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I. PROOF OF THEOREM 1

Lemma 1. Every network of anti-coordinating agents who update asynchronously under Assumption 1, with τi = 1
2

for each agent i ∈ V , will reach an equilibrium state in finite time.

Proof: Let n̂Ai denote the maximum number of A-neighbors of agent i that will not cause agent i to switch
to B when playing A. Define the function Φ(k) =

∑n
i=1 Φi(k), where

Φi(k) =

{
nAi (k)− n̂Ai if xi(k) = A

n̂Ai + 1− nAi (k) if xi(k) = B
.

Φ(k) is clearly lower bounded by Φ(k) ≥ −∑n
i=1 degi for all k. Consider a time step k, and let i denote the index

of the active agent at that time. One of the following three cases must happen:
1) Agent i does not switch strategies at time k + 1. This implies Φ(k + 1) = Φ(k).
2) Agent i switches from A to B at time k+ 1. This implies nAi (k) ≥ n̂Ai + 1. Then, since nAi (k) = nAi (k+ 1),

we have

Φi(k + 1)− Φi(k) = n̂Ai + 1− nAi (k)− nAi (k) + n̂Ai

= 2(n̂Ai − nAi (k)) + 1 ≤ −1. (3)

Moreover, for each j ∈ Ni, if xj(k) = A, it holds that

Φj(k + 1)− Φj(k) = nAj (k + 1)− n̂Aj − nAj (k) + n̂Aj

= −1, (4)

and if xj(k) = B, it holds that

Φj(k + 1)− Φj(k) = −nAj (k + 1) + nAj (k) = 1. (5)

According to (2), the fact that agent i switches from A to B at time k + 1 implies nAi (k) ≥ 1
2 degi, regardless of

how zi is defined. Hence, by combining (3), (4), and (5), we have

Φ(k + 1)− Φ(k)

=
∑

j∈Ni∪{i}
Φj(k + 1)− Φj(k)

= Φi(k + 1)− Φi(k)︸ ︷︷ ︸
≤−1

−nAi (k) + (degi−nAi (k))︸ ︷︷ ︸
≤0

≤ −1. (6)

3) Agent i switches from B to A at time k + 1. This implies nAi (k) ≤ n̂Ai . Hence,

Φi(k + 1)− Φi(k) = 2(nAi (k)− n̂Ai )− 1 ≤ −1. (7)

Moreover, for each j ∈ Ni, if xj(k) = A, it holds that

Φj(k + 1)− Φj(k) = nAj (k + 1)− nAj (k) = 1, (8)

and if xj(k) = B, it holds that

Φj(k + 1)− Φj(k) = −nAj (k + 1) + nAj (k) = −1. (9)



According to (2), the fact that agent i switches from B to A at time k + 1 implies nAi (k) ≤ 1
2 degi, regardless of

how zi is defined. Hence, by combining (7), (8), and (9), we have

Φ(k + 1)− Φ(k)

= Φi(k + 1)− Φi(k)︸ ︷︷ ︸
≤−1

+nAi (k)− (degi−nAi (k))︸ ︷︷ ︸
≤0

≤ −1.

By summarizing the above three cases, we have that

Φ(k + 1) ≤ Φ(k) ∀k ≥ 0. (10)

Moreover, we have shown that every time an agent switches strategies, the function Φ(k) decreases by at least one.
The case where all thresholds are equal to 1

2 is thus a generalized ordinal potential game, by the definition given in
[1]. However, as shown in [2], this does not necessarily imply convergence to an equilibrium. Hence, we complete
the proof by contradiction.

Assume that the network does not reach an equilibrium in finite time. Hence, at every time step k = 0, 1, . . .,
there exists an agent ik whose strategy violates its threshold. Denote by k̃ the first time after k at which agent ik is
active. The existence of k̃ is guaranteed by Assumption 1. At time k̃, agent ik’s threshold either remains violated,
implying the agent will switch strategies at time k̃ + 1, or is no longer violated, implying that some neighbors
have changed their strategies during the time interval [k + 1, k̃]. Hence, at least one switch occurs in each interval
Ik = [k + 1, k̃ + 1]. Now consider the sequence of intervals Ik1 , Ik2 , . . . where the indices kj , j = 1, 2, . . ., are
such that kj+1 > k̃j + 1. This sequence is infinite, and the intersection of each pair of intervals from the sequence
is empty. Therefore, an infinite number of switches occur in the network over time. Namely, there exists an infinite
time sequence (κj)∞j=1, κ

j ∈ Ikj , such that an agent switches strategies at each κj . Hence, either Case 2 or 3
occurs at each κj , resulting in Φ(κj + 1) ≤ Φ(κj)− 1. Hence, in view of (10),

Φ(k) ≤ Φ(κj)− 1 ∀k ≥ κj + 1. (11)

Since (11) holds for all j = 1, 2, . . ., we get that

Φ(k) ≤ Φ(κ1)− j ∀k ≥ κj + 1 ∀j ∈ N.

The above inequality implies that Φ is not lower bounded, which is a contradiction. Hence, the proof is complete.

We define the augmented network game Γ̂ := (Ĝ, 121,−) based on Γ as follows. Let Ĝ = (V̂, Ê). Define a
V -block as a triplet of nodes {v1, v2, v3} ⊆ V̂ along with the edges {{v1, v2}, {v1, v3}} ⊆ Ê . For each agent i ∈ V ,
we introduce a dual agent î ∈ V̂ with the same initial strategy, i.e., xî(0) = xi(0), and with zî = zi. Corresponding
to each dual agent î, there are mi number of V -blocks in Ĝ such that the v1-node of each block is connected to î,
with mi being defined as follows: if τi = 1

2 , then mi = 0; otherwise, mi depends on which one of the following
three conditions on τi holds:

mi =





|(1− 2τi) degi | τi degi ∈ Z
|degi−r − 1| ∃r ∈ 2Z : r

2 < τi degi <
r+1
2

|degi−r| ∃r ∈ 2Z + 1 : r
2 ≤ τi degi <

r+1
2

(12)

where 2Z and 2Z + 1 denote the set of even and odd numbers, respectively. If τi < 1
2 , then the initial strategies

of each V -block connected to the dual agent î are xv1(0) = A and xv2(0) = xv3(0) = B; and if τi > 1
2 , then

xv1(0) = B and xv2(0) = xv3(0) = A. In total, V̂ has n+
∑n

i=1mi agents, the thresholds of all of which are set
to 1

2 . For Ê , in addition to the edges for the V -blocks, there is an edge between any two dual agents î and ĵ in V̂ ,
if and only if there is an edge between i and j in V .

Lemma 2. The strategy of each V -block agent is fixed over time.

Proof: We prove by contradiction. Assume there exists some time when the strategy of one of the V -block
agents changes. Let r denote the first time this happens, and denote the V -block agent who changes her strategy by



i. If i is a v1-node and xi(0) = A, then xi(r − 1) = A and xi(r) = B. Agent i has two neighbors in the V -block
who each play strategy B at time r − 1. Since degi = 3, we have

nAi (r − 1) ≤ 1

τi degi =
3

2



⇒ nAi (r − 1) < τi degi ⇒ xi(r) = A,

which is a contradiction. If xi(0) = B, then agent i has two A-neighbors in the V -block and xi(r) = A. It follows
that

nAi (r − 1) ≥ 2

τi degi =
3

2



⇒ nAi (r − 1) > τi degi ⇒ xi(r) = B,

again a contradiction. Now if i is either a v2 or a v3 node, and xi(0) = A, then xi(r− 1) = A, and i has only one
neighbor, v1, whose strategy is B at time r − 1. Hence,

nAi (r − 1) = 0

τi degi =
1

2



⇒ nAi (r − 1) < τi degi ⇒ xi(r) = A,

a contradiction. If on the other hand, xi(0) = B, then

nAi (r − 1) = 1

τi degi =
1

2



⇒ nAi (r − 1) > τi degi ⇒ xi(r) = B,

which is a contradiction and completes the proof.
The following lemma takes the first step towards establishing equivalence of the dynamics between the original

and augmented network games. In particular, we need to show that the thresholds of 1
2 in the augmented network

will be satisfied (respectively violated) whenever the thresholds of the corresponding agents in the original network
are satisfied (respectively violated).

Lemma 3. Let nAi denote an instance of nAi (k) for some agent i. If τi < 1
2 , then

sign(nAi − τi degi) = sign

(
nAi +mi −

1

2
(degi +mi)

)
, (13)

and if τi > 1
2 , then

sign(nAi − τi degi) = sign

(
nAi −

1

2
(degi +mi)

)
. (14)

Proof: First consider the situation when τi < 1
2 . In general, one of the following cases takes place:

1) τi degi ∈ Z: If nAi = τi degi, using (12) we have

nAi =
1

2
(degi−mi)⇒ nAi +mi =

1

2
(degi +mi).

The cases nAi < τi degi and nAi > τi degi can be shown using the same approach, which verifies (13) for this case.
2) ∃r ∈ 2Z : r

2 ≤ τi degi <
r+1
2 : Here, τi degi 6∈ Z implies that nAi 6= τi degi, so we need only to check the

inequality cases. Using (12), nAi > τi degi implies

nAi >
r

2
r

2
, nAi ∈ Z



⇒ nAi ≥

r

2
+ 1 =

1

2
(degi−mi) +

1

2

⇒ nAi +mi >
1

2
(degi +mi),



and nAi < τi degi implies

nAi <
r + 1

2
=

1

2
(degi−mi)

⇔ nAi +mi <
1

2
(degi +mi).

Hence, (13) is confirmed for this case.
3) ∃r ∈ 2Z + 1 : r

2 ≤ τi degi <
r+1
2 : Again, τi degi 6∈ Z implies that nAi 6= τi degi. Then nAi > τi degi implies

nAi >
r

2
=

1

2
(degi−mi)⇔ nAi +mi >

1

2
(degi +mi),

and nAi < τi degi implies

nAi <
r + 1

2
nAi ∈ Z, r ∈ 2Z + 1



⇒ nAi ≤

r − 1

2

⇔ nAi ≤
1

2
(degi−mi)−

1

2

⇒ nAi +mi <
1

2
(degi +mi).

Hence, (13) holds for this case and for all τi < 1
2 .

If τi > 1
2 , then one of the following occurs:

1) τi degi ∈ Z: If nAi = τi degi, then (12) implies nAi = 1
2 (degi +mi). The cases nAi < τi degi and nAi > τi degi

can be shown using the same approach, which verifies (14) for this case.
2) ∃r ∈ 2Z : r

2 ≤ τi degi <
r+1
2 : First, we know that nAi 6= τi degi. Using (12), nAi > τi degi implies

nAi ≥
r

2
+ 1 =

1

2
(degi +mi) +

1

2
>

1

2
(degi +mi),

and nAi < τi degi implies

nAi <
r + 1

2
=

1

2
(degi +mi)⇔ nAi <

1

2
(degi +mi).

Hence, (14) holds for this case.
3) ∃r ∈ 2Z+ 1 : r

2 ≤ τi degi <
r+1
2 : Once again, we know that nAi 6= τi degi. Using (12), nAi > τi degi implies

nAi >
r

2
=

1

2
(degi +mi),

and nAi < τi degi implies

nAi ≤
r − 1

2
=

1

2
(degi +mi)−

1

2
<

1

2
(degi +mi).

Hence, (14) holds for this case and for all τi > 1
2 , which completes the proof.

Next, we show in Lemma 4 that if whenever an agent in G activates, its dual in Ĝ also activates (while neglecting
the time steps that a V -block agent is active), then the dynamics of each node in G are the same as the dynamics
of its dual node in Ĝ (again while neglecting the time steps that a V -block agent is active).

Consider the network G and let ikG denote the active agent at time k. Correspondingly, denote by (ikG)
∞
k=0, the

sequence of active agents in G. Similarly define (ikĜ)
∞
k=0 as the sequence of active agents in Ĝ. Consider (ikĜ)

∞
k=0

and exclude those agents ikĜ that belong to one of the V -blocks, to get the subsequence (ihk

Ĝ )
∞
k=0. Denote the

sequence of superscripts of (ihk

Ĝ )
∞
k=0 by (hk)

∞
k=0 which corresponds to the times at which the non-V -block agents

in Ĝ are active.

Lemma 4. If (ikG)
∞
k=0 = (ihk

Ĝ )
∞
k=0, then for k = 0, 1, . . ., it holds that

xi(k) = xî(hk) ∀i ∈ V. (15)



where î ∈ V̂ is the dual of agent i.

Proof: The proof is done via induction on k. By the definition of Ĝ, (15) holds for k = 0. Assume that (15)
holds for k = r ∈ Z≥0.

Consider agent irG and its dual îrG whose threshold and degree are 1
2 and degi +mi, respectively. Agent irG updates

at time k = r + 1, and agent îrG updates at kĜ = hr + 1 where kĜ denotes the time in the augmented network
game Γ̂. If τi = 1

2 , then both agents have the same threshold and number of A-neighbors. Hence, they update to
the same strategy at the next time step. If τi < 1

2 , then in view of Lemma 2 and since (15) holds for k = r, îrG has
nAir (r) +mi A-neighbors. Therefore, according to (13) in Lemma 3, îrG updates to the same strategy that irG does.
On the other hand, if τi > 1

2 , then îrG has nAir (r) A-neighbors. Hence, according to (14) in Lemma 3, îrG updates
to the same strategy that irG does. Therefore, in all cases, agent îrG updates to the same strategy that agent irG does.
That is,

xirG(r + 1) = xîrG
(hr + 1). (16)

On the other hand, since no other agent has become active at times hr or r,

xi(r + 1) = xi(r) ∀i ∈ V − {irG}, (17)

xî(hr + 1) = xî(hr) ∀i ∈ V − {irG}. (18)

Due to the induction statement for k = r, it holds that xi(r) = xî(hr) for all i ∈ V − {irG}. Hence, (17) and (18)
result in

xi(r + 1) = xî(hr + 1) ∀i ∈ V − {irG}.
Therefore, according to (16),

xi(r + 1) = xî(hr + 1) ∀i ∈ V. (19)

Now since at each of the time steps hr +1, hr +2, . . . , hr+1−1, the active agent is a V -block agent whose strategy
remains fixed by Lemma 2, (19) results in

xi(r + 1) = xî(hr+1) ∀i ∈ V.
Hence, (15) holds for k = r + 1, which completes the proof by induction.

The remaining step in proving Theorem 1 is to show that agents with arbitrary thresholds will indeed reach an
equilibrium state in finite time.

Proof of Theorem 1: Towards a proof by contradiction, suppose that the original network game never converges,
i.e., there exists an agent j ∈ V such that

∀k∗,
(
∃k > k∗ : xj(k) 6= xj(k

∗)
)
.

Construct the sequence of active agents (ikĜ)
∞
k=0 by inserting an agent î uniformly at random from the set of

augmented nodes V̂ − V after every n elements of the sequence (ikG)
∞
k=0. This is clearly a persistent activation

sequence on the network Ĝ. By Lemma 1, we know that

∃k̃∗ :
(
∀k > k̃∗, xĵ(k) = xĵ(k̃

∗)
)
. (20)

On the other hand, by eliminating the V -block agents in (ikĜ)
∞
k=0, we arrive at (ikG)

∞
k=0. Hence, in view of Lemma

4, (20) implies that
∃k∗ :

(
∀k > k∗, xj(k) = xj(k

∗)
)
,

which contradicts our initial statement. Therefore, x(k) will reach an equilibrium in finite time. �

II. PROOF OF THEOREM 2

The proof of Theorem 2 follows similar steps as the anti-coordinating case. The key difference is that the potential
function becomes

Φi(k) =

{
ňAi − nAi (k) if xi(k) = A

nAi (k)− ňAi + 1 if xi(k) = B
, (21)



where ňAi is defined as the minimum number of A-neighbors required for an A-playing agent to continue playing
A. The maximum number of A-neighbors that a B agent can tolerate before switching to A is then given by ňAi −1.
As shown in the following lemma, this function also decreases by at least 1 with every change of strategy for the
network game Γ := (G, 121,+).

Lemma 5. Every network of coordinating agents who update asynchronously under Assumption 1, with τi = 1
2 for

each agent i ∈ V , will reach an equilibrium state in finite time.

Proof: Consider the function Φ(k) =
∑n

i=1 Φi(k), where Φi is defined in (21). Clearly Φ(k) is lower bounded
by Φ(k) ≥ −∑n

i=1 degi for all k. Consider a time step k, and let i denote the active agent at that time. One of
the following three cases must happen:

1) Agent i does not switch strategies at time k + 1. This implies Φ(k + 1) = Φ(k).
2) Agent i switches from A to B at time k+ 1. This implies nAi (k) ≤ ňAi − 1. Hence, since nAi (k) = nAi (k+ 1),

we have

Φi(k + 1)− Φi(k) = nAi (k)− ňAi + 1− ňAi + nAi (k)

= 2(nAi (k)− ňAi ) + 1 ≤ −1. (22)

Moreover, for each j ∈ Ni, if xj(k) = A, it holds that

Φj(k + 1)− Φj(k) = ňAi − nAi (k + 1)− ňAi + nAi (k)

= 1, (23)

and if xj(k) = B, it holds that

Φj(k + 1)− Φj(k) = nAi (k + 1)− nAi (k) = −1. (24)

According to (1), the fact that agent i switches from A to B at time k + 1 implies nAi (k) ≤ 1
2 degi, regardless of

how zi is defined. Hence, by combining (22), (23), and (24), we have

Φ(k + 1)− Φ(k)

= Φi(k + 1)− Φi(k)︸ ︷︷ ︸
≤−1

+nAi (k)− (degi−nAi (k))︸ ︷︷ ︸
≤0

≤ −1. (25)

3) Agent i switches from B to A at time k + 1. This implies nAi (k) ≥ ňAi . Hence,

Φi(k + 1)− Φi(k) = 2(ňAi − nAi (k))− 1 ≤ −1. (26)

Moreover, for each j ∈ Ni, if xj(k) = A, it holds that

Φj(k + 1)− Φj(k) = −nAj (k + 1) + nAj (k) = −1, (27)

and if xj(k) = B, it holds that

Φj(k + 1)− Φj(k) = nAj (k + 1)− nAj (k) = 1. (28)

According to (2), the fact that agent i switches from B to A at time k + 1 implies nAi (k) ≥ 1
2 degi, regardless of

how zi is defined. Hence, by combining (26), (27), and (28), we have

Φ(k + 1)− Φ(k) (29)

= Φi(k + 1)− Φi(k)︸ ︷︷ ︸
≤−1

−nAi (k) + (degi−nAi (k))︸ ︷︷ ︸
≤0

(30)

≤ −1. (31)

By summarizing the above three cases, we have that

Φ(k + 1) ≤ Φ(k) ∀k ≥ 0. (32)



Moreover, we have shown that every time an agent switches strategies, the function Φ(k) decreases by at least one.
The rest of the proof follows in the same way as that of Lemma 1.

By following the same process of constructing the network augmentation for anti-coordinating agents, we are
able to extend the result of Lemma 5 to a network game with arbitrary thresholds. We define the augmented
(coordinating) network game Γ̂ := (Ĝ, 121,+) based on the (coordinating) network game Γ, in the same way we
defined the augmented network game for anti-coordinating agents, but with the following difference: If τi < 1

2 ,
then the initial strategies of each V -block connected to the dual agent î are xv1(0) = xv2

(0) = xv3(0) = A, and if
τi >

1
2 , then xv1(0) = xv2(0) = xv3(0) = B. Similar to Lemma 2, the following lemma guarantees the invariance

of the strategies of the V -block agents.

Lemma 6. The strategy of each (coordinating) V -block agent is fixed over time.

Proof: The proof is done via contradiction. Assume there exists some time when the strategy of one of the
V -block agents changes. Let r denote the first time this happens, and denote the V -block agent who changes her
strategy by i. If i is a v1-node and xi(0) = A, then xi(r − 1) = A and xi(r) = B. Agent i has two neighbors in
the V -block who each play strategy A at time r − 1. Since degi = 3, we have

nAi (r − 1) ≥ 2

τi degi =
3

2



⇒ nAi (r − 1) > τi degi ⇒ xi(r) = A,

which is a contradiction. If xi(0) = B, then agent i has two B-neighbors in the V -block and xi(r) = A. It follows
that

nAi (r − 1) ≤ 1

τi degi =
3

2



⇒ nAi (r − 1) < τi degi ⇒ xi(r) = B,

again a contradiction. Now if i is either a v2 or a v3 node, and xi(0) = A, then xi(r− 1) = A, and i has only one
neighbor, v1, whose strategy is A at time r − 1. Hence,

nAi (r − 1) = 1

τi degi =
1

2



⇒ nAi (r − 1) > τi degi ⇒ xi(r) = A,

a contradiction. If on the other hand, xi(0) = B, then

nAi (r − 1) = 0

τi degi =
1

2



⇒ nAi (r − 1) < τi degi ⇒ xi(r) = B,

which is a contradiction and completes the proof.
Next, since Lemma 3 is independent of the type of agents, i.e., coordinating or anti-coordinating, it can be used

here as well. Moreover, because of Lemma 6, the result of Lemma 4 can be readily extended to a network of
coordinating agents. With these lemmas in hand, and with the help of Lemma 5, the proof of Theorem 2 can be
done in the same way as that of Theorem 1.

III. CONVERGENCE TIME: PROOF OF COROLLARY 3

Corollary 3. Every network of all coordinating or all anti-coordinating agents will reach an equilibrium state after
no more than 6|E| agent switches.

Proof: To compute the maximum number of times any agent switches strategies before such a network reaches
an equilibrium, we consider the augmented network game Γ̂, which will undergo the same sequence of agent
switches as the original network game Γ, provided that the dual agents in V̂ activate in the same order as the
corresponding agents in V . From (6) in the proof of Lemma 1 and (25) in the proof of Lemma 5, we know that
whenever an agent i ∈ V̂ switches strategies, Φ(k+ 1)−Φ(k) ≤ −1. Otherwise, Φ(k) remains constant. It follows
that the total number of agent switches in Γ̂ is bounded from above by Φ(0)−Φ(k∗), where k∗ is the time at which
the network reaches an equilibrium. To obtain such a bound, we start by decomposing the augmented network into



three disjoint sets of agents such that V̂ = V̂0 ∪ V̂1 ∪ V̂23, where V̂0 denotes the dual agents corresponding to the
oringinal agents V , V̂1 denotes the set of v1 agents in the V -blocks, and V̂23 denotes the set of v2 and v3 agents
in the V -blocks (we refer the reader to the proof of Theorem 1 for definitions of the augmented network). We can
now expand the expression for the upper bound as follows:

Φ(0)− Φ(k∗) =
∑

i∈V̂

Φi(0)− Φi(k
∗) =

∑

i∈V̂0

Φi(0)− Φi(k
∗) +

∑

i∈V̂1

Φi(0)− Φi(k
∗) +

∑

i∈V̂23

Φi(0)− Φi(k
∗).

(33)

Since the V -block agents never change strategies (by Lemmas 2 and 6), Φi(k) is constant for all agents in V̂23.
The final term in (33) is therefore equal to zero. The agents in V̂1 each have one neighbor in V̂0 who might change
strategies (the other two neighbors are in V̂23 and remain fixed). Since nAi (k) can change by at most one for these
agents, it follows that the maximum change in Φi(k) for such an agent is one. Therefore, we have

∑

i∈V̂1

Φi(0)− Φi(k
∗) ≤

∑

i∈V̂1

1 = |V̂1| =
∑

i∈V
mi <

∑

i∈V
degi, (34)

since the size of the set V̂1 is simply the total number of V -blocks (mi for each agent), and mi < degi due to
(12). Next, we consider the set V̂0 of dual agents. For a network of anti-coordinating agents at time zero, we have
for each î ∈ V̂0

Φî(0) =

{
nA
î

(0)− n̂A
î
≤ degî− 1

2 degî +1 if xî(0) = A

n̂A
î

+ 1− nA
î

(0) ≤ 1
2 degî +1− 0 if xî(0) = B

,

where we used the facts that τî degî−1 ≤ n̂A
î
≤ τî degî and that the thresholds in the augmented network τî are

all equal to 1
2 . Similarly, for a network of coordinating agents, we have

Φî(0) =

{
ňA
î
− nA

î
(0) ≤ 1

2 degî +1− 0 if xî(0) = A

nA
î

(0)− ňA
î

+ 1 ≤ degî− 1
2 degî +1 if xî(0) = B

,

since it holds that τî degî ≤ ňAî ≤ τî degî +1. The result is the following upper bound:

Φî(0) ≤ 1

2
degî +1 for all î ∈ V̂0. (35)

For a network of anti-coordinating agents at equilibrium (at time k∗), we have

Φî(k
∗) =

{
nA
î

(k∗)− n̂A
î
≥ 0− 1

2 degî if xî(k
∗) = A

n̂A
î

+ 1− nA
î

(k∗) ≥ 1
2 degî− degî if xî(k

∗) = B
.

Similarly, for a network of coordinating agents, we have

Φî(k
∗) =

{
ňA
î
− nA

î
(k∗) ≥ 1

2 degî−degî if xî(k
∗) = A

nA
î

(k∗)− ňA
î

+ 1 ≥ 0− 1
2 degî if xî(k

∗) = B
.

This yields the following lower bound:

Φî(k
∗) ≥ −1

2
degî for all î ∈ V̂0. (36)

Using (35) and (36), we can bound the change in potential for the dual agents as follows:
∑

î∈V̂0

Φî(0)− Φî(k
∗) ≤

∑

î∈V̂0

(degî +1).

For each dual agent î ∈ V̂0, let i denote the corresponding original agent in V . Since degî = degi +mi and
mi < degi due to (12), it holds that degî ≤ 2 degi−1. It follows that

∑

î∈V̂0

Φî(0)− Φî(k
∗) ≤ 2

∑

i∈V
degi . (37)



Substituing (34) and (37) into (33) results in

Φ(0)− Φ(k∗) ≤ 3
∑

i∈V
degi = 6|E|.

Finally, Lemma 4 implies that the sequence of agent switches between an original and augmented network are
equivalent, as long as the dual agents activate in the same sequence as the agents in the original network. This
completes the proof.

IV. PROOF OF THEOREM 3

Proof of Theorem 3: Since the updates to x(k+ 1) depend only on the state x(k), and since agent activations
do not depend on time, the network game can be modeled as a Markov chain with dimension 2n. The state transition
probabilities depend on the probabilities that each of the sets Ak will occur, along with the corresponding update
dynamics. To prove almost sure convergence of the network game, it suffices to show that this Markov chain is
absorbing, which requires satisfying two conditions [3, Definition 11.1, p416]. The first condition is that there
exists at least one absorbing state. Absorbing states are equivalent to Nash equilibria of the network game, whose
existence we have established in Corollaries 2 and 1. The second condition is that there exists a path in the Markov
chain from every non-absorbing state to an absorbing state. Theorems 2 and 1 established the existence of such
paths, which consist of finite sequences of asynchronous updates. It follows from Assumption 2, i.e., agent updates
are independent and have support on R≥0, that the probabilities of each agent being the only active agent in a
given time step are strictly positive (they can be computed from the probability distributions for the inter-activation
times of each agent). Therefore, both conditions are met, and the Markov chain is absorbing, which implies that the
corresponding network game will almost surely reach an equilibrium state in finite time [3, Theorem 11.3, p417].
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