

Supplemental Figure 1: Rhythmic expression patterns of circadian clock genes under LD cycles.

Transcript levels were determined in the second uppermost fully expanded leaf of 3-week-old wild-type (NGB5839) and *late2-1D* mutant plants grown under a 16 h LD photoperiod at 20°C. Mean values \pm SE are shown for n = 2 biological replicates, each consisting of pooled material from two plants. Asterisks indicate significantly different values (P \leq 0.05). Day and night periods are respectively indicated by white and black bars above the graph. Note that both genotypes carry the *hr* mutation (Weller et al., 2012).

Supplemental Figure 2: Position of LATE2 in pea linkage group VII.

Partial map of linkage group VII derived from analysis of segregation data in the F_2 generation of a cross between *late2-1D* and cv. Térèse (219 F_2 plants), using JoinMap software (v4; Kyazma B.V., Wageningen, Netherlands). A marker for *CDFc1* based on the C1348T transition (**Figure 5**), co-segregated perfectly with the *late2-1D* genotype. Full details for markers are given in **Supplemental Table 2**.

Supplemental Figure 3: Phylogram of the legume CDF family and related DOF transcription factors. Legume clades are indicated. Bootstrap values obtained from 1,000 trees are indicated as a percentage above each branch. Branches with bootstrap values <50% have been collapsed. The analysis is based on the sequence alignment shown in **Supplemental File 2**. Sequence details and species abbreviations are given in **Supplemental Table 1**.

Supplemental Figure 4: Phylogram of the legume FKF1 protein family.

Previously characterised family members from Arabidopsis are included (Nelson et al., 2000; Somers et al., 2000; Schultz et al., 2001). Additional pea, Medicago and soybean genes were identified by BLASTp or tBLASTn searches conducted using Arabidopsis protein sequences to query the pea expressed sequences at the pea RNA-seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi) or GenBank EST, TSA or nucleotide databases, and Medicago (v4.0) and soybean (Wm82.a2.v1) protein databases at Phytozome (phytozome.jgi.doe.gov). The analysis is based on the sequence alignment shown in **Supplemental File 3**. Branches with bootstrap values <50% obtained from 1,000 trees have been collapsed.

Supplemental Figure 5: Yeast two-hybrid controls.

(A) Negative controls. Each bait and prey construct was tested separately for autoactivation with an empty prey (pDEST22) or bait (pDEST32) vector, respectively to confirm the lack of autoactivation. Two clones are shown for each. Strong (12), weak (13) and no interaction (14) controls from the Invitrogen[™] ProQuest[™] Two-Hybrid System, are also shown.

(B) Two independent clones of controls confirming interaction between AtFKF1 (bait) and PsCDFc1-WT (prey), but not PsCDFc1-R450W (prey), for Arabidopsis complementation studies. These controls confirm that interaction with FKF1 would be conserved in a transgenic Arabidopsis system.

Clones are shown after 4 d of growth at 30°C on selective medium (with 3-amino-1,2,4-triazole added; -His+3-AT) and non-selective medium (+His).

Supplemental Figure 6: Leaf number at flowering in both wild-type and transgenic Arabidopsis lines expressing WT and R450W forms of *PsCDFc1* from the *SUC2* promoter.Plants were grown under LD. Values represent mean ± SE for n=8 to 9.

Supplemental Data. Ridge et al. Plant Cell (2016) 10.1105/tpc.15.01011

Supplemental Figure 7: Phylogram of the legume BBX protein family.

Previously characterised family members from Arabidopsis, soybean (excluding those not present in the current Wm82.a2.v1 genome annotation) and Medicago are included (Robson et al., 2001; Khanna et al., 2009; Fan et al., 2014; Wong et al., 2014; Wu et al., 2014). Additional pea and Medicago proteins were identified by BLASTp or tBLASTn searches conducted using Arabidopsis protein sequences to query the pea expressed sequences at the pea RNA-seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi) or GenBank EST, TSA or nucleotide databases, and the Medicago (v4.0) protein database at Phytozome (phytozome.jgi.doe.gov). The analysis is based on the sequence alignment shown in **Supplemental File 4**. Branches with bootstrap values <50% obtained from 1,000 trees have been collapsed.

Supplemental Data. Ridge et al. Plant Cell (2016) 10.1105/tpc.15.01011

Supplemental Figure 8: Phylogram of the legume CCT protein family.

Previously characterised family members from Arabidopsis, soybean and Medicago are included (Iwata et al., 2008; Fan et al., 2014; Wong et al., 2014; Wu et al., 2014). Additional pea, Medicago and soybean genes were identified by BLASTp or tBLASTn searches conducted using Arabidopsis protein sequences to query the pea expressed sequences at the pea RNA-seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi) or GenBank EST, TSA or nucleotide databases, and Medicago (v4.0) and soybean (Wm82.a2.v1) protein databases at Phytozome (phytozome.jgi.doe.gov). The analysis is based on the sequence alignment shown in **Supplemental File 5**. Branches with bootstrap values <50% obtained from 1,000 trees have been collapsed.

Supplemental Figure 9: Expression patterns of clock-related and *COL* family genes under constant light. Transcript levels were determined in the second uppermost fully expanded leaf of 3-week-old wild-type (NGB5839) plants grown under constant light conditions at 20°C. Seeds were sown in soil and allowed to germinate for several days in complete darkness by covering the pot top with aluminium foil and maintaining plants in a dark growth cabinet. First exposure of emerging seedlings to light was then synchronized by turning lights on and removing the foil. Mean values \pm SE are shown for n = 2 biological replicates, each consisting of pooled material from two plants.

Supplemental Figure 10: Phylogram of legume CIB/BEE-like (CBL) proteins within the bHLH subfamily XII. Previously characterised subfamily members from *Arabidopsis* (Heim et al., 2003; Pires and Dolan, 2010) and soybean (Yang et al., 2015) are included. Pea, Medicago and additional soybean proteins were identified by BLASTp or tBLASTn searches conducted using Arabidopsis protein sequences to query the pea RNA-seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi), and Medicago (v4.0) and soybean (Wm82.a2.v1) protein databases at Phytozome (phytozome.jgi.doe.gov). The analysis is based on the sequence alignment shown in **Supplemental File 6**. Branches with bootstrap values <55% obtained from 10,000 trees have been collapsed.

Supplemental Figure 11: Phylogram of legume PIF-like proteins within the bHLH subfamily VII(a+b). Previously characterised members of this subfamily from *Arabidopsis* (Heim et al., 2003; Pires and Dolan, 2010) are included. Pea, Medicago and soybean proteins were identified by BLASTp or tBLASTn searches conducted using Arabidopsis protein sequences to query the pea expressed sequences at the pea RNA-seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi) or GenBank EST or TSA databases, and Medicago (v4.0) and soybean (Wm82.a2.v1) protein databases at Phytozome (phytozome.jgi.doe.gov). The analysis is based on the sequence alignment shown in **Supplemental File 7**. Branches with bootstrap values <50% obtained from 1,000 trees have been collapsed.

Supplemental Figure 12: Phylogram of the legume AP2 protein family.

Previously characterised family members from Arabidopsis and soybean (Aukerman and Sakai, 2003; Wang et al., 2014) are included. Additional pea, Medicago and soybean genes were identified by BLASTp or tBLASTn searches conducted using Arabidopsis protein sequences to query the pea expressed sequences at the pea RNA-seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi) or GenBank EST, TSA or nucleotide databases, and Medicago (v4.0) and soybean (Wm82.a2.v1) protein databases at Phytozome (phytozome.jgi.doe.gov). The analysis is based on the sequence alignment shown in **Supplemental File 8**. Branches with bootstrap values <50% obtained from 1,000 trees have been collapsed.

Supplemental Figure 13: Transcript levels in expanded leaf tissue from WT, *late1-2* and *late2-1D* mutants grown from sowing under continuous white light. Values represent mean \pm SE for *n*=3 biological replicates, each consisting of pooled material from two plants.

Supplemental Table 1: Details of sequences for DOF transcription factors used in phylogenetic analyses and alignments.

Sequences were obtained from GenBank (www.ncbi.nlm.nih.gov), Phytozome (phytozome.jgi.doe.gov; Goodstein et al., 2012), The Arabidopsis Information Resource (TAIR; www.arabidopsis.org; Lamesch et al., 2012), or the pea RNA-seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi; Alves-Carvalho et al., 2015), as indicated. *Sequence alignments and comparison with Genbank accession suggests PsCam048092 sequence is partially incorrect.

Species	Gene name	Accession number	Source	Reference(s)	
	AtCDF1	AT5G62430			
	AtCDF2	AT5G39660			
	AtCDF3	AT3G47500			
	AtCDF4 AT2G34140				
Arabidopsis	AtCDF5	CDF5 AT1G69570		(Tallagisawa,	
thaliana	AtCOG1	AT1G29160	IAIR	et al., 2009)	
	AtDOF1.3	AT1G26790			
	AtDOF1.6	AT1G47655			
	AtDOF5.8	AT5G66940			
	AtOBP1	AT3G50410			
	CaCDFa1	XP_004508727			
	CaCDFa2	XP_004514828			
Cicor oriotinum	CaCDFb1	XP_004491816	ConBank		
	CaCDFb2	XP_004489399	Gendank	This study	
	CaCDFc1	XP_004505416			
	CaCDFc2	XP_004490083			
	GmDof1.2	Glyma.01G049400			
	GmDof2.3	Glyma.02G108600			
	GmDof3.1	Glyma.03G007900		(Guo and Qiu, 2013)	
	GmDof4.2	Glyma.04G168300			
	GmDof5.1	Glyma.05G025900			
	GmDof5.4	Glyma.05G158200			
	GmDof6.4	Glyma.06G194800	Chusing may		
	GmDof7.6	Glyma.07G229600	Glycine max		
	GmDof8.2	Glyma.08G228900	Wm82 o2 v1		
Glycine max	GmDof9.2	Glyma.09G237000	(Schmutz et al		
	GmDof13.1	Glyma.13G062500	2010) at		
	GmDof13.5	Glyma.13G230200	Phytozome		
	GmDof15.7	Glyma.15G082400	T Hytozonne		
	GmDof15.8	Glyma.15G215500			
	GmDof17.3	Glyma.17G101000			
	GmDof18.3	Glyma.18G260500			
	GmDof19.1	Glyma.19G023200			
	GmDof19.2	Glyma.19G118000			
	GmDof20.1	Glyma.20G035200			
	MtCDFa2	Medtr3g435480			
	MtCDFb1	Medtr7g010950	Medicago		
	MtCDFb2	Medtr6g012450	truncatula		
Medicago truncatula	MtCDFc1	Medtr4g082060	genome project	This study	
	MtCDFc2-1	Medtr5g041420	v4.0 (Young et	This Study	
	MtCDFc2-2	Medtr5g041400	al., 2011) at		
	MtCDFc2-3	Medtr5g041380	Phytozome		
	MtCDFc2-4	Medtr5g041530			
Dheesslus	PvCDFa1	Phvul.003G189300	Phaseolus		
Phaseolus	PvCDFa2	Phvul.009G186600	vulgaris	This study	
vuigaris	PvCDFb1	Phvul.008G037000	genome v1.0	-	

	PvCDFc1	Phvul.002G170600	(Schmutz et al.,				
	PvCDFc2	Phvul.002G084000	2014) at Phytozome				
	PsCDFb1	PsCam037510		This study			
	PsCDFc1	PsCam036807	seg gene atlas				
	PsCDFc2-1	PsCam038247					
Pisum sativum	PsCDFc2-2	PsCam038945	Carvalho et al				
Fisuin sauvun	PsCDFc2-3	PsCam014419	2015)				
	PsCDFc2-4	PsCam014395	2010)				
	PsCDFb2	GCMG01002096; PsCam048092*	GenBank				
Solanum lycopersicum	SICDF1	Solyc03g115940	Tomato				
	SICDF2	Solyc05g007880	ITAG2.3				
	SICDF3	Solyc06g069760	(Tomato Genome	(Corrales et al., 2014)			
	SICDF4	Solyc02g067230	Consortium,				
	SICDF5	Solyc02g088070	Phytozome				
Solanum tuberosum	StCDF1	PGSC0003DMG400018408	Solanum tuberosum				
	StCDF2	PGSC0003DMG400025129	genome annotation v3.4				
	StCDF3	PGSC0003DMG400001330	at Phytozome (Potato	(Kloosterman et al., 2013)			
	StCDF4	PGSC0003DMG400033046	Genome Sequencing				
	StCDF5 PGSC0003DMG40001952		Consortium, 2011)				

Supplemental Data. Ridge et al. Plant Cell (2016) 10.1105/tpc.15.01011

Supplemental Table 2:	Mapping	marker details.
-----------------------	---------	-----------------

Gene	Marker type	Primer names	Primer sequence (5' to 3')	Tm (°C)	Accession number(s) / Reference	Corresponding Medicago locus (Mt4.0)
ACETISOM	CAPS (Msell)	PsAP2-F5 PsAP2-R8	GTAGTGGAAGTGATCACAATTTGG GAAGAGAGTGAATCAAGAGG	56	(Aubert et al., 2006)	Medtr4g079780
ALDO	Size	ALDO-F ALDO-R	GAGAATTCCCCCTGCTGTCC CAGCATAATACTCAGTAGCACC	65	Ps-M97476/ Ps-M97477 (Aubert et al., 2006)	Medtr4g071880
ATG2	HRM	ATG2-F3 ATG2-R3	TTTGGAGGGTATTAAAAGTTCTGC TCGTAAAGGACGCCTACCAC	53	JI925672	Medtr4g086370
BIOB	CAPS (Bccl)	BIOB-F2 BIOB-R2	ATGAGCGCCTTCAAACACTT AGGAACGCTCTCTGGATGTG	60	JI898613	Medtr4g076870
CLPSER	Size	CLP-F CLP-R	GTATTGGAGGAGGATTTTAGGG GCTTATGAGTTTGGAGGGGGAGGGG	58	Ps-AJ276507 (Aubert et al., 2006)	Medtr4g069800
DEAD	Size	DEAD-F4 DEAD-R4	TGTGCAAGTCAACATTTTCCA AGTTGGAGCAGGCAGCAAT	60	JI937351; JI931111; JI902906	Medtr4g079320
DUF833	HRM	DUF-F1 DUF-R1	GTGGCAAGCTCATCCAAAAT CTACCGCCCAAGATTGTTTC	55	JI918734; JI925517; JI920006	Medtr4g083440
GS3B	Size	GS3B-F GS3B-R	GGGTCTTTCTTTTAAAGACCAAAGC GTATACTCTTGTTCAATACCATACC	57	Ps-U28925 (Aubert et al., 2006)	Medtr6g071070
HUA2	CAPS (Sspl)	HUA2-3F HUA2-3R	TCTTGTTGATTCTATCACCC TTTTCCTCTCAAGCCACAAC	54	PsCam000043	Medtr4g075060
ISI1	CAPS (Hpall)	ISI1-F1 ISI1-R1	GTGCTCTCCGTTCCATTCTC AACTTCATGGGTTCCACACC	60	JR954799	Medtr4g078140
LAG1	Size	LAG1-F4 LAG1-R4	CCGTGGTAAGACCAGAGTTATTG AAATGGGATAGCGGGATAGC	60	JI945859; JI958010; JI938125	Medtr4g086150
MITCYSIN	Size	MITCYSIN-F2 MITCYSIN-R2	CAGGTCGGTTTCGGTTTCACACTG GAGCTGTGCAAAGGAGATACGTC	58	(Aubert et al., 2006)	Medtr4g087520
N3LIKE	CAPS (Hinf)	N3L-F MtN3L-R	GAGCCCATGCTTCTATCAACTC TATATCACCATCTGAATTATGCC	55	(Aubert et al., 2006)	Medtr8g096320
NLM	CAPS (HpyCH4IV)	NLM-F NLM-R	GCTTTTCTCTGTTCTTCACAAGCC GAGAGAAGCAGTGGCATGTGCGG	60	Ps-AJ243308 (Aubert et al., 2006)	Medtr8g087720
PHOT1B	CAPS (Nspl)	PHOT1b-F1 PHOT1b-R1	GAGGGCGGTAGGGGAATACC CAATCCGTTGGGACGCAGCA	58	AY295348	Medtr4g061610
PIP2	CAPS (Hpall)	PIP2-F PIP2-R	GCCGGTATCTCTGGTATGATACC CAGGAACATGAGAGTCCCTAGCG	65	PS-AJ243307 (Aubert et al., 2006)	Medtr4g059390
PTRANS	Size	PTRANS-F PTRANS-R	TCGTCGTGTTCCTTGATTTATGG CACCAAACAATACACCACTCCC	55	Ps-X68077 (Aubert et al., 2006)	Medtr4g088350
SVPb	HRM	PsSVPb-5F PsSVPb-6R	sSVPb-5F GGTAAAAATGCTAAACCAAAAACC sSVPb-6R GGGAGTAGCAGAAAGATGTGC		JI898361; JI909838; JI910349	Medtr4g093970
TOE	CAPS (Mlyl)	(Mlyl) TOE-3F GAAGAGCGTCATTCTTTACGG TOE-3R TGACCTGGCCATTACTTTGC		58	PsCam042790	Medtr4g061200

Supplemental Table 3: Primer details. (*Ps, Pisum sativum; At, Arabidopsis thaliana.*)

Gene	Purpose/details	Primer names	Primer sequence (5' to 3')	Tm
PsACT	qRT-PCR	ACT-F ACT-R	GTGTCTGGATTGGAGGATCAATC GGCCACGCTCATCATATTCA	59
AtCDF1	Yeast two-hybrid	AtCDF1-Y2H-1F AtCDF1-Y2H-1B	ATGCTGGAAACTAAAGATCCTG TCACATCTGCTCATGGAAAT	58
PsCOLa	qRT-PCR	COP-2F	GCTGGATTCAGTTACAATGG	60
PsCOL b	dRT-PCR	CO1P-1F	AGACGGAGTTGTGCCGGTGC	60
Pacol a		CO1P-2R COLc-1F	ACGAATTGTCTTCTCGAACC CGCTTATGCGTTCAAAAACA	
PSCOLC	qRI-PCR	COLc-1R	TTCTCCATCGGGAACAACTC	00
PsCOLd	qRT-PCR	COLd-qR1	AACTCCGACACCACGTTCC	58
PsCOLe	qRT-PCR	COLe-qF1 COLe-qR1	ATTTCAGGGCATTTCGTAGC	58
PsCOLf	qRT-PCR	COLf-F2 COLf-R3	AAGTCGCCGATCTTCCTAGC AAGTGCAGATGCCGTACTACC	58
PsCOLg	qRT-PCR	COLg-qF1	GAAGAAAGTTTTGGGGATGG TCTTTCTGTCTCCCACATGC	58
PsCOLh	gRT-PCR	COLh-qF1	TGGTGTTCTTCTCTGGAATCG	58
PsCOLi	aRT-PCR	COLi-qF3	GACTACCGCAAACCCACCTA	58
- 300Li		COLi-qR3 COLj-2F	CTCTTGCTTCTCTTCCTCCA GAGGGTACGTGTGCAGAAGC	
PsCOLJ	qRI-PCR	COLJ-2R		60
PsCOLk	qRT-PCR	COLK-2P COLK-2R	CCATATCCACCAAATTCACCA	64
PsDET (TFL1a)	qRT-PCR	TFL1a-1F TFL1a-2R	CGTTGGTAGAGTCATAGG AGGATCACTAGGGCCAGG	58
PsDNE	qRT-PCR	ELF4-1F FLF4-1R	GTGCTTGACAGGAACAGAGC CAGAATAAAGAGAAGCAACC	56
AtFKF1	Yeast two-hybrid	AtFKF1-Y2H-1F	CTCACCACTCTTGAAGCTGTGT	62
	gRT-PCR	FKF-F227	GGTCGTAACTGCCGGTTCTTA	59
PsFKF1	Yeast two-hybrid	FKF-5RACE PsFKF1-Y2H-2F	GGAACTCAATACCGTCCTCAAGACA CTTACTACTCTCGAGGCAGTTTGTTG	
	analysis	PsFKF1-Y2H-1R	TTACATGTCGGAGTCCTGTCG	62
PsFTa1	qRT-PCR	FTLa-OF FTLa-2R	CCATCCTGGAGCGTAAACCC	60
PsFTa2	qRT-PCR	FTLb-3F FTLb-5R	GGAAATGACCCCGTGATCTA TGAATCCCTAAGTTGGGTCG	60
PsFTb2	qRT-PCR	FTLe2-F7 FTLe2-R7	CGACTACCGGGACAGCATTT CAGGTGAACCAAGGTTATAAAC	62
PsFTc	gRT-PCR	FTLC-8F	GATATTCCAGCCACAACAAGC	62
Psl F (TFl 1c)	dRT-PCR	LF-CR2	AAATAAGCAGCAGCAACAGGG	60
		LF-CR3 GI-GSP1	CAGACATTCCAGGGACAACAG GGTATATACAAATTCCACGACAGTATGG	
PSLATE1	qRT-PCR	GI-12R	CCTTGGCTATCCAGGGTTGC	60
	Isolation of CDS	CDF3a-1R	CCTGTTCAGTTACACAGGCTCA	62
	Sequencing	CDF3a-2F CDF3a-2R	GACAAAATGTCGGAGGAGGA	-
PsLATE2 (CDFc1)	qRT-PCR	CDF3a-Q1F CDF3a-Q1R	CTTCTTCTCCGCCACAATTC CGATGCTGCGAGTGATTTTA	60
	HRM functional	CDF3a-HRM-1F	AAGCGTCACCGCTGATGTA	53
	Yeast two-hybrid	CDF3a-Y2H-1F	ATGTCAGAGGTTAAAGACCCTGC	62
Bol HY		CDF3a-HRM-1R MYB1-Q1	GACGGATGCGCTAGAGAAGAATGG	60
		MYB1-Q2 PIM-4F	AGAATAGAGCCCGAAACGCAAGTC GCTTCAGAGTTTGGAACAGC	
PsPIM	QRI-PCR	PIM-6R	GACTCCATGGTGGTTTGG	58
PsPRR37a	qRT-PCR	PRR37-5R	ACACTCAAGCCTCTGCTTCC	60
PsPRR59a	qRT-PCR	PRR59-2F PRR59-4R	GGTATCTGGCTATGCACTTCTCTCG CAAACATGCTGCCACAGATT	60

Supplemental Data. Ridge et al. Plant Cell (2016) 10.1105/tpc.15.01011

DOSN		LUX-Q1F	TTCTCACCCTCACATGTCTCC	56			
F83N	YKI-FCK	LUX-Q1R	TGGACGAAGTCACAATCAACA	50			
DeTOC1e		TOC1-92-1F	GCCTGGAATTTCAATCCAAC	58			
PSTOCIA	GRI-PCR	TOC1-92-1R	GGATGCTGTCCTGATGAACC				
DeLINI	qRT-PCR	UNI-1F	CATCAGAGCTGAAAGAAGG	55			
FSUN		UNI-2R	GCTTCCTTTTCACGTTGC				
	qRT-PCR	FULc-2F	CGATGCCTTGAAACCATAGG	58			
FSVEGI		FULc-2R	AATTCCAATGACCCTCTTGC				
PsVEG2	qRT-PCR	FD-6F	ATTTGATCCAAACGTCGGTGT	60			
		FD-3R	ATCAACTTTTTGCTCCAGTTCG	00			

Supplemental Table 4: RNAseq Mapping results.

RNAseq reads were mapped to pea transcriptome reference (PsUniLowCopyClusters, including organelles; Alves-Carvalho et al., 2015) using STAR (Spliced Transcript Alignment to a Reference; Dobin et al., 2013).

	NGB5839 (WT)			late1-2			late2-1D		
	rep1	rep2	rep3	rep1	rep2	rep3	rep1	rep2	rep3
# input reads	6951737	2306874	3880898	6270944	2144604	3457203	6120831	1583277	3689226
average input read length	150	149	150	150	149	150	150	149	150
uniquely mapped reads	4475805	1484633	2496971	4005219	1416949	2139211	3948023	986113	2228214
uniquely mapped reads (%)	64.38	64.36	64.34	63.87	66.07	61.88	64.5	62.28	60.4
Average mapped length	149.69	148.7	149.27	149.71	148.51	149.12	149.66	148.68	148.9
non canonical	6678	2731	4449	5482	2376	3123	5846	1874	4070
Mismatch rate per base (%)	0.52	0.27	0.27	0.54	0.26	0.3	0.52	0.28	0.31
Deletion rate per base (%)	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01
Deletion average length	2.05	2.17	2.21	1.99	2.1	2.03	2.08	2.22	2.18
Insertion rate per base (%)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Insertion average length	1.75	1.77	1.68	1.54	1.61	1.56	1.62	1.63	1.68
Multi mapping reads	486855	187955	292785	415921	163087	264363	448588	127774	291553
Multi mapping reads (%)	7.01	8.17	7.54	6.63	7.62	7.65	7.33	8.09	7.92
Unmapped reads (%)	28.61	27.47	28.12	29.5	26.31	30.47	28.17	29.63	31.68

SUPPLEMENTAL REFERENCES

- Alves-Carvalho, S., Aubert, G., Carrère, S., Cruaud, C., Brochot, A.-L., Jacquin, F., Klein, A., Martin, C., Boucherot, K., Kreplak, J., da Silva, C., Moreau, S., Gamas, P., Wincker, P., Gouzy, J., and Burstin, J. (2015). Full-length *de novo* assembly of RNA-seq data in pea (*Pisum sativum* L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 84: 1-19.
- Aubert, G., Morin, J., Jacquin, F., Loridon, K., Quillet, M.C., Petit, A., Rameau, C., Lejeune-Henaut, I., Huguet, T., and Burstin, J. (2006). Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor. Appl. Genet. 112: 1024-1041.
- Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its *APETALA2*-like target genes. Plant Cell **15**: 2730-2741.
- Corrales, A.R., Nebauer, S.G., Carrillo, L., Fernandez-Nohales, P., Marqués, J., Renau-Morata, B., Granell, A., Pollmann, S., Vicente-Carbajosa, J., Molina, R.V., and Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J. Exp. Bot. 65: 995-1012.
- Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics **29:** 15-21.
- Fan, C., Hu, R., Zhang, X., Wang, X., Zhang, W., Zhang, Q., Ma, J., and Fu, Y.-F. (2014). Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean. BMC Plant Biology 14: 9.
- Fornara, F., Panigrahi, K.C., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J.A., and Coupland, G. (2009). Arabidopsis *DOF* transcription factors act redundantly to reduce *CONSTANS* expression and are essential for a photoperiodic flowering response. Dev. Cell **17**: 75-86.
- Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar, D.S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40: D1178-1186.
- **Guo, Y., and Qiu, L.J.** (2013). Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics. PLoS One **8**: e76809.
- Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., and Bailey, P.C. (2003). The Basic Helix– Loop–Helix Transcription Factor Family in Plants: A Genome-Wide Study of Protein Structure and Functional Diversity. Molecular Biology and Evolution **20**: 735-747.
- **Iwata, Y., Yamada, T., and Koizumi, N.** (2008). Transcriptional regulation of an Arabidopsis gene encoding a CCT domain-containing protein during endoplasmic reticulum stress. Plant Biotechnology **25**: 397-402.
- Khanna, R., Kronmiller, B., Maszle, D.R., Coupland, G., Holm, M., Mizuno, T., and Wu, S.-H. (2009). The *Arabidopsis* B-Box Zinc Finger Family. The Plant Cell **21:** 3416-3420.
- Kloosterman, B., Abelenda, J.A., Carretero, M.D.M.G., Oortwijn, M., de Boer, J.M., Kowitwanich, K., Horvath, B.M., van Eck, H.J., Smaczniak, C., Prat, S., Visser, R.G., and Bachem, C.W.B. (2013). Naturally occurring allele diversity allows potato cultivation in northern latitidudes. Nature **495**: 246-250.
- Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A., and Huala, E. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40: D1202-1210.
- Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., and Bartel, B. (2000). *FKF1*, a clock-controlled gene that regulates the transition to flowering in *Arabidopsis*. Cell **101**: 331-340.
- **Pires, N., and Dolan, L.** (2010). Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Molecular Biology and Evolution **27:** 862-874.
- Robson, F., Costa, M.M.R., Hepworth, S.R., Vizir, I., Pin[~]eiro, M., Reeves, P.H., Putterill, J., and Coupland, G. (2001). Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal 28: 619-631.
- Schmutz, J., McClean, P.E., Mamidi, S., Wu, G.A., Cannon, S.B., Grimwood, J., Jenkins, J., Shu, S.,
 Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S.M., Gao, D., Abernathy, B.,
 Barry, K., Blair, M., Brick, M.A., Chovatia, M., Gepts, P., Goodstein, D.M., Gonzales, M., Hellsten,
 U., Hyten, D.L., Jia, G., Kelly, J.D., Kudrna, D., Lee, R., Richard, M.M., Miklas, P.N., Osorno, J.M.,
 Rodrigues, J., Thareau, V., Urrea, C.A., Wang, M., Yu, Y., Zhang, M., Wing, R.A., Cregan, P.B.,

- Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C., and Jackson, S.A. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463: 178-183.
- Schultz, T.F., Kiyosue, T., Yanovsky, M.J., Wada, M., and Kay, S.A. (2001). A role for LKP2 in the circadian clock of *Arabidopsis*. Plant Cell **13**: 2659-2670.
- Somers, D.E., Schultz, T.F., Milnamow, M., and Kay, S.A. (2000). ZEITLUPE encodes a novel clockassociated PAS protein from *Arabidopsis*. Cell **101**: 319-329.
- Wang, Y., Wang, L., Zou, Y., Chen, L., Cai, Z., Zhang, S., Zhao, F., Tian, Y., Jiang, Q., Ferguson, B.J.,
 Gresshoff, P.M., and Li, X. (2014). Soybean miR172c targets the repressive AP2 transcription factor
 NNC1 to activate *ENOD40* expression and regulate nodule initiation. Plant Cell 26: 4782-4801.
- Weller, J.L., Liew, L.C., Hecht, V.F.G., Rajandran, V., Laurie, R.E., Ridge, S., Wenden, B., Vander Schoor, J.K., Jaminon, O., Blassiau, C., Dalmais, M., Rameau, C., Bendahmane, A., Macknight, R.C., and Lejeune-Hénaut, I. (2012). A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proceedings of the National Academy of Sciences 109: 21158-21163.
- Wong, A.C., Hecht, V.F., Picard, K., Diwadkar, P., Laurie, R.E., Wen, J., Mysore, K., Macknight, R.C., and Weller, J.L. (2014). Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in *Medicago truncatula*. Frontiers in Plant Science 5: 486.
- Wu, F., Price, B.W., Haider, W., Seufferheld, G., Nelson, R., and Hanzawa, Y. (2014). Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS One 9: e85754.
- Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends Plant Sci. 7: 555-560.
- Yang, D., Zhao, W., Meng, Y., Li, H., and Liu, B. (2015). A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Sci. China Life Sci. 58: 261-269.
- Young, N.D., Debelle, F., Oldroyd, G.E., Geurts, R., Cannon, S.B., Udvardi, M.K., Benedito, V.A., Mayer, K.F., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D.R., Meyers, B.C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., Zhou, S., Mudge, J., Bharti, A.K., Murray, J.D., Naoumkina, M.A., Rosen, B., Silverstein, K.A., Tang, H., Rombauts, S., Zhao, P.X., Zhou, P., Barbe, V., Bardou, P., Bechner, M., Bellec, A., Berger, A., Berges, H., Bidwell, S., Bisseling, T., Choisne, N., Couloux, A., Denny, R., Deshpande, S., Dai, X., Doyle, J.J., Dudez, A.M., Farmer, A.D., Fouteau, S., Franken, C., Gibelin, C., Gish, J., Goldstein, S., Gonzalez, A.J., Green, P.J., Hallab, A., Hartog, M., Hua, A., Humphray, S.J., Jeong, D.H., Jing, Y., Jocker, A., Kenton, S.M., Kim, D.J., Klee, K., Lai, H., Lang, C., Lin, S., Macmil, S.L., Magdelenat, G., Matthews, L., McCorrison, J., Monaghan, E.L., Mun, J.H., Najar, F.Z., Nicholson, C., Noirot, C., O'Bleness, M., Paule, C.R., Poulain, J., Prion, F., Qin, B., Qu, C., Retzel, E.F., Riddle, C., Sallet, E., Samain, S., Samson, N., Sanders, I., Saurat, O., Scarpelli, C., Schiex, T., Segurens, B., Severin, A.J., Sherrier, D.J., Shi, R., Sims, S., Singer, S.R., Sinharoy, S., Sterck, L., Viollet, A., Wang, B.B., Wang, K., Wang, M., Wang, X., Warfsmann, J., Weissenbach, J., White, D.D., White, J.D., Wiley, G.B., Wincker, P., Xing, Y., Yang, L., Yao, Z., Ying, F., Zhai, J., Zhou, L., Zuber, A., Denarie, J., Dixon, R.A., May, G.D., Schwartz, D.C., Rogers, J., Quetier, F., Town, C.D., and Roe, B.A. (2011). The *Medicago* genome provides insight into the evolution of rhizobial symbioses. Nature **480**: 520-524.