
 

Supplementary information 

Using Beta-Binomial to call ASB events 

To estimate the overdispersion parameter of our dataset, we need to determine an initial null distribution. 
Some tools (1-3) used all investigated regions to represent the null distribution. However, the investigated 
regions are a mixture of ASB events and non-ASB events. Including potential allele-specific binding 
events in the null distribution could overestimate the dispersion parameter. In the following process, we 
used the properties of non-ASB events with FDR > 0.05 (binomial test) to represent the null distribution.  

Given the null distribution, the probability of a non-ASB event for a site with k reads on the favored allele 
and n reads in total can be calculated with the following equation: 

   (1) 

where  is mapping bias towards the favored allele, and  is the dispersion parameter. The Beta-Binomial 

distribution is as following: 

     (2) 

Where a and b are called shape parameter, and B is the Beta function.  

In equation (1), the two shape parameters were set to detect mapping bias from the read simulation. We 
used the maximum likelihood approach to estimate the overdispersion parameter γ across the null 
distribution set for each TF ChIP-Seq experiment. The probability of ASB event was calculated as the 
complementary event of non-ASB given by the beta-binomial test.  

 

The overdispersion of allelic imbalance is significantly less in null distribution than in non-ASB 
events 

The binomial test has been widely used to call ASB events (4-6). However, recent studies report the 
variance of allelic imbalance to be larger than expected in a binomial distribution across all heterozygous 
sites (1-3,7). This is what we refer to as the “overdispersion” problem. The beta-binomial distribution has 
been introduced to correct for overdispersion in ASB calling, under the assumption that most allelic sites 
are balanced or follow the null distribution (2,8). However, the potential for biological contributions to the 
overdispersion has not been fully investigated.  

We attempted to assess to what extent overdispersion might be due to biological reasons, such as small 

TF binding alterations caused by motif alteration. We divided the non-ASB events with FDR > 0.05 

(binomial test) into two classes: (1) TFBS alteration group, for which variants were found within the best 

predicted TFBS of the peak and exhibited motif score changes of at least 0.02; and (2) the remaining 

non-ASB events. We fit the distributions using beta-binomial, estimating the dispersion parameters of the 

two classes for each investigated TF. We found that the dispersion parameters were significantly higher 

in the TFBS alteration group than in the rest non-ASB events (Wilcoxon test, p-value=1.43e-06, Figure 

S8). Our results suggest that the observed overdispersion is at least in part due to mild TF binding 

alterations. 

 

Replicate normalization method produces highly similar sets of ASB calls 



In this manuscript, we used a direct sum approach in which we summed the read counts of each allele 

across the replicates, and then applied the binomial test on the derived sum of each allele. We also 

implemented a normalized approach regarding multiple replicates and compared the ASB calling between 

the two (direct sum and normalized). In the normalization approach, the read coverage at heterozygous 

positions is normalized between replicates following the scale factor-based procedures used in DEseq (9). 

The normalized count of each site is the original count divided by the scale factor. The normalized count 

values are thereafter processed using the same procedure as in direct sum approach. 

The normalized approach resulted in 10,121 called ASB events, while direct-sum approach called 10,711. 

Overall, 9,511 ASB events were called by both approaches, and on average, 92% of the called ASB 

events using the normalized approach overlapped with those called with the direct-sum approach across 

investigated TFs. While a few datasets showed greater difference, as shown in Figure S8, most samples 

were clustered in the lower right corner reflecting high similarity between the results. 

As one would expect, we observed that the overlap ratio was anti-correlated with the scale factor of the 

larger replicate (Spearman correlation coefficient = -0.64; Figure S8), showing a large replicate library 

difference in depth (large scale factor) correlated with greater divergence in ASB calling between the two 

approaches. However, the impact was modest, as there was still 85-95% overlap for the larger scale 

factor cases.  

We explored the differences between methods, which confirmed our expectation that the normalized 

approach penalized those cases in which one replicate was strikingly lower than the other in terms of 

counts.  This can be observed in Figure S9, in which we show the read coverage for the method-specific 

ASB calls for a TF experiment with high scale factor. 

 

Direct sum approach is used considering the characteristics of the data 

It is useful to recognize two key aspects of the ENCODE data prior to reviewing the findings.  For the vast 

majority of TFs there are only two replicates (n=41), with only a few having three replicates (n=4).  The 

second is a difference between standard RNA-Seq and ASB identification in ChIP-Seq.  In standard RNA-

Seq (as most published methods address), each sample are prepared and processed separately. For 

ASB detection in ChIP-Seq, two alleles are naturally controlled within the same single sample. These two 

aspects inform our decision about the selection of the ASB calling method. 

Based on our perspective, with only two replicates for the vast majority of cases, we prefer to use the 

direct-sum approach. This reflects our view that the high coverage positions in a single ChIP-Seq 

replicate are well controlled (two alleles coming from the same nuclei).  We believe that replicate 

normalization will be an important issue and should be deeply considered in future ASB analysis 

(particularly when greater replicate numbers are available). 

 

The sequence based classifier produces consistent predictions for lymphoblastoid cells across 

multiple individuals 

We tested the consistency of the random forest classifier in different individuals from the same cell type 

(that is lymphoblastoid cell line). Briefly, we collected CTCF ChIP-Seq data from multiple ENCODE 

samples. We trained a sequence based classifier with N-1 samples (N is the number of collected 

samples), and tested each model on the remaining sample.  Results showed similar performance 



between cross validation and testing (for instance, the mean AUPRC difference is equal to 0.02 and the 

standard deviation is 0.05, Figure S5). These results suggested that our sequence based model could be 

applied across individuals using a single training data set. 

 

 

 

 

 

Figure S1. Comparing motif score of two alleles in heterozygous site binding events for all the 

investigated heterozygous site binding events. Each dot represented the relative motif score for favored 

allele (allele with higher ChIP-Seq read count) and unfavored allele in predicted TFBSs. ASB and non-

ASB events were plotted separately. The black diagonal line indicated the cases with equal scores of two 

alleles. Heterozygous site binding data of all the TFs with known motif were presented together. This 

figure presented the entire data set partially depicted in Figure 1.  

 



 

Figure S2. The positional impact and information content at each position of TF motifs. 

For each TF, we plotted the positional impact of each motif position derived from ASB events (red bar) 

and its corresponding information content (blue line). This figure presented a TF specific perspective of 

Figure 2A. 



 

Figure S3. SNVs of ASB events were enriched in predicted TFBSs and comotifs.  

The ChIP-Seq experiments were divided into TFs with comotif only (left panel; TFs with no known PWM), 

with both PWM and comotifs (middle panel), and with known PWMs only (right panel). ASB-SNVs were 

significantly enriched in the predicted TFBS of comotifs (p-value = 7.1e-41), combination of comotif and 

primary motif (p-value = 4.8e-42) and primary motif (p-value = 1.8e-128). 



 

 

 

 

Figure S4.  Allelic coordination between TFs and chromatin properties in GM12878 cell line.  

The heatmap represented the -log(p-value) of correlation Pearson between allele imbalance of TF ChIP-

Seq reads at heterozygous site binding events and chromatin properties (DHS and histone modifications). 

 



 

 

 

Figure S5. Testing the performance of sequence models for CTCF in 7 individuals.  

The figure showed the accuracy of cross validation within any 6 samples (red bar) and testing accuracy of 

the remaining individual (blue bar).  



 

 
Figure S6. Compare the performance of the Seq model and BayesPI-Bar. Only 27 TFs experiments with 

available BayesPI-Bar models are presented in the comparison. 



 

 

 

 

Figure S7. The most frequently selected key features in the Full models for the TFs without known motif. 

The suffix ‘favor’ (respectively ‘unfavor’) referred to the allele with higher (respectively lower) read counts 

at heterozygous sites. Details of each feature can be found in the Methods section and Supplementary 

Table S5. 



 

Figure S8. Scale factor and overlap ratio between the direct sum and the normalized approach. Each 

point represents one investigated TF ChIP-Seq dataset. 

 



 

Figure S9. Read coverage distribution of approach-specific ASB events in the smaller replicate. The data 

of CHD2 in HeLa-S3 are shown as it has a low overlap ratio (82.6%) and high scale factor 2.1. In this TF 

experiment, direct sum approach calls 53 approach-specific ASB events (red) and normalized approach 

calls 16 (blue). Two approaches share 76 ASB events in common. 

 

 



 

Data Type Institution URL 

TF ChIP-Seq raw 
reads 

Haib http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeHaibTfbs/ 

TF ChIP-Seq raw 
reads 

Sydh http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeSydhTfbs/ 

TF ChIP-Seq raw 
reads 

Uta http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeOpenChromChip/ 

TF ChIP-Seq raw 
reads 

Uw http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeUwTfbs/ 

TF narrowPeak 
regions 

Awg http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeAwgTfbsUniform/ 

DNase-Seq raw 
reads 

Uw http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeUwDnase/ 

DNase-Seq raw 
reads 

Duke http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeOpenChromDnase/ 

Histone ChIP-
Seq raw reads 

Broad http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeBroadHistone/ 

Genotype data of 
Lymphoblastoid 

cell lines 

Complete 
genomics 

ftp://ftp2.completegenomics.com/vcf_files/Build37_2.0.0/ 

Copy number 
variant region 

Haib http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeHaibGenotype/ 

(Available for GM12878, HeLa-S3, and GM19238) 

Supplementary Table 1. Sources of the data used in ASB analysis.  

Our analysis integrated multiple types of data, including ChIP-Seq, DNase-Seq, and genotype calling 

data. The categories, source institution, and URL of these data were listed in the table. 
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Cell TF Peak Count Heterozygous binding sites events ASB 

GM12878 BATF   32427  1314   201 

GM12878 BCL11A   17876   678    60 

GM12878 BCL3   15455   653    60 

GM12878 BHLHE40   13986   661    66 

GM12878 CTCF   55551  2614   396 

GM12878 EBF1   33410  1445   327 

GM12878 EGR1   16331   718    69 

GM12878 ELF1   23008  1047    58 

GM12878 MEF2A   17605   574    55 

GM12878 NFYB   13295   355    77 

GM12878 PAX5   19740   657    43 

GM12878 RAD21   40019  1963   281 

GM12878 RUNX3   67965  3304   471 

GM12878 SRF    8544   164    31 

GM12878 TCF12   20437   770    82 

GM12878 USF1    9778   305    37 

HELA-S3 TFAP2C   25452   561    84 

HELA-S3 BRCA1    8114   274    47 

HELA-S3 CEBPB   61004  2491   922 

HELA-S3 CHD2   20500   696   129 

HELA-S3 CTCF   58806  2506  1076 

HELA-S3 GABPA    6761   224    72 

HELA-S3 JUND   31633   641   118 

HELA-S3 MAFK   14185   431    84 

HELA-S3 MAX   29647  1111   132 

HELA-S3 NFYB    7156   149    47 

HELA-S3 NRSF   10247   372   179 

HELA-S3 P300   25854   661   160 

HELA-S3 POL2   25332  1284   570 

HELA-S3 PRDM1    4577   134    50 

HELA-S3 RAD21   43420  1883   708 

HELA-S3 RFX5   19284   664    80 

HELA-S3 SMC3   39567  1860   565 

HELA-S3 STAT3   13834   325    56 

HELA-S3 TAF1   16100   514    83 

HELA-S3 TBP   18489   466    87 

HELA-S3 TCF7L2   19242   600   124 

HELA-S3 USF2   12306   373   108 

HELA-S3 ZNF143    7048   261    52 

GM12872 CTCF   47151  2496   488 

GM12873 CTCF   51005  2575   552 

GM19238 CTCF   49938  2909   500 

GM19239 CTCF   41085  2473   282 

GM19240 CTCF   46036  2972   573 

GM12864 CTCF   46798  2390   523 



8 45 1205998 51518 10765 

 

Supplementary Table 2. Processed heterozygous site binding data.  

For each TF ChIP-Seq experiment, we listed the number of ChIP-Seq peaks (Peak count), heterozygous 

site binding events, and called ASB events. 



 

Cell TF Comotif 

GM12878 BATF IRF1.IRF(10), BZIP.IRF(10) 

GM12878 BHLHE40 RUNX1.RUNT 

GM12878 RAD21 CTCF.ZF(11) 

GM12878 RUNX3 BATF.BZIP, RUNX1.RUNT, ETS1.ETS, FLI1.ETS 

HeLa-S3 CEBPB BATF.BZIP 

HeLa-S3 P300 NF-E2.BZIP, CEBP.BZIP(11), ATF3.BZIP(12,13) 

HeLa-S3 RAD21 CTCF.ZF(11) 

HeLa-S3 SMC3 CTCF.ZF(11) 

HeLa-S3 TCF7L2 ATF3.BZIP 

Total 9 15 

 
Supplementary Table 3. Discovered comotifs from heterozygous site binding events.  

HOMER motifs were considered as comotifs when their motif change correlated with TF allelic binding 

imbalance in heterozygous site binding events (see Materials and Methods). The cell line, ChIP’ed TF, 

and correlated comotifs were provided respectively.TF-comotif pairs supported by external literature were 

given the corresponding references. 



 

 

Cell ASB-TF TF Overlap ratio -log(P-value) Odd ratio 

GM12878 BATF TBP 0.11  4.50  0.25 

GM12878 CTCF ZNF143 0.34 10.45  0.43 

GM12878 CTCF YY1 0.28  7.42  0.48 

GM12878 CTCF POU2F2 0.10  4.83  0.37 

GM12878 RAD21 ZNF143 0.42  9.04  0.42 

GM12878 RAD21 RUNX3 0.28  5.61  0.47 

GM12878 RAD21 PAX5 0.14  4.69  0.37 

GM12878 RUNX3 POL2 0.21 12.31  0.34 

GM12878 RUNX3 ZNF143 0.13  9.73  0.29 

GM12878 RUNX3 POL24H8 0.17  9.29  0.37 

GM12878 RUNX3 ELF1 0.19  8.16  0.42 

GM12878 RUNX3 SMC3 0.14  7.86  0.37 

GM12878 RUNX3 YY1 0.24  7.71  0.48 

GM12878 RUNX3 CTCF 0.13  7.55  0.36 

GM12878 RUNX3 MAZ 0.19  6.71  0.46 

GM12878 RUNX3 PML 0.19  6.08  0.49 

GM12878 RUNX3 ELK1 0.07  5.65  0.28 

GM12878 RUNX3 EGR1 0.11  5.34  0.42 

GM12878 RUNX3 GR 0.11  5.34  0.42 

GM12878 RUNX3 RAD21 0.15  5.12  0.49 

GM12878 RUNX3 SIN3A 0.10  5.12  0.39 

GM12878 RUNX3 CMYC 0.04  5.01  0.17 

GM12878 RUNX3 ZEB1 0.04  5.01  0.17 

GM12878 RUNX3 MAX 0.13  4.82  0.47 

GM12878 RUNX3 GABP 0.06  4.61  0.31 

GM12878 RUNX3 TAF1 0.13  4.47  0.49 

GM12878 RUNX3 CHD2 0.18  4.45  0.54 

HeLa-S3 CEBPB P300 0.37 16.61  2.07 

HeLa-S3 CEBPB STAT3 0.21  6.52  1.68 

HeLa-S3 CEBPB CTCF 0.08  4.56  0.50 

HeLa-S3 CTCF SMC3 0.63  7.44  1.59 

HeLa-S3 CTCF RAD21 0.68  6.59  1.58 

HeLa-S3 MAX CMYC 0.13  6.77  3.31 

HeLa-S3 MAX USF2 0.27  4.59  2.27 

HeLa-S3 POL2 TAF1 0.55 10.46  2.14 

HeLa-S3 POL2 HCFC1 0.53  8.65  1.98 

HeLa-S3 POL2 TBP 0.43  6.50  1.80 

HeLa-S3 POL2 E2F4 0.10  5.36  2.43 

HeLa-S3 POL2 GCN5 0.06  4.76  2.95 

HeLa-S3 RAD21 CTCF 0.72 16.29  2.58 

HeLa-S3 RAD21 CJUN 0.13 10.37  0.35 

HeLa-S3 RAD21 P300 0.15  9.96  0.38 

HeLa-S3 RAD21 CFOS 0.08  9.38  0.28 

HeLa-S3 RAD21 COREST 0.18  7.49  0.48 

HeLa-S3 RAD21 REST 0.18  7.49  0.48 

HeLa-S3 RAD21 CHD2 0.16  7.42  0.46 

HeLa-S3 RAD21 TCF7L2 0.14  7.15  0.44 

HeLa-S3 RAD21 SMC3 0.82  6.33  1.94 



HeLa-S3 RAD21 STAT3 0.12  5.60  0.47 

HeLa-S3 RAD21 TBP 0.12  4.84  0.50 

HeLa-S3 RAD21 POL2 0.09  4.11  0.49 

HeLa-S3 SMC3 CTCF 0.73 17.47  3.03 

HeLa-S3 SMC3 RAD21 0.84  7.77  2.36 

HeLa-S3 SMC3 CJUN 0.12  6.45  0.41 

HeLa-S3 SMC3 P300 0.13  6.09  0.44 

HeLa-S3 SMC3 POL2 0.15  6.00  0.46 

HeLa-S3 SMC3 TCF7L2 0.16  5.68  0.48 

HeLa-S3 SMC3 CFOS 0.08  4.97  0.37 

HeLa-S3 SMC3 TBP 0.14  4.82  0.51 

HeLa-S3 SMC3 TAF1 0.11  4.71  0.46 

HeLa-S3 TBP BDP1 0.07 10.37 13.79 

HeLa-S3 TBP RPC155 0.07 10.18 11.92 

HeLa-S3 ZNF143 HCFC1 0.68  5.02  7.40 

HeLa-S3 ZNF143 RAD21 0.37  4.32  0.21 

 

Supplementary Table 4. Presence of ASB events were associated with cobound TFs.  

For each ASB dataset, we tested the association between ASB events and binding peaks of its cobound 

TFs (Fisher test, FDR < 0.005). The p-value and odds ratio of the significant pairs were listed.  

 

 



 

Category Feature Name Description Used in 
model(s) 

Motif of the 
ChIP’ed TF 

motif_favor, 
motif_unfavor 

Motif score of two alleles  
 

 
Full, 

Seq+DHS, 
Seq 

Motif_pvalue_ratio The log ratio of two alleles’ binding 
potential 

(the P-value of the PWM score against 
random genome background) 

Peak_motif_favor, 
Peak_motif_unfavor, 

Peak_TFBS_num 

Best motif scores within the peak 
regions for two alleles. The number of 

predicted TFBS in the peak region 

Position 
information 

Peak_dis SNV distance to the peak max position Full, 
Seq+DHS, 

Seq 
PWM_position SNV position in the motif 

Enriched motifs  
 
 

comotif1_pavlue_ratio, 
comotif2_pavlue_ratio, 

… 

For each of the five enriched motifs, the 
log ratio of two alleles’ binding potential  
(the P-value of the enriched motif score 
against random genome background). 

We ranked the enriched motifs based on 
their enrichment within the peak regions. 

 
 
 

 
Full, 

Seq+DHS, 
Seq 

DHS and 11 
histone 

modifications 

 
DHS_favor, 

DHS_unfavor, 
H3K27ac_favor, 

… 

The read count at each allele for each 
feature. 

 
Full, 

Seq+DHS 
(DHS only) 

Cobound TFs  
Cobound1, 
Cobound2, 

… 
 

Whether the SNV overlap with other TF 
binding peak regions. We ranked the 

cobound TFs based on the overlap ratio 
with heterozygous site binding events. 

 
 

Full 

 

Supplementary Table 5.  Input features used in three classification models (Seq, Seq+DHS, and Full).  

The features were summarized into 5 categories based on the source or the nature of the data. “Feature 

names” referred to the features used in Figure 5(B) and supplementary Figure S6. Features were 

explained in the ‘Description’ column. The last column indicated the models which included corresponding 

features for training. 
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