Economics & Human Biology

Supplementary material

Undurraga et al. 2016. Individual health and the visibility of village economic inequality: Longitudinal evidence from native Amazonians in Bolivia. Supplementary material.

Contents

1.	App	pendix A. Estimate and imputation of the Gini coefficient	2
2.	App	pendix B. Full regression results for Table 2 through Table 4	3
3.	App	pendix C. Alternative specifications for our regression model	22
	3.1	Regressions using village fixed-effects	22
	3.2	Regressions using all measures of inequality simultaneously in the model	27
	3.3	Regressions controlling for reciprocity	30
4.	Ref	Ferences for the supplementary material	35

1. Appendix A. Estimate and imputation of the Gini coefficient

To compute the Gini coefficient of village inequality in an economic resource, we used the command inequal7 developed by Philippe Van Kerm for Stata. This command will produce missing values for the Gini coefficient if observations contain only missing values or a mix of zeroes and missing values. In the latter case, we assumed the village had complete equality, and we imputed zero for the missing Gini coefficient.

For example, to compute the Gini coefficient of consumption of domesticated animal per capita (dommeat_cap) for village 3 in year 2010, we use the following commands:

```
gen gini_dommeat_cap = .
inequal7 dommeat_cap if village == 3 & year == 2010
replace gini_dommeat_cap = `r(gini)' if village == 3 & year == 2010
```

If inequal7 produced a missing value for the Gini coefficient and there were zeroes for some observations, we replaced gini_dommeat_cap with 0. Table A1 shows the number of raw observations of the Gini coefficient and the number of observations with imputed values. We did the analysis with and without imputation and found essentially the same results.

Table A.1 Summary of total number of observations before and after imputation

Gini coefficient of	Before	After
Wildlife	13281	13281
Meat	13281	13281
Durables	9270	10445
Luxuries	10307	10445
Plantings	10445	10445
Forest	13281	13281
Individual wealth	13281	13281
Household wealth	13281	13281
Income	13281	13281

2. Appendix B. Full regression results for Table 2 through Table 4

Appendix B shows the complete regressions results for Table 2, Table 3, and Table 4 of the main manuscript. The tables shown in this appendix are organized by the level of cultural visibility of the resource or behavior (i.e. high, medium, low) and the measure of inequality used (i.e., Gini coefficient, coefficient of covariance). The coefficients for inequality of a resource or behavior correspond to the coefficients shown in the main tables in the manuscript. The correspondence is indicated in the title of each table. The definitions of the main variables are shown in Table 1 in the main manuscript.

Table B1. Full regression results: Association between **high visibility Gini coefficient** of village economic inequality and individual health using the nine-year panel (2002-2010) of 13 villages (Table 2, section I)

	Stress	Stress	Ill	Ill	Bed	Bed	Addict.	Addict.	Arm	Arm	BMI	BMI
Gini of wildlife	0.29		-0.09		0.02		0.25		-0.43		-0.14	
	(0.32)		(0.19)		(0.13)		(0.30)		(0.34)		(0.79)	
Wildlife	-0.00		0.00		0.01**		0.01		-0.00		-0.01	
	(0.01)		(0.00)		(0.00)		(0.01)		(0.00)		(0.01)	
Median of wildlife	0.04		-0.01		-0.03*		0.02		-0.06**		-0.34**	
	(0.05)		(0.02)		(0.01)		(0.02)		(0.03)		(0.12)	
Gini of meat		-0.63		-0.14		-0.13		-0.30		-0.56***		-1.70*
		(0.53)		(0.17)		(0.11)		(0.27)		(0.18)		(0.81)
Meat		0.01		0.01		0.02**		0.00		0.00		0.00
		(0.01)		(0.01)		(0.01)		(0.01)		(0.01)		(0.04)
Median of meat		0.06		-0.00		-0.00		0.11		-0.14**		-0.36
		(0.14)		(0.04)		(0.03)		(0.08)		(0.06)		(0.26)

Age	0.00*	0.00*	0.00***	0.00***	0.00**	0.00**	0.00	0.00	-0.00***	-0.00***	0.02***	0.02**
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.32***	-0.32***	-0.06***	-0.06***	-0.01	-0.01	0.99***	1.00***	-1.13***	-1.13***	-0.24	-0.23
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.07)	(0.08)	(0.05)	(0.05)	(0.32)	(0.32)
Count	0.01	0.01	0.00	0.00	-0.01***	-0.01***	0.00	0.00	-0.00	-0.00	0.05	0.06
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.05)	(0.05)
Distance to town	-0.01	-0.01	-0.00	-0.00	-0.00*	-0.00	-0.01**	-0.01**	-0.01***	-0.01**	0.00	0.01
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Education	-0.03*	-0.03*	-0.01**	-0.01**	-0.02***	-0.02***	-0.02*	-0.02**	0.02	0.02	0.18**	0.18**
	(0.02)	(0.02)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.08)	(0.08)
HH in village	-0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	0.00	0.00**	0.00*	0.01	0.00
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Constant	4.05***	5.07***	0.63***	0.65***	0.48***	0.52***	-0.72***	-0.45*	0.26	0.40**	22.31***	23.03***
	(0.27)	(0.55)	(0.12)	(0.15)	(0.06)	(0.10)	(0.17)	(0.23)	(0.17)	(0.16)	(0.64)	(0.77)
N	3,850	3,850	5,007	5,007	5,167	5,167	2,888	2,888	4,884	4,884	3,562	3,562
\mathbb{R}^2	0.08	0.09	0.17	0.17	0.05	0.05	0.25	0.25	0.42	0.42	0.05	0.04

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and year fixed effects. HH denotes households, Addict. denotes addictions.

Table B2. Full regression results: Association between **medium visibility Gini coefficient** of village economic inequality and individual health using the nine-year panel (2002-2010) of 13 villages (Table 2, section II)

	Stress	Stress	Ill	Ill	Bed	Bed	Addict.	Addict.	Arm	Arm	BMI	BMI
Gini of durables	-0.24*		-0.06**		-0.05		-0.00		-0.12		-0.24	
	(0.13)		(0.02)		(0.06)		(0.06)		(0.08)		(0.22)	
Durables	0.00		0.00**		0.00		0.00***		-0.00**		-0.00**	
	(0.00)		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)	
Gini of luxuries		-2.46***		-0.22**		0.01		-0.14		0.22		-0.28
		(0.77)		(0.09)		(0.07)		(0.25)		(0.20)		(0.55)
Luxuries		-0.00**		0.00		-0.00		0.00		0.00		*00.0
		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)
Median of luxuries		-0.05		0.02***		0.01*		0.03*		0.02**		0.05
		(0.03)		(0.00)		(0.00)		(0.02)		(0.01)		(0.04)
Age	0.00*	0.01*	0.00***	0.00***	0.00**	0.00**	0.00	0.00	-0.01***	-0.01***	0.02**	0.02**
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.36***	-0.33***	-0.05**	-0.04**	-0.01	-0.01	0.98***	0.98***	-1.13***	-1.14***	-0.29	-0.34
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.08)	(0.08)	(0.05)	(0.05)	(0.34)	(0.33)
Count	0.00	0.01	-0.00	-0.00	-0.01	-0.01	0.00	0.00	-0.00	-0.00	0.06	0.05
	(0.02)	(0.02)	(0.00)	(0.00)	(0.01)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.05)	(0.05)
Distance to town	-0.01	-0.00	-0.00*	-0.00	-0.00*	-0.00	-0.01**	-0.01**	-0.01**	-0.01**	0.01	0.01
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Education	-0.04*	-0.03*	-0.01***	-0.01***	-0.02***	-0.02***	-0.02*	-0.02**	0.02	0.02	0.18**	0.18**
	(0.02)	(0.02)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.08)	(0.08)
HH in village	-0.00	-0.00	0.00	0.00	-0.00	-0.00	0.00	0.00	0.00**	0.00**	0.01	0.01
	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Constant	5.27***	7.15***	0.62***	0.38***	0.33***	0.28***	-0.56***	-0.50*	0.01	-0.28	21.67***	21.74***
	(0.23)	(0.70)	(0.05)	(0.09)	(0.04)	(0.06)	(0.15)	(0.28)	(0.08)	(0.24)	(0.51)	(0.59)
N	2,861	2,861	3,956	3,956	3,956	3,956	2,888	2,888	3,934	3,934	2,902	2,902
\mathbb{R}^2	0.08	0.09	0.21	0.21	0.06	0.06	0.25	0.25	0.43	0.43	0.04	0.04

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and year fixed effects. HH denotes households, Addict. denotes addictions. The median of durable assets was omitted from the regression results because of collinearity.

Table B3. Full regression results: Association between **low visibility Gini coefficient** of village economic inequality and individual health using the nine-year panel (2002-2010) of 13 villages (Table 2, section III)

	Stress	Stress	Ill	Ill	Bed	Bed	Addict.	Addict.	Arm	Arm	BMI	BMI
Gini plantings	-0.60		-0.28		-0.02		-0.22		-0.44		-0.78	
	(0.66)		(0.23)		(0.23)		(0.40)		(0.39)		(1.77)	
Plantings	-0.01		0.00**		0.01**		-0.01		0.00		-0.04	
	(0.02)		(0.00)		(0.00)		(0.01)		(0.01)		(0.04)	
Median plantings	0.08		0.01		0.08**		-0.04		0.07		0.42	
	(0.12)		(0.02)		(0.03)		(0.05)		(0.08)		(0.31)	
Gini forest clear		-0.01		-0.37		-0.12		-0.30		-0.68		-1.95
		(0.71)		(0.26)		(0.19)		(0.31)		(0.45)		(2.09)
Forest cleared		-0.02		0.01*		0.01**		-0.01		0.01		-0.05
		(0.02)		(0.00)		(0.01)		(0.01)		(0.02)		(0.05)
Median forest clear		0.20**		-0.01		0.02		-0.04		0.09		0.66
		(0.08)		(0.04)		(0.03)		(0.05)		(0.09)		(0.38)
Age	0.01*	0.00*	0.00***	0.00***	0.00**	0.00**	0.00	0.00	-0.01***	-0.00***	0.03***	0.03***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.36***	-0.32***	-0.05**	-0.06***	-0.01	-0.01	1.00***	0.99***	-1.14***	-1.14***	-0.35	-0.28
	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.08)	(0.08)	(0.05)	(0.05)	(0.32)	(0.32)
Count	0.00	0.02	-0.00	0.00	-0.01	-0.01**	0.00	0.00	-0.00	-0.00	0.06	0.07
	(0.02)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.05)	(0.04)
Distance to town	-0.01	-0.01	-0.00	-0.00	-0.00**	-0.00	-0.01**	-0.01**	-0.01**	-0.01**	0.01	0.01
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Education	-0.03*	-0.03*	-0.01**	-0.01**	-0.02***	-0.02***	-0.03*	-0.03*	0.02*	0.02	0.18**	0.19**
	(0.02)	(0.02)	(0.00)	(0.00)	(0.01)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.08)	(0.08)
HH in village	-0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	0.00	0.00**	0.00***	0.01	0.01
	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Constant	5.14***	3.90***	0.99***	0.81***	0.14	0.40***	-0.41*	-0.38**	-0.01	0.11	21.17***	21.23***
	(0.50)	(0.43)	(0.12)	(0.13)	(0.14)	(0.10)	(0.22)	(0.16)	(0.27)	(0.28)	(1.00)	(1.13)
N	2,848	3,838	3,925	4,943	3,932	5,098	2,836	2,839	3,903	4,817	2,895	3,523
\mathbb{R}^2	0.08	0.09	0.21	0.17	0.07	0.05	0.25	0.25	0.43	0.43	0.05	0.05

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and year fixed effects. HH denotes households, Addict. denotes addictions.

Table B4. Full regression results: Association between **high visibility coefficient of variation** (CV) of community economic inequality on individual health using the nine-year panel (2002-2010) of 13 villages (Table 3, section I)

	Stress	Stress	Ill	Ill	Bed	Bed	Addict.	Addict.	Arm	Arm	BMI	BMI
CV of wildlife	0.05		-0.01		0.01		0.05		-0.18**		-0.06	
	(0.10)		(0.05)		(0.02)		(0.10)		(0.08)		(0.21)	
Wildlife	-0.00		0.00		0.01**		0.01		-0.00		-0.01	
	(0.01)		(0.00)		(0.00)		(0.01)		(0.00)		(0.01)	
Median of wildlife	0.03		-0.01		-0.03**		0.02		-0.07**		-0.34**	
	(0.05)		(0.02)		(0.01)		(0.02)		(0.03)		(0.12)	
CV of meat		-0.14		-0.04**		-0.03**		-0.03		-0.05**		-0.11
		(0.11)		(0.02)		(0.01)		(0.03)		(0.02)		(0.09)
Meat		0.01		0.01		0.02**		-0.00		0.00		-0.00
		(0.01)		(0.01)		(0.01)		(0.01)		(0.01)		(0.05)
Median of meat		0.09		-0.00		0.01		0.15**		-0.06		-0.06
		(0.10)		(0.02)		(0.02)		(0.07)		(0.04)		(0.24)
Age	0.00*	0.00*	0.00***	0.00***	0.00**	0.00**	0.00	0.00	-0.00***	-0.00***	0.02***	0.02**
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.32***	-0.32***	-0.06***	-0.06***	-0.01	-0.01	0.99***	1.00***	-1.13***	-1.13***	-0.24	-0.24
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.07)	(0.08)	(0.05)	(0.05)	(0.32)	(0.32)
Count	0.01	0.01	0.00	0.00	-0.01***	-0.01***	0.00	0.00	-0.00	-0.00	0.05	0.05
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.05)	(0.05)
Distance to town	-0.01	-0.01	-0.00	-0.00	-0.00*	-0.00	-0.01**	-0.01**	-0.01***	-0.01***	0.00	0.01
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Education	-0.03*	-0.03*	-0.01**	-0.01**	-0.02***	-0.02***	-0.02*	-0.02**	0.02	0.02	0.18**	0.18**
	(0.02)	(0.02)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.08)	(0.08)
HH in village	-0.00	-0.00	-0.00	0.00	-0.00	-0.00	0.00	0.00	0.00**	0.00*	0.01	0.00
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Constant	4.15***	4.38***	0.60***	0.63***	0.48***	0.48***	-0.65***	-0.31*	0.27**	0.09	22.32***	22.01***
	(0.22)	(0.27)	(0.10)	(0.08)	(0.05)	(0.06)	(0.15)	(0.15)	(0.11)	(0.09)	(0.57)	(0.50)
N	3,850	3,850	5,007	5,007	5,167	5,167	2,888	2,888	4,884	4,884	3,562	3,562
\mathbb{R}^2	0.08	0.09	0.17	0.18	0.05	0.05	0.25	0.25	0.42	0.42	0.05	0.04

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and year fixed effects. HH denotes households, Addict. denotes addictions.

Table B5. Full regression results: Association between **medium visibility coefficient of variation** (CV) of community economic inequality and individual health using the nine-year panel (2002-2010) of 13 villages (Table 3, section II)

	Stress	Stress	Ill	Ill	Bed	Bed	Addict.	Addict.	Arm	Arm	BMI	BMI
CV of durables	-0.04**		-0.01**		-0.01		-0.01		-0.01		-0.02	
	(0.02)		(0.01)		(0.01)		(0.01)		(0.01)		(0.03)	
Durables	0.00		0.00*		0.00		0.00***		-0.00**		-0.00**	
	(0.00)		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)	
CV of luxuries		-0.17***		0.00		-0.02		-0.07*		0.03		-0.09
		(0.04)		(0.01)		(0.01)		(0.03)		(0.03)		(0.11)
Luxuries		-0.00**		0.00		-0.00		0.00		0.00		0.00*
		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)
Median of luxuries		-0.03		0.01**		0.01*		0.03		0.02**		0.05
		(0.03)		(0.00)		(0.00)		(0.02)		(0.01)		(0.04)
Age	0.00	0.01*	0.00***	0.00***	0.00**	0.00**	0.00	0.00	-0.01***	-0.01***	0.02**	0.02**
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.36***	-0.33***	-0.05**	-0.04**	-0.01	-0.01	0.98***	0.98***	-1.13***	-1.14***	-0.29	-0.33
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.08)	(0.08)	(0.05)	(0.05)	(0.34)	(0.33)
Count	0.00	0.01	-0.00	-0.00	-0.01	-0.01	0.00	0.00	-0.00	-0.00	0.05	0.06
	(0.02)	(0.02)	(0.00)	(0.00)	(0.01)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.05)	(0.05)
Distance to town	-0.01	-0.00	-0.00	-0.00	-0.00	-0.00	-0.01**	-0.01**	-0.01**	-0.01***	0.01	0.01
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Education	-0.04*	-0.03*	-0.01***	-0.01***	-0.02***	-0.02***	-0.02*	-0.03**	0.02	0.02	0.18**	0.17**
	(0.02)	(0.02)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.08)	(0.08)
HH in village	-0.00	-0.00	0.00	0.00	-0.00	-0.00	0.00	0.00	0.00**	0.00**	0.00	0.01
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Constant	5.20***	5.53***	0.61***	0.56***	0.33***	0.33***	-0.53***	-0.47**	-0.05	-0.17	21.54***	21.74***
	(0.20)	(0.21)	(0.06)	(0.06)	(0.04)	(0.05)	(0.14)	(0.16)	(0.09)	(0.14)	(0.46)	(0.57)
N	2,861	2,861	3,956	3,956	3,956	3,956	2,888	2,888	3,934	3,934	2,902	2,902
\mathbb{R}^2	0.08	0.09	0.21	0.21	0.06	0.06	0.25	0.26	0.43	0.43	0.04	0.04

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and year fixed effects. HH denotes households, Addict. denotes addictions. The median of durable assets was omitted from the regression results because of collinearity.

Table B6. Full regression results: Association between **low visibility coefficient of variation (CV)** of community economic inequality on individual health using the nine-year panel (2002-2010) of 13 villages (Table 3, section III)

	Stress	Stress	Ill	Ill	Bed	Bed	Addict.	Addict.	Arm	Arm	BMI	BMI
CV of plantings	-0.29		-0.13		-0.03		-0.13		-0.18		-0.81	
	(0.32)		(0.09)		(0.09)		(0.15)		(0.14)		(0.71)	
Plantings	-0.01		0.01**		0.01**		-0.01		0.00		-0.03	
	(0.02)		(0.00)		(0.00)		(0.01)		(0.01)		(0.04)	
Median plantings	0.07		0.01		0.08**		-0.04		0.07		0.34	
	(0.12)		(0.02)		(0.03)		(0.05)		(0.08)		(0.30)	
CV forest cleared		-0.21		-0.14*		-0.04		-0.24*		-0.28**		-1.16**
		(0.23)		(0.07)		(0.07)		(0.13)		(0.09)		(0.39)
Forest cleared		-0.01		0.01*		0.01**		-0.01		0.01		-0.04
		(0.02)		(0.00)		(0.01)		(0.01)		(0.02)		(0.05)
Median forest clear		0.17*		-0.00		0.02		-0.06		0.10		0.62**
		(0.08)		(0.03)		(0.04)		(0.04)		(0.07)		(0.28)
Age	0.01*	0.00*	0.00***	0.00***	0.00**	0.00**	0.00	0.00	-0.01***	-0.00***	0.03***	0.02***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.36***	-0.32***	-0.05**	-0.06***	-0.01	-0.01	1.00***	0.99***	-1.14***	-1.14***	-0.35	-0.27
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.08)	(0.08)	(0.05)	(0.05)	(0.32)	(0.32)
Count	0.00	0.02	-0.00	0.00	-0.00	-0.01**	0.00	0.00	-0.00	0.00	0.06	0.08*
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.05)	(0.04)
Distance to town	-0.01	-0.01	-0.00	-0.00	-0.00**	-0.00	-0.01**	-0.01**	-0.01**	-0.01**	0.01	0.01
	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Education	-0.03	-0.03*	-0.01**	-0.01**	-0.02***	-0.02***	-0.03*	-0.03*	0.02*	0.02	0.18**	0.19**
	(0.02)	(0.02)	(0.00)	(0.00)	(0.01)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.08)	(0.08)
HH in village	-0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	0.00	0.00**	0.00***	0.01	0.01
	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)
Constant	5.13***	4.07***	0.99***	0.76***	0.16	0.38***	-0.40*	-0.32*	-0.04	0.06	21.52***	21.28***
	(0.53)	(0.32)	(0.10)	(0.09)	(0.12)	(0.08)	(0.19)	(0.15)	(0.23)	(0.20)	(0.95)	(0.66)
N	2,848	3,838	3,925	4,943	3,932	5,098	2,836	2,839	3,903	4,817	2,895	3,523
\mathbb{R}^2	0.08	0.09	0.21	0.17	0.07	0.05	0.25	0.25	0.43	0.43	0.05	0.06

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and year fixed effects. HH denotes households, Addict. denotes addictions.

Table B7. Full regression results: Association between **high visibility Gini coefficient** of village economic inequality and individual health using the two-year panel (2008-2009) of 40 villages (Table 4, section I)

	Stress	Stress			Cardiov	ascular			Addict.	Addict.	BMI	BMI
			Systolic	Systolic	Diastolic	Diastolic	Pulse rate	Pulse rate	-			
Gini of wildlife	-1.07*		6.90		1.22		-4.48		-0.02		0.35	
	(0.54)		(5.91)		(5.78)		(5.28)		(0.60)		(1.14)	
Wildlife	0.02*		0.01		0.00		-0.07		0.03**		0.05	
	(0.01)		(0.12)		(0.11)		(0.09)		(0.01)		(0.04)	
Median wildlife	-0.16*		1.23		0.62		0.21		-0.00		0.45**	
	(0.10)		(0.90)		(0.68)		(0.83)		(0.12)		(0.17)	
Gini of meat		-0.25		-5.27		-2.78		1.65		0.34		0.76
		(0.42)		(5.89)		(4.69)		(3.49)		(0.38)		(1.04)
Meat		0.04**		0.11		-0.09		-0.22		0.05*		-0.00
		(0.02)		(0.29)		(0.24)		(0.19)		(0.02)		(0.06)
Median of meat		-0.08		-3.76*		-0.97		2.01***		0.35		-0.35
		(0.17)		(2.13)		(1.27)		(0.69)		(0.22)		(0.28)
Age	0.01***	0.01***	0.06**	0.07***	0.04*	0.04*	-0.04	-0.05*	0.01***	0.01**	0.14***	0.15***
	(0.00)	(0.00)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.00	-0.00	9.98***	10.09***	3.35***	3.46***	-5.72***	-5.64***	0.98***	0.98***	0.25	0.25
	(0.04)	(0.04)	(0.72)	(0.70)	(0.71)	(0.69)	(0.72)	(0.72)	(0.11)	(0.10)	(0.17)	(0.17)
HH in village	0.00	-0.00	-0.11***	-0.11***	-0.01	-0.00	0.07**	0.08**	-0.00	-0.00	-0.02***	-0.02***
	(0.00)	(0.00)	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Distance to town	0.00	0.00	-0.01	-0.07	-0.08	-0.08	-0.12	-0.07	-0.01	0.00	-0.04**	-0.04*
	(0.01)	(0.01)	(0.12)	(0.11)	(0.10)	(0.10)	(0.07)	(0.08)	(0.01)	(0.01)	(0.02)	(0.02)
Education	-0.03**	-0.03**	-0.04	-0.03	0.07	0.04	-0.20	-0.27	-0.01	-0.01	0.39***	0.38***
	(0.01)	(0.01)	(0.18)	(0.19)	(0.15)	(0.15)	(0.15)	(0.16)	(0.02)	(0.02)	(0.04)	(0.04)
T_1	-0.29**	-0.31**	-0.51	-1.53	1.00	0.56	0.42	0.77	0.09	0.18	0.07	0.04
	(0.11)	(0.12)	(1.31)	(1.39)	(1.17)	(1.28)	(1.03)	(0.95)	(0.16)	(0.12)	(0.22)	(0.28)
T_2	-0.29**	-0.31***	-2.64	-2.74	-1.50	-1.77	0.54	-0.03	-0.15	-0.17	0.13	-0.15

	(0.11)	(0.11)	(1.92)	(1.70)	(1.44)	(1.37)	(1.05)	(0.77)	(0.16)	(0.12)	(0.26)	(0.26)
Constant	2.43***	1.88***	105.79***	116.53***	65.90***	69.80***	81.12***	77.03***	-0.47	-0.93***	15.81***	16.48***
	(0.42)	(0.33)	(4.24)	(4.44)	(3.89)	(3.33)	(3.86)	(2.81)	(0.54)	(0.29)	(0.73)	(0.78)
N	972	972	906	906	906	906	906	906	956	956	1,584	1,584
\mathbb{R}^2	0.09	0.08	0.21	0.22	0.07	0.07	0.11	0.11	0.24	0.26	0.51	0.51

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village. T_1 denotes treatment 1, in-kind unconditional income transfers to all households in the treated village. T_2 denotes treatment 2, in-kind unconditional income transfers to the poorest households. HH denotes households, Addict. denotes addictions.

Table B8. Full regression results: Association between **medium visibility Gini coefficient** of village economic inequality and individual health using the two-year panel (2008-2009) of 40 villages (Table 4, section II)

	Stress	Stress			Cardiov	ascular			Addict.	Addict.	BMI	BMI
		•	Systolic	Systolic	Diastolic	Diastolic	Pulse rate	Pulse rate	-			
Gini of durables	0.02		5.37*		-1.02		-2.63**		-0.12		1.01**	
	(0.17)		(3.02)		(2.23)		(1.21)		(0.17)		(0.47)	
Durables	-0.00		0.00		0.00		-0.01***		0.00		-0.00*	
	(0.00)		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)	
Gini of luxuries		-0.51		13.16		3.27		3.05		-0.15		3.97*
		(0.61)		(10.66)		(8.20)		(6.25)		(0.83)		(2.21)
Luxuries		0.00***		0.00		0.00		-0.01		0.00**		0.00**
		(0.00)		(0.01)		(0.00)		(0.01)		(0.00)		(0.00)
Median luxuries		0.00		0.37		0.41		0.35		0.07		0.05
		(0.04)		(0.33)		(0.29)		(0.25)		(0.05)		(0.08)
Age	0.01***	0.01***	0.06***	0.06***	0.04*	0.04*	-0.05*	-0.05*	0.01***	0.01***	0.01*	0.01*
	(0.00)	(0.00)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.00	-0.04	9.79***	9.94***	3.25***	3.31***	-5.34***	-5.59***	0.97***	0.93***	-0.13	-0.15
	(0.04)	(0.04)	(0.73)	(0.70)	(0.69)	(0.60)	(0.69)	(0.73)	(0.10)	(0.09)	(0.29)	(0.26)
HH in village	-0.00	-0.00	-0.12***	-0.09***	0.00	0.01	0.08**	0.07**	-0.00	-0.00	0.00	0.01
	(0.00)	(0.00)	(0.04)	(0.03)	(0.03)	(0.02)	(0.03)	(0.04)	(0.00)	(0.00)	(0.01)	(0.01)
Distance to town	0.00	0.01	-0.00	-0.04	-0.05	-0.04	-0.11	-0.10	-0.01	0.00	-0.04*	-0.06*
	(0.01)	(0.01)	(0.10)	(0.13)	(0.09)	(0.09)	(0.07)	(0.08)	(0.01)	(0.01)	(0.03)	(0.03)
Education	-0.03**	-0.02**	0.01	-0.01	0.06		-0.29*	-0.21	-0.01	-0.00	0.03	0.03
	(0.01)	(0.01)	(0.20)	(0.18)	(0.15)		(0.15)	(0.16)	(0.02)	(0.01)	(0.04)	(0.04)
T_1	-0.28**	-0.28**	-1.26	-0.60	1.23	0.78	0.84	0.23	0.11	0.08	0.42	0.59
	(0.13)	(0.12)	(1.38)	(1.19)	(1.22)	(1.09)	(0.95)	(0.97)	(0.16)	(0.14)	(0.35)	(0.35)
T_2	-0.30**	-0.27**	-2.67	-3.37**	-1.67	-1.87	-0.09	-0.14	-0.15	-0.13	0.03	-0.20

		(0.11)	(0.10)	(1.76)	(1.65)	(1.40)	(1.33)	(0.83)	(0.93)	(0.14)	(0.10)	(0.37)	(0.36)
(Constant	1.71***	2.12***	106.94***	99.67***	67.89***	64.40***	81.13***	76.32***	-0.35*	-0.45	22.43***	19.80***
		(0.15)	(0.53)	(3.25)	(9.68)	(2.17)	(7.20)	(1.85)	(5.72)	(0.21)	(0.75)	(0.61)	(2.04)
	N	972	972	902	902	902	924	902	902	956	956	673	673
	\mathbb{R}^2	0.07	0.09	0.22	0.21	0.07	0.07	0.11	0.11	0.23	0.26	0.03	0.03

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village. T_1 denotes treatment 1, in-kind unconditional income transfers to all households in the treated village. T_2 denotes treatment 2, in-kind unconditional income transfers to the poorest households. HH denotes households, Addict. denotes addictions. The median of durable assets was omitted from the regression results because of collinearity.

Table B9. Full regression results: Association between **low visibility Gini coefficient** of village economic inequality and individual health using the two-year panel (2008-2009) of 40 villages (Table 4, section III)

	Stress	Stress			Cardiova	ascular			Addict.	Addict.	BMI	BMI
			Systolic	Systolic	Diastolic	Diastolic	Pulse rate	Pulse rate	_			
Gini plantings	0.50		0.24		2.15		7.29		-0.83		1.10	
	(0.35)		(7.18)		(6.46)		(5.59)		(0.73)		(1.46)	
Plantings	0.00		0.20*		0.14		-0.10		0.01		-0.01	
	(0.01)		(0.11)		(0.11)		(0.07)		(0.01)		(0.05)	
Median plantings	0.14***		0.05		-0.58		0.71		0.14*		0.35**	
	(0.05)		(0.68)		(0.54)		(0.45)		(0.08)		(0.14)	
Gini of forest clear		0.77		-2.39		-0.81		11.53		-1.68*		0.65
		(0.68)		(10.52)		(10.86)		(7.31)		(0.83)		(1.56)
Forest cleared		0.00		0.16		0.07		-0.08		0.01		0.02
		(0.01)		(0.13)		(0.10)		(0.09)		(0.02)		(0.06)
Median forest clear		0.23***		1.23		-0.15		-0.06		0.14		0.48*
		(0.07)		(1.31)		(1.09)		(0.90)		(0.11)		(0.24)
Age	0.01***	0.01***	0.05**	0.06**	0.04	0.04	-0.04	-0.05*	0.01***	0.01***	0.14***	0.14***
	(0.00)	(0.00)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.02	-0.00	9.99***	10.00***	3.42***	3.39***	-5.68***	-5.59***	0.97***	0.97***	0.29*	0.29*
	(0.04)	(0.04)	(0.73)	(0.73)	(0.69)	(0.70)	(0.73)	(0.71)	(0.10)	(0.10)	(0.17)	(0.17)
HH in village	-0.00	-0.00	-0.09***	-0.10***	-0.00	-0.00	0.06	0.06*	-0.01	-0.00	-0.02***	-0.02***
	(0.00)	(0.00)	(0.03)	(0.04)	(0.03)	(0.04)	(0.04)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Distance to town	0.01	0.01	0.03	0.07	-0.09	-0.06	-0.09	-0.14*	0.01	0.00	-0.00	-0.00
	(0.01)	(0.01)	(0.12)	(0.12)	(0.10)	(0.10)	(0.09)	(0.08)	(0.01)	(0.01)	(0.02)	(0.02)
Education	-0.02**	-0.03***	-0.07	-0.09	0.04	0.04	-0.24	-0.25	-0.01	-0.01	0.37***	0.37***
	(0.01)	(0.01)	(0.18)	(0.19)	(0.15)	(0.15)	(0.16)	(0.15)	(0.02)	(0.02)	(0.04)	(0.04)
T_1	-0.31***	-0.35***	-0.63	-0.62	0.83	0.99	-0.01	-0.21	0.11	0.15	-0.01	-0.06
	(0.11)	(0.10)	(1.38)	(1.49)	(1.25)	(1.45)	(0.97)	(1.05)	(0.14)	(0.13)	(0.28)	(0.28)
T_2	-0.28***	-0.31***	-2.69	-2.68	-1.97	-1.77	-0.19	-0.32	-0.11	-0.14	-0.11	-0.16
	(0.10)	(0.11)	(2.01)	(1.99)	(1.37)	(1.42)	(0.93)	(0.88)	(0.12)	(0.14)	(0.26)	(0.25)

Constant	1.18***	1.07***	110.22***	109.28***	67.97***	67.78***	75.42***	75.94***	-0.58	-0.15	15.34***	15.54***
	(0.21)	(0.29)	(3.82)	(4.47)	(2.72)	(4.07)	(2.79)	(3.50)	(0.35)	(0.46)	(0.71)	(0.73)
N	971	971	905	905	905	905	905	905	955	955	1,581	1,581
\mathbb{R}^2	0.10	0.10	0.21	0.21	0.07	0.07	0.11	0.11	0.25	0.25	0.51	0.50

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village. T_1 denotes treatment 1, in-kind unconditional income transfers to all households in the treated village. T_2 denotes treatment 2, in-kind unconditional income transfers to the poorest households. HH denotes households, Addict. denotes addictions.

Table B10. Full regression results: Association between **high visibility coefficient of variation (CV)** of community economic inequality and individual health using the two-year panel (2008-2009) of 40 villages (Table 4, section IV)

	Stress	Stress			Cardiova	ascular			Addict.	Addict.	BMI	BMI
			Systolic	Systolic	Diastolic	Diastolic	Pulse rate	Pulse rate	_			
CV of wildlife	-0.47***		3.90		1.21		-2.68*		-0.12		0.00	
	(0.16)		(2.56)		(1.81)		(1.51)		(0.22)		(0.46)	
Wildlife	0.02*		-0.00		-0.01		-0.05		0.04**		0.05	
	(0.01)		(0.13)		(0.11)		(0.09)		(0.01)		(0.04)	
Median wildlife	-0.19**		1.70		0.88		-0.14		-0.04		0.41**	
	(0.09)		(1.03)		(0.72)		(0.69)		(0.12)		(0.19)	
CV of meat		-0.10		0.45		0.30		-0.05		0.11*		0.02
		(0.10)		(1.57)		(1.62)		(0.94)		(0.06)		(0.17)
Meat		0.04**		0.07		-0.11		-0.21		0.05*		0.00
		(0.02)		(0.30)		(0.24)		(0.19)		(0.02)		(0.06)
Median of meat		-0.09		-2.50		-0.27		1.67**		0.35*		-0.48**
		(0.15)		(2.04)		(1.36)		(0.70)		(0.20)		(0.23)
Age	0.01***	0.01***	0.06**	0.07***	0.04*	0.04*	-0.04	-0.05*	0.01***	0.01**	0.14***	0.15***
	(0.00)	(0.00)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.00	-0.00	9.96***	9.97***	3.34***	3.39***	-5.71***	-5.61***	0.98***	0.98***	0.25	0.25
	(0.04)	(0.04)	(0.73)	(0.70)	(0.71)	(0.69)	(0.72)	(0.71)	(0.11)	(0.10)	(0.17)	(0.17)
HH in village	0.00	-0.00	-0.11***	-0.11***	-0.01	-0.01	0.08**	0.08**	-0.00	-0.00	-0.02***	-0.02***
	(0.00)	(0.00)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Distance to town	0.01	0.00	-0.04	-0.06	-0.09	-0.08	-0.10	-0.07	-0.01	0.00	-0.04*	-0.04*
	(0.01)	(0.01)	(0.10)	(0.11)	(0.10)	(0.10)	(0.07)	(0.08)	(0.01)	(0.01)	(0.02)	(0.02)
Education	-0.03**	-0.03**	-0.04	0.02	0.07	0.06	-0.19	-0.28*	-0.01	-0.01	0.39***	0.38***
	(0.01)	(0.01)	(0.18)	(0.18)	(0.15)	(0.15)	(0.15)	(0.16)	(0.02)	(0.02)	(0.04)	(0.04)
T_1	-0.29**	-0.33***	-0.52	-0.68	0.99	1.05	0.43	0.55	0.09	0.20	0.07	-0.04
	(0.11)	(0.12)	(1.33)	(1.36)	(1.18)	(1.33)	(1.02)	(0.97)	(0.16)	(0.12)	(0.22)	(0.28)
T_2	-0.25**	-0.32***	-2.98*	-2.65	-1.63	-1.71	0.79	-0.04	-0.13	-0.16	0.14	-0.16

		(0.10)	(0.11)	(1.76)	(1.73)	(1.41)	(1.38)	(1.07)	(0.73)	(0.16)	(0.12)	(0.25)	(0.26)
Cons	stant	2.40***	1.88***	104.74***	111.90***	65.00***	67.23***	82.01***	78.31***	-0.31	-0.89***	16.03***	16.97***
		(0.31)	(0.20)	(4.31)	(3.36)	(3.14)	(3.13)	(2.71)	(2.21)	(0.49)	(0.16)	(0.68)	(0.46)
	N	972	972	906	906	906	906	906	906	956	956	1,584	1,584
	\mathbb{R}^2	0.10	0.09	0.22	0.22	0.07	0.07	0.11	0.11	0.24	0.26	0.51	0.51

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village. T_1 denotes treatment 1, in-kind unconditional income transfers to all households in the treated village. T_2 denotes treatment 2, in-kind unconditional income transfers to the poorest households. HH denotes households, Addict. denotes addictions.

Table B11. Full regression results: Association between **medium visibility coefficient of variation (CV)** of community economic inequality and individual health using the two-year panel (2008-2009) of 40 villages (Table 4, section V)

	Stress	Stress			Cardiov	ascular			Addict.	Addict.	BMI	BMI
			Systolic	Systolic	Diastolic	Diastolic	Pulse rate	Pulse rate				
CV of durables	-0.03		0.98*		-0.14		-0.38		-0.05**		0.21**	
	(0.03)		(0.50)		(0.40)		(0.27)		(0.02)		(0.09)	
Durables	-0.00		0.00		0.00		-0.01***		0.00		-0.00*	
	(0.00)		(0.00)		(0.00)		(0.00)		(0.00)		(0.00)	
CV of luxuries		-0.07*		1.22*		0.31		0.04		-0.01		0.37**
		(0.04)		(0.61)		(0.47)		(0.35)		(0.04)		(0.14)
Luxuries		0.00***		0.00		0.00		-0.01		0.00**		0.00**
		(0.00)		(0.01)		(0.00)		(0.01)		(0.00)		(0.00)
Median luxuries		0.01		0.14		0.36**		0.28*		0.07		-0.02
		(0.04)		(0.17)		(0.17)		(0.16)		(0.05)		(0.04)
Age	0.01***	0.01***	0.06**	0.06**	0.04*	0.04*	-0.05*	-0.05*	0.01***	0.01**	0.01	0.01*
	(0.00)	(0.00)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.00	-0.04	9.97***	9.97***	3.22***	3.31***	-5.42***	-5.59***	0.96***	0.93***	-0.09	-0.15
	(0.04)	(0.04)	(0.73)	(0.70)	(0.71)	(0.60)	(0.70)	(0.73)	(0.10)	(0.09)	(0.28)	(0.26)
HH in village	0.00	-0.00	-0.15***	-0.09***	0.01	0.01	0.10**	0.07**	-0.00	-0.00	-0.01	0.01
	(0.00)	(0.00)	(0.05)	(0.03)	(0.04)	(0.02)	(0.04)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Distance to town	0.00	0.01	-0.03	-0.07	-0.05	-0.05	-0.10	-0.09	-0.00	0.00	-0.05**	-0.07**
	(0.01)	(0.01)	(0.09)	(0.12)	(0.09)	(0.09)	(0.08)	(0.08)	(0.01)	(0.01)	(0.02)	(0.03)
Education	-0.02**	-0.02**	-0.06	-0.04	0.07		-0.25	-0.21	-0.01	-0.00	0.02	0.02
	(0.01)	(0.01)	(0.20)	(0.18)	(0.15)		(0.16)	(0.15)	(0.02)	(0.01)	(0.04)	(0.04)
T_1	-0.25**	-0.29**	-1.22	-0.56	1.17	0.79	0.74	0.27	0.14	0.08	0.41	0.62*
	(0.12)	(0.12)	(1.33)	(1.21)	(1.22)	(1.11)	(0.95)	(0.96)	(0.16)	(0.14)	(0.35)	(0.35)
T_2	-0.28**	-0.24**	-2.97*	-3.78**	-1.63	-1.97	0.02	0.00	-0.13	-0.13	-0.03	-0.31
	(0.11)	(0.10)	(1.68)	(1.56)	(1.39)	(1.37)	(0.82)	(0.89)	(0.14)	(0.11)	(0.35)	(0.31)

Constant	1.77***	1.86***	109.00***	107.63***	67.42***	66.35***	79.97***	78.70***	-0.36*	-0.53***	22.77***	22.18***
	(0.15)	(0.16)	(2.29)	(2.79)	(1.76)	(2.15)	(1.62)	(1.94)	(0.20)	(0.17)	(0.53)	(0.66)
N	972	972	902	902	902	924	902	902	956	956	673	673
\mathbb{R}^2	0.08	0.10	0.22	0.22	0.07	0.07	0.11	0.11	0.24	0.26	0.03	0.04

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village. T_1 denotes treatment 1, in-kind unconditional income transfers to all households in the treated village. T_2 denotes treatment 2, in-kind unconditional income transfers to the poorest households. HH denotes households, Addict. denotes addictions. The median of durable assets was omitted from the regression results because of collinearity.

Table B12. Full regression results: Association between **low visibility coefficient of variation (CV)** of community economic inequality and individual health using the two-year panel (2008-2009) of 40 villages (Table 4, section VI)

	Stress	Stress			Cardiov	ascular			Addict.	Addict.	BMI	BMI
		•	Systolic	Systolic	Diastolic	Diastolic	Pulse rate	Pulse rate	_			
CV of plantings	0.28**		0.30		1.49		1.86		-0.19		-0.20	
	(0.11)		(2.60)		(1.80)		(1.65)		(0.24)		(0.39)	
Plantings	-0.00		0.20*		0.13		-0.10		0.01		-0.01	
	(0.01)		(0.10)		(0.11)		(0.07)		(0.01)		(0.05)	
Median plantings	0.15***		0.07		-0.51		0.64		0.15*		0.30**	
	(0.04)		(0.65)		(0.55)		(0.48)		(0.09)		(0.14)	
CV forest cleared		0.26		-2.45		-0.62		4.12*		-0.31		-0.52
		(0.16)		(2.93)		(3.17)		(2.30)		(0.24)		(0.50)
Forest cleared		0.00		0.18		0.08		-0.10		0.01		0.03
		(0.01)		(0.12)		(0.11)		(0.09)		(0.02)		(0.06)
Median forest clear	r	0.23***		1.10		-0.17		-0.17		0.17		0.41*
		(0.08)		(1.23)		(1.04)		(0.92)		(0.11)		(0.24)
Age	0.01***	0.01***	0.05**	0.06**	0.04	0.04	-0.05	-0.05*	0.01***	0.01***	0.14***	0.14***
	(0.00)	(0.00)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Male	-0.01	-0.00	9.99***	9.96***	3.45***	3.38***	-5.65***	-5.56***	0.96***	0.97***	0.28*	0.27
	(0.04)	(0.04)	(0.73)	(0.74)	(0.70)	(0.70)	(0.74)	(0.72)	(0.10)	(0.10)	(0.17)	(0.17)
HH in village	-0.00	-0.00	-0.10***	-0.10**	-0.00	0.00	0.06	0.05	-0.01	-0.01	-0.02**	-0.02**
	(0.00)	(0.00)	(0.03)	(0.04)	(0.03)	(0.04)	(0.04)	(0.03)	(0.00)	(0.00)	(0.01)	(0.01)
Distance to town	0.01	0.01	0.03	0.07	-0.10	-0.06	-0.09	-0.14*	0.01	0.00	-0.00	-0.00
	(0.01)	(0.01)	(0.12)	(0.12)	(0.10)	(0.10)	(0.09)	(0.08)	(0.01)	(0.01)	(0.02)	(0.02)
Education	-0.03**	-0.03***	-0.07	-0.07	0.03	0.05	-0.26	-0.27*	-0.01	-0.01	0.37***	0.37***
	(0.01)	(0.01)	(0.19)	(0.20)	(0.16)	(0.16)	(0.16)	(0.16)	(0.01)	(0.02)	(0.04)	(0.04)
T_1	-0.35***	-0.37***	-0.69	-0.17	0.58	1.09	-0.09	-0.54	0.12	0.14	0.08	0.09
	(0.11)	(0.11)	(1.42)	(1.58)	(1.29)	(1.61)	(1.11)	(1.16)	(0.16)	(0.16)	(0.30)	(0.31)
T_2	-0.30***	-0.32***	-2.72	-2.52	-2.08	-1.73	-0.19	-0.41	-0.11	-0.14	-0.06	-0.10

	(0.10)	(0.11)	(1.98)	(1.94)	(1.36)	(1.40)	(0.90)	(0.84)	(0.12)	(0.14)	(0.27)	(0.25)
Constant	1.18***	1.20***	110.10***	109.97***	67.77***	67.88***	76.92***	77.61***	-0.77***	-0.58*	15.89***	16.11***
	(0.16)	(0.18)	(3.18)	(3.23)	(2.34)	(2.66)	(2.34)	(2.65)	(0.28)	(0.31)	(0.52)	(0.55)
N	971	971	905	905	905	905	905	905	955	955	1,581	1,581
\mathbb{R}^2	0.10	0.10	0.21	0.21	0.08	0.07	0.11	0.11	0.25	0.24	0.51	0.51

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village. T_1 denotes treatment 1, in-kind unconditional income transfers to all households in the treated village. T_2 denotes treatment 2, in-kind unconditional income transfers to the poorest households. HH denotes households, Addict. denotes addictions.

3. Appendix C. Alternative specifications for our regression model

For transparency, in this appendix we show several variants of the main analysis. We re-ran the regressions using village fixed-effects, using all measures of inequality simultaneously in the model, and controlling for a measure of reciprocity in recent interactions. We did not include these regressions as part of our main analysis due to limitations in the data. We provide further discussion in each of the following sections.

3.1 Regressions using village fixed-effects

In this section we present the results from our model including village fixed-effects. Because most of the inequality varies between villages, and relatively small variations occurs within villages, by adding village fixed-effects we may be removing some of the omitted variable bias, but also losing important signals in the data. This is reflected in the results shown in Table C1 and Table C2. Table C1 shows the results from the 13 villages, measuring inequality using Gini coefficients (upper panel) and the coefficient of variation (lower panel). The results from Table 2 and Table 3 in the manuscript largely held up, except that several coefficients were no longer significant when adding village fixed-effects. The significant associations between inequality in resources with high visibility went from six to four, medium visibility decreased from nine to seven, and for resources of low visibility the significant coefficients went from four to one. All the coefficients kept their signs. Overall, Table C1 suggests that village inequality in less visible goods has a lower probability of being associated with health indicators, and village inequality is associated with improved perceived health and worse anthropometrics.

The results in Table C2 are more problematic, largely because there was not enough within village variation in several of the measures of economic resources we used. For example, we were able to measure the association between economic resources and health outcomes only for physical durable assets when using the Gini coefficient (Table C2, upper panel). The results using the coefficient of variation as our measure of inequality (Table C2, lower panel) showed largely similar results as Table 4 in our main manuscript, except that more associations were statistically significant, including diastolic pressure (with ambiguous results) and a consistent positive association between village inequality in all resources measured and BMI (also positive in the main manuscript).

Table C1. Association between village economic inequality, using the Gini coefficient and the coefficient of variation, and individual health indicators. Results from a nine-year panel (2002-2010) of 13 villages, with village and year fixed-effects.

			Health ou	tcomes		
Village inequality of:		Perceived			Anthropome	trics
inequality of:	Stress	I11	Bed	Addiction	Arm	BMI
[I]. High visibility	(Gini coefficient)					
Wildlife	0.48 (0.31)	0.01 (0.17)	0.04 (0.11)	0.51 (0.27)*	-0.47 (0.30)	-0.02 (0.44)
N	3850	5007	5167	2888	4884	3562
Meat	-0.27 (0.57)	-0.07 (0.15)	-0.12 (0.10)	-0.13 (0.22)	-0.18 (0.19)	0.34 (0.58)
N	3850	5007	5167	2888	4884	3562
[II]. Medium visib	ility (Gini coefficient))				
Durables	-0.13 (0.16)	-0.03 (0.02)*	-0.01 (0.05)	-0.06 (0.04)	-0.08 (0.10)	-0.16 (0.07)**
N	2861	3956	3956	2888	3934	2902
Luxuries	-1.97 (0.77)**	-0.24 (0.06)***	-0.02 (0.05)	-0.02 (0.16)	0.07 (0.09)	-0.67 (0.25)**
N	2861	3956	3956	2888	3934	2902
[III]. Low visibility	y (Gini coefficient)					
Plantings	-0.11 (0.92)	0.02 (0.20)	0.26 (0.22)	-0.46 (0.49)	-0.29 (0.31)	-0.13 (1.01)
N	2848	3925	3932	2836	3903	2895
Forest	-0.61 (0.73)	-0.08 (0.20)	-0.03 (0.19)	-0.30 (0.29)	-0.24 (0.27)	-0.13 (0.73)
N	3838	4943	5098	2839	4817	3523
[IV]. High visibili	ty (Coefficient of vari	iation)				
Wildlife	0.04 (0.09)	-0.02 (0.04)	0.02 (0.02)	0.17 (0.09)*	-0.18 (0.07)**	0.07 (0.15)
N	3850	5007	5167	2888	4884	3562
Meat	-0.10 (0.11)	-0.03 (0.02)*	-0.01 (0.01)	-0.03 (0.02)	-0.02 (0.02)	0.06 (0.07)
N	3850	5007	5167	2888	4884	3562
[V]. Medium visibi	ility (Coefficient of va	ariation)				
Durables	-0.01 (0.03)	-0.01 (0.005)	0.001 (0.016)	0.01 (0.01)	-0.01 (0.01)	0.01 (0.01)
N	2861	3956	3956	2888	3934	2902

Luxuries	-0.12 (0.05)**	0.02 (0.02)	-0.01 (0.01)	-0.03 (0.03)	0.01 (0.01)	-0.08 (0.04)*
N	2861	3956	3956	2888	3934	2902
[VI]. Low visibil	ity (Coefficient of variatio	n)				
Plantings	-0.20 (0.39)	0.00 (0.07)	0.09 (0.08)	-0.16 (0.18)	-0.07 (0.11)	-0.15 (0.31)
N	2848	3925	3932	2836	3903	2895
Forest	-0.35 (0.22)	-0.08 (0.06)	-0.02 (0.07)	-0.18 (0.10)*	-0.05 (0.05)	-0.19 (0.24)
	3838	4943	5098	2839	4817	3523

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and the following covariates (coefficients not shown): year and village fixed-effects, individuals attributes (age, sex, education, number of annual surveys in which the subject participated, and level of the economic resource, i.e., level of wildlife, meat, durables, luxuries, plantings, and forest area cleared) and village attributes (village-to-town travel time, total number of households in village, and village median of the resource, i.e., median of wildlife, meat, durables, luxuries, plantings, and forest area cleared).

Table C2. Robustness analysis: Association between village economic inequality, using the Gini coefficient and the coefficient of variation, and individual health indicators. Results from a two-year panel (2008-2009) of 40 Tsimane' villages with village and year fixed-effects.

			Health ou	itcomes:		
Village		Car	diovascular indicators	b		
inequality of	Stress ^a	Systolic	Diastolic	Pulse rate	Addiction	BMI
[I]. High visibili	ty (Gini coefficient)					
Wildlife	-	-	-	-	-	-
N	972	906	906	906	956	1584
Meat	-	-	-	-	-	-
N	972	906	906	906	956	1584
[II]. Medium visi	bility (Gini coefficient)				
Durables	-0.47 (0.02)***	1.83 (0.40)***	-7.36 (.27)***	-3.76 (0.44)***	-0.02 (0.04)	1.01 (0.14)***
N	972	902	902	902	956	673
Luxuries	-	-	-	-	-	-
N	972	902	924	902	956	673
[III]. Low visibili	ty (Gini coefficient)					
Plantings	-	-	-	-	-	-
N	971	905	905	905	955	1581
Forest	-	-	-	-	-	-
N	971	905	905	905	955	1581
[IV]. High visibil	lity (Coefficient of var	iation)				
Wildlife	-0.04 (0.02)*	7.60 (0.53)***	-0.35 (0.40)	+0.25 (0.36)	-0.19 (0.04)***	0.23 (0.06)***
\mathbf{N}	972	906	906	906	956	1584
Meat	+0.02 (0.01)***	0.23 (0.24)*	-0.54 (0.09)***	2.32 (0.12)***	0.33 (0.01)***	0.82 (0.03)***
N	972	906	906	906	956	1584
[V]. Medium visi	bility (Coefficient of va	ariation)				
Durables	-0.11 (0.005)***	0.44 (0.10)***	-1.78 (0.07)***	0.91 (0.11)***	-0.01 (0.01)	0.24 (0.03)***

N	972	902	902	902	956	673		
Luxuries	-0.32 (0.01)***	1.64 (0.13)***	1.83 (0.04)***	0.03 (0.16)	-0.36 (0.02)***	0.50 (0.04)***		
N.	972	902	924	902	956	673		
[VI]. Low visibility	[VI]. Low visibility (Coefficient of variation)							
Plantings	0.30 (0.02)***	3.10 (0.21)***	1.68 (0.19)***	2.88 (0.22)***	0.12 (0.03)***	1.01 (0.06)***		
N	971	905	905	905	955	1581		
Forest	-	-	-	-	-	-		
N	971	905	905	905	955	1581		

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and the following covariates (coefficients not shown): year and village fixed-effects, individuals attributes (age, sex, education, and level of the economic resource, i.e., level of wildlife, meat, durables, luxuries, plantings, and forest area cleared) and village attributes (village-to-town travel time, total number of households in village, and village median of the resource, i.e., median of wildlife, meat, durables, luxuries, plantings, and forest area cleared), and two dummy variables, one for each of the two treatments. ^aWe measured cardiovascular health using the average of three consecutive measures of systolic blood pressure, diastolic blood pressure, and pulse rate. ^bOur measure of stress for these regressions was improved by adapting Cohen et al.'s, Perceived Stress Scale (1983), based on our ethnographic work with the Tsimane'. We asked adults how often they had experience nine negative emotions in the week before the interview. Negative emotions included having problems with sleep, feeling angry, worried, sad, ashamed, envious, harried, feeling that one did not have enough time to do all one needed to do, and feeling things were not going well.

3.2 Regressions using all measures of inequality simultaneously in the model

One limitation in our main analysis is that we analyzed each inequality domain in isolation. We did so to avoid multicollinearity. In this section, Table C3 and Table C4, we show the results from our main regressions when using all inequality domains simultaneously. The results from these regressions confirm our finding that less visible resources were less likely to show an association with health compared with more conspicuous resources. Inequality in resources of medium visibility showed the greatest likelihood of being significantly associated with health outcomes, followed by those of high visibility. As discussed in the main manuscript, behaviors with medium visibility where the most likely to be associated with health, probably because these resources were more likely to be individually owned and more likely to have measurement error.

Table C3. Association between various types of village economic inequality, using the Gini coefficient, and individual health indicators. Results from a nine-year panel (2002-2010) of 13 villages.

	Health outcomes					
Village		Perceived			Anthropome	etrics
inequality of:	Stress	II1	Bed	Addiction	Arm	BMI
[I]. Gini coefficie	ent					
Wildlife	1.07 (0.39)**	-0.11 (0.19)	-0.06 (0.16)	-0.03 (0.34)	-0.02 (0.23)	-1.18 (0.91)
Meat	-1.15 (0.68)	-0.11 (0.16)	-0.05 (0.15)	-0.21 (0.24)	-0.27 (0.33)	-0.32 (0.88)
Durables	-0.10 (0.11)	-0.02 (0.03)	-0.01 (0.05)	-0.00 (0.07)	-0.10 (0.11)	-0.16 (0.31)
Luxuries	-1.56 (0.47)***	-0.26 (0.06)**	-0.03 (0.07)	-0.06 (0.19)	0.25 (0.16)	-0.35 (0.42)
Plantings	-0.07 (1.56)	-0.24 (0.24)	0.46 (0.38)	0.06 (0.75)	-0.24 (0.75)	2.39 (2.49)
Forest	0.19 (1.76)	-0.18 (0.36)	-0.56 (0.41)	-0.46 (0.57)	-0.24 (0.76)	-2.69 (2.34)
N	2847	3893	3893	2836	3878	2873
[II]. Coefficient	of variation					
Wildlife	0.31 (0.15)*	-0.05 (0.07)	-0.05 (0.04)	-0.02 (0.11)	-0.18 (0.07)**	0.07 (0.15)
Meat	-0.23 (0.16)	-0.04 (0.02)*	-0.02 (0.02)	-0.04 (0.02)*	-0.02 (0.02)	0.06 (0.07)
Durables	-0.01 (0.02)	-0.01 (0.01)	-0.003 (0.01)	-0.00 (0.01)	-0.01 (0.01)	0.01 (0.01)
Luxuries	-0.09 (0.03)**	0.002 (0.01)	-0.02 (0.01)	-0.05 (0.03)	0.01 (0.01)	-0.08 (0.04)*
Plantings	0.28 (0.42)	-0.05 (0.07)	0.10 (0.13)	-0.01 (0.22)	-0.07 (0.11)	-0.15 (0.31)
Forest	-0.58 (0.48)	-0.09 (0.13)	-0.09 (0.15)	-0.12 (0.15)	-0.05 (0.05)	-0.19 (0.24)
N	2847	3893	3893	2836	4817	3523

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and the following covariates (coefficients not shown): year fixed-effects, individuals attributes (age, sex, education, number of annual surveys in which the subject participated, and level of the economic resource, i.e., level of wildlife, meat, durables, luxuries, plantings, and forest area cleared) and village attributes (village-to-town travel time, total number of households in village, and village median of the resource, i.e., median of wildlife, meat, durables, luxuries, plantings, and forest area cleared).

Table C4. Association between village economic inequality, using the Gini coefficient and the coefficient of variation, and individual health indicators. Results from a two-year panel (2008-2009) of 40 Tsimane' villages.

			Health out	tcomes:		
Village		Caro				
inequality of	Stress ^a	Systolic	Diastolic	Pulse rate	Addiction	BMI
[I]. Gini coefficie	nt					
Wildlife	-0.91 (0.63)	6.23 (7.32)	12.62 (6.94)*	-2.09 (4.80)	1.20 (0.61)*	-1.94 (1.92)
Meat	-0.22 (0.48)	-2.27 (8.06)	-2.70 (6.01)	-5.38 (4.56)	0.10 (0.53)	-1.64 (1.93)
Durables	-0.06 (0.19)	3.34 (2.98)	-3.42 (2.30)	-1.99 (1.79)	-0.36 (0.17)**	0.88 (0.73)
Luxuries	-0.95 (0.68)	11.89 (10.82)	-6.77 (9.45)	-0.45 (5.55)	-1.51 (0.79)*	5.22 (2.79)*
Plantings	-0.12 (0.67)	-5.77 (12.54)	-3.46 (8.88)	4.64 (6.65)	-0.71 (0.90)	-1.08 (2.78)
Forest	1.42 (0.95)	-0.63 (18.19)	1.83 (14.51)	8.34 (10.99)	-0.13 (1.13)	0.43 (4.47)
N	971	901	901	901	955	673
[IV]. Coefficient of	of variation					
Wildlife	-0.45 (0.17)***	0.50 (2.67)	2.95 (2.29)	-2.63 (1.83)	0.18 (0.28)	-0.97 (0.63)
Meat	-0.04 (0.11)	1.77 (1.83)	-0.30 (2.02)	-0.10 (1.13)	0.09 (0.10)	-0.14 (0.28)
Durables	-0.02 (0.03)	0.94 (0.35)**	-0.30 (0.41)	-0.10 (0.29)	-0.02 (0.03)	0.19 (0.11)*
Luxuries	-0.04 (0.03)	0.91 (0.51)*	-0.09 (0.48)	0.30 (0.34)	-0.08 (0.05)	0.43 (0.14)***
Plantings	0.34 (0.24)	2.78 (4.10)	2.15 (3.44)	-1.01 (2.30)	-0.52 (-0.28)*	0.17 (0.87)
Forest	-0.01 (0.30)	-4.03 (5.31)	-2.22 (5.45)	6.04 (3.04)*	0.56 (0.40)	-0.67 (1.20)
N	971	901	901	901	955	673

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and the following covariates (coefficients not shown): year and village fixed-effects, individuals attributes (age, sex, education, and level of the economic resource, i.e., level of wildlife, meat, durables, luxuries, plantings, and forest area cleared) and village attributes (village-to-town travel time, total number of households in village, and village median of the resource, i.e., median of wildlife, meat, durables, luxuries, plantings, and forest area cleared), and two dummy variables, one for each of the two treatments. ^a We measured cardiovascular health using the average of three consecutive measures of systolic blood pressure, diastolic blood pressure, and pulse rate. ^b Our measure of stress for these regressions was improved by adapting Cohen et al.'s, Perceived Stress Scale (1983), based on our ethnographic work with the Tsimane'. We asked adults how often they had experience nine negative emotions in the week before the interview. Negative emotions included having problems with sleep, feeling angry, worried, sad, ashamed, envious, harried, feeling that one did not have enough time to do all one needed to do, and feeling things were not going well.

3.3 Regressions controlling for reciprocity

One of the potential explanations for our regression results is that reciprocity norms may be partially affecting our results. Various studies have confirmed that social comparisons matter, even in a relatively egalitarian society (Gurven et al., 2015; Saidi et al., 2013; Undurraga et al., 2016; Von Rueden et al., 2014). In Table C5 and Table C6 we show the results from our regressions, controlling for a measure of reciprocity. We asked the Tsimane' how many gifts they had received during the seven days before the interview and also how many gifts they had given away during the seven days before the interview. Using these data, we generated a dummy variable that indicated whether the person had recently given or received a gift from other Tsimane'. This indicator variable was not available for years 2002, 2003, and 2004 of the 13 village panel. We reran all our main regressions, including the robustness analysis, controlling for reciprocity using giving or receiving gifts as a proxy.

The results in Table C5, upper panel, and in Table C6, upper and lower panels, are largely the same as the results in Table 2 in the main manuscript, suggesting that reciprocity does not seem to mediate the relation between inequality and health outcomes. Interestingly, when using the coefficient of variation as our measure of inequality for the long panel (Table C5, lower panel) seven significant associations between resource inequality and health outcomes are no longer statistically significant, which hints at the idea that reciprocity may mediate some of the effects. A recent study by Gurven et al. (2015) suggests that economic inequality among the Tsimane' is positively associated with giving intensity and sharing, but the relation varied by village size and market exposure.

Table C5. Association between village economic inequality, using the Gini coefficient and the coefficient of variation, and individual health indicators. Results from a nine-year panel (2002-2010) of 13 villages, controlling for reciprocity.

			Health outo	comes		
Village	Perceived			Anthropometrics		
inequality of:	Stress	Il1	Bed	Addiction	Arm	BMI
[I]. High visibility	y (Gini coefficient)					
Wildlife	1.45* (0.58)	-0.13 (0.25)	0.22 (0.19)	0.27 (0.30)	-0.14 (0.34)	-0.70 (0.84)
N	2313	3402	3042	2888	3402	2521
Meat	-0.71 (0.83)	-0.21 (0.22)	-0.07 (0.13)	-0.30 (0.27)	60 (0.23)**	-1.71 (0.72)**
N	2313	3402	3042	2888	3402	2521
[II]. Medium visil	oility (Gini coefficient)					
Durables	-0.25 (0.12)*	-0.06 (0.02)**	-0.05 (0.06)	-0.003 (0.06)	-0.11 (0.08)	-0.25 (0.24)
N	2313	3402	3402	2888	3402	2521
Luxuries	-2.81 (0.89)***	-0.24 (0.09)**	0.01 (0.08)	-0.14 (0.25)	0.15 (0.18)	-0.05 (0.62)
N	2313	3402	3402	2888	3402	2521
[III]. Low visibilit	ty (Gini coefficient)					
Plantings	-0.87 (0.85)	-0.27 (0.32)	-0.09 (0.25)	-0.23 (0.40)	-0.74 (0.37)*	-1.48 (2.18)
N	2309	3349	3349	2836	3351	2493
Forest	0.15 (0.89)	-0.51 (0.35)	-0.45 (0.28)	-0.30 (0.31)	-0.39 (0.44)	-1.96 (2.28)
N	2312	3352	3352	2839	3354	2495
[IV]. High visibil	ity (Coefficient of vari	ation)				
Wildlife	0.49 (0.19)**	-0.07 (0.09)	0.04 (0.05)	0.06 (0.11)	-0.11 (0.10)	-0.31 (0.32)
N	2313	3402	3402	2888	3402	2521
Meat	-0.17 (0.21)	-0.05 (0.02)**	-0.01 (0.01)	-0.03 (0.03)	-0.04 (0.03)	-0.09 (0.09)
N	2313	3402	3402	2888	3402	2521
[V]. Medium visib	oility (Coefficient of va	riation)				
Durables	-0.01 (0.03)	-0.05 (0.02)**	-0.01 (0.004)**	-0.01 (0.01)	-0.01 (0.01)	-0.01 (0.01)

\mathbf{N}	2861	2313	3402	3402	2888	3402
Luxuries	-0.12 (0.05)**	-0.24 (0.06)***	0.01 (0.02)	-0.02 (0.01)	-0.07 (0.03)*	0.01 (0.03)
N	2861	2313	3402	3402	2888	3402
[VI]. Low visil	oility (Coefficient of var	iation)				
Plantings	-0.44 (0.43)	-0.10 (0.12)	-0.06 (0.11)	-0.13 (0.15)	-0.36 (0.10)***	-0.99 (0.87)
N	2309	3349	3349	2836	3351	2493
Forest	-0.73 (0.37)*	-0.18 (0.16)	-0.22 (0.14)	-0.24 (0.13)*	-0.21 (0.12)	-0.94 (0.64)
	2312	3352	3352	2839	3354	2493

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and the following covariates (coefficients not shown): year fixed-effects, individuals attributes (age, sex, education, number of annual surveys in which the subject participated, and level of the economic resource, i.e., level of wildlife, meat, durables, luxuries, plantings, and forest area cleared) and village attributes (village-to-town travel time, total number of households in village, and village median of the resource, i.e., median of wildlife, meat, durables, luxuries, plantings, and forest area cleared).

Table C6. Association between village economic inequality, using the Gini coefficient and the coefficient of variation, and individual health indicators. Results from a two-year panel (2008-2009) of 40 Tsimane' villages, controlling for reciprocity.

			Health out	tcomes:		
Village		Cardi	ovascular indicators ^b			
inequality of	Stress ^a	Systolic	Diastolic	Pulse rate	Addiction	BMI
[I]. High visibility	y (Gini coefficient)					
Wildlife	-1.01 (0.54)*	6.78 (6.04)	1.18 (5.78)	-4.53 (5.33)	-0.01 (0.59)	0.11 (1.59)
N	972	902	902	902	956	673
Meat	-0.21 (0.43)	-5.51 (5.80)	-2.93 (4.61)	1.61 (3.52)	0.36 (0.38)	-1.28 (1.63)
N	972	902	902	902	956	673
[II]. Medium visib	ility (Gini coefficient)	1				
Durables	-0.01 (0.16)	5.35 (3.00)*	-1.08 (2.19)	-2.65 (1.24)**	-0.13 (0.17)	0.93 (0.48)*
N	972	902	902	902	956	673
Luxuries	-0.60 (0.61)	13.03 (10.72)	3.19 (8.19)	3.13 (6.29)	-0.15 (0.83)	3.72 (2.14)*
N	972	902	924	902	956	673
[III]. Low visibility	y (Gini coefficient)					
Plantings	0.52 (0.35)	0.46 (7.14)	2.49 (6.41)	7.38 (5.64)	-0.82 (0.73)	1.06 (2.39)
N	971	901	901	901	955	673
Forest	0.77 (0.68)	-2.39 (10.42)	-0.75 (10.81)	11.62 (7.34)	-1.69 (0.83)**	1.68 (3.03)
N	971	901	901	901	955	673
[IV]. High visibili	ty (Coefficient of vari	ation)				
Wildlife	-0.45 (0.16)***	3.88 (2.58)	1.21 (1.80)	-2.71 (1.52)*	-0.12 (0.22)	0.13 (0.75)
N	972	902	902	902	956	673
Meat	-0.09 (0.10)	0.39 (1.56)	0.28 (1.61)	-0.04 (0.94)	0.11 (0.06)	-0.40 (0.23)*
N	972	902	902	902	956	673
[V]. Medium visib	ility (Coefficient of va	riation)				
Durables	-0.03 (0.03)	0.98 (0.50)*	-0.14 (0.40)	-0.38 (0.28)	-0.05 (0.03)**	0.21 (0.09)**

N	972	902	902	902	956	673		
Luxuries	-0.07 (0.04)*	1.21 (0.62)*	0.30 (0.48)	0.05 (0.36)	-0.02 (0.04)	0.35 (0.14)**		
N.	972	902	924	902	956	673		
[VI]. Low visibility	[VI]. Low visibility (Coefficient of variation)							
Plantings	0.29 (0.11)**	0.35 (2.60)	1.65 (1.78)	1.97 (1.69)	-0.18 (0.24)	-0.15 (0.69)		
N	971	901	901	901	955	673		
Forest	0.29 (0.17)*	-2.48 (2.90)	-0.50 (3.16)	4.35 (2.32)*	-0.30 (0.24)	-0.27 (0.94)		
N	971	901	901	901	955	673		

Notes: *** p<.01, ** p<.05, * p<.10. All regressions included robust standard errors (in parentheses) adjusted for clustering at the village level and the following covariates (coefficients not shown): year and village fixed-effects, individuals attributes (age, sex, education, and level of the economic resource, i.e., level of wildlife, meat, durables, luxuries, plantings, and forest area cleared) and village attributes (village-to-town travel time, total number of households in village, and village median of the resource, i.e., median of wildlife, meat, durables, luxuries, plantings, and forest area cleared), and two dummy variables, one for each of the two treatments. ^aWe measured cardiovascular health using the average of three consecutive measures of systolic blood pressure, diastolic blood pressure, and pulse rate. ^b Our measure of stress for these regressions was improved by adapting Cohen et al.'s, Perceived Stress Scale (1983), based on our ethnographic work with the Tsimane'. We asked adults how often they had experience nine negative emotions in the week before the interview. Negative emotions included having problems with sleep, feeling angry, worried, sad, ashamed, envious, harried, feeling that one did not have enough time to do all one needed to do, and feeling things were not going well.

4. References for the supplementary material

- Cohen, S., Kamarck, T., Mermelstein, R., 1983. A global measure of perceived stress. Journal of Health and Social Behavior 24, 385-396.
- Gurven, M., Jaeggi, A.V., von Rueden, C., Hooper, P.L., Kaplan, H., 2015. Does market integration buffer risk, erode traditional sharing practices and increase inequality? A test among Bolivian forager-farmers. Human Ecology 43, 515-530.
- Saidi, F., Behrman, J.R., Undurraga, E.A., Godoy, R.A., 2013. Inequality, relative income, and development: field-experimental evidence from the Bolivian Amazon. TAPS Working Paper Series 78.
- Undurraga, E.A., Behrman, J.R., Leonard, W.R., Godoy, R.A., 2016. The effects of community income inequality on health: evidence from a randomized control trial in the Bolivian Amazon. Social Science & Medicine 149, 66-75.
- Von Rueden, C.R., Trumble, B.C., Thompson, M.E., Stieglitz, J., Hooper, P.L., Blackwell, A.D., Kaplan, H.S., Gurven, M., 2014. Political influence associates with cortisol and health among egalitarian forager-farmers. Evolution, medicine, and public health, 122-133.