	repressed,	as	it	would	normally	by	TetR	binding	to	the	
two	TetR	operators	(TetOps)	in	the	Tet-repressible	promoter	that	drives	yEGFP	synthesis.		
System	output,	measured	by	yEGFP	signal,	therefore	increases.		In	this	system,	the	cells	contain	
TetR	because	the	cells	contain	a	tetR	gene	placed	under	the	control	of	a	second	instance	of	the	
same	Tet-repressible	promoter	that	drives	yEGFP.		Transcription	of	tetR	is	now	derepressed	and	
the	total	cellular	concentration	of	TetR	monomers	increases	in	parallel	with	the	increase	in	
yEGFP	output.		Once	the	total	TetR	concentration	has	increased	above	that	of	ATc,	some	TetR	
monomers	are	not	bound	by	aTC	and	are	active.		This	free	TetR	represses	yEGFP	expression,	
capping	yEGFP	expression	(and	the	total	number	of	active	+	inactive	TetR	monomers	in	the	cell,	



Andrews,	Peria,	Yu,	Colman-Lerner,	and	Brent,	Cell	Systems,	2016	

 

56	

 

at	a	new,	higher	level.		Amplification	arises	from	the	fact	that	a	small	increase	in	the	number	of	
free	TetR	monomers	brings	about	a	larger	decrease	in	the	number	of	total	TetR	monomers.	A	
quantitative	analysis	of	this	system,	presented	by	the	original	authors	(Nevozhay	et	al.,	2009),	
presents	a	description	of	how	negative	feedback	explains	the	system's	experimentally	observed	
linear	input-output	relationship.	
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