# Supplementary Material to

## Silencing of cryptic prophages in Corynebacterium glutamicum

Eugen Pfeifer<sup>1</sup>, Max Hünnefeld<sup>1</sup>, Ovidiu Popa<sup>2</sup>, Tino Polen<sup>1</sup>, Dietrich Kohlheyer<sup>1</sup>, Meike Baumgart<sup>1</sup>, and Julia Frunzke<sup>1,\*</sup>

# **Supplementary Tables**

### Table S1. Strains and plasmids used in this study.

| Strains         | Relevant characteristics                                                                                                 | Reference  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|------------|--|
| E. coli         |                                                                                                                          |            |  |
| DH5α            | supE44 $\Delta$ lacU169 (φ80 <i>lacZ</i> DM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1, strain used for cloning procedures | Invitrogen |  |
| BL21(DE3)       | $F^{-}ompT hsdS_{B}(r_{B}^{-}m_{B}^{-})$ gal dcm BL21(DE3), protein production host                                      | (1)        |  |
| S3974           | Derivate of K-12 (CGSC #6300),<br>F <sup>-</sup> , λ <sup>-</sup> , <i>rph</i> <sup>+</sup> <i>ilvG</i> <sup>+</sup>     | (2)        |  |
| T221            | S3974 $\Delta hns_{FRT_n} E$ . coli strain used for complementation studies of $\Delta hns$ phenotype                    | (3)        |  |
| M. tuberculosis |                                                                                                                          |            |  |
| H37Rv           | wild-type laboratory strain, DNA used as PCR template                                                                    | ATCC 25618 |  |
| C. diphtheriae  |                                                                                                                          |            |  |
| ATCC 27010      | wild-type laboratory strain, DNA used as PCR template                                                                    | DSM 44123  |  |
| C. amycolatum   |                                                                                                                          |            |  |
| PAP 272         | wild-type, genomic DNA was used for PCR as template                                                                      | DSM 44737  |  |

| C. glutamicum              |                                                                                                                                                                                                                                           |            |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ATCC 13032                 | Biotin-auxotrophic wild type                                                                                                                                                                                                              | (4)        |
| WT:: <i>cgp</i> S-strep    | Derivative of ATCC 13032 with genomic exchange of the <i>cgpS</i> gene to <i>cgpS-strep</i> , encoding a C-terminal Strep-tag fusion.                                                                                                     | This study |
| ATCC 13032 ΔCGP3           | ATCC 13032 with in-frame deletion of prophage CGP3 (cg1890-cg2071)                                                                                                                                                                        | (5)        |
| WT::P <sub>lys</sub> -eyfp | Derivative of ATCC 13032 containing the prophage reporter P <sub>lys</sub> - <i>eyfp</i> integrated into the intergenic region of cg1121-cg1122                                                                                           | (6)        |
| Plasmids                   |                                                                                                                                                                                                                                           |            |
| pAN6                       | Kan <sup>R</sup> ; C. glutamicum/E. coli shuttle vector for gene expression under control of the <i>tac</i> promoter; ( $P_{tac}$ , <i>lacl<sup>q</sup></i> , <i>pBL</i> <sub>1</sub> oriV <sub>C.g</sub> ., pUC18 oriV <sub>E.c</sub> .) | (7)        |
| pAN6- <i>cgp</i> S         | Derivative of pAN6 containing the cgpS gene                                                                                                                                                                                               | This study |
| pAN6-cgpS-Strep            | Derivative of pAN6 containing the <i>cgpS</i> gene without stop codon encoding a C-terminal Strep-tag fusion                                                                                                                              | This study |
| pAN6- <i>N-cgp</i> S       | Derivative of pAN6 containing the first 65 amino acids of the <i>cgpS</i> gene                                                                                                                                                            | This study |
| pAN6- <i>N-cgpS-Strep</i>  | Derivative of pAN6 containing the first 65 amino acids of the <i>cgpS</i> gene fused C-terminally to a Strep-tag coding region                                                                                                            | This study |
| pAN6- <i>lsr2-N-M.tub</i>  | Derivative of pAN6 containing the first 58 amino acids of the <i>lsr2</i> gene (Rv3597c) of <i>Mycobacterium tuberculosis</i> H37Rv                                                                                                       | This study |
| pAN6-cgpS-N-C.amyc         | Derivative of pAN6 containing the first 66 amino<br>acids of the homologous <i>cgpS</i> gene<br>(CORAM0001_2081) of <i>Corynebacterium</i><br><i>amycolatum</i> DSM 44373                                                                 | This study |
| pAN6-cgpS-N-C.diph         | Derivative of pAN6 containing the first 59 amino acids of the homologous <i>cgpS</i> gene (DIP2266) of <i>Corynebacterium diphtheriae</i> DSM 44123                                                                                       | This study |

| pAN6- <i>alpA-eyfp</i>                    | Derivative of pAN6 containing a <i>alpA-eyfp</i> fusion                                                                                                                                                                                                                                               | This study |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| pK19 <i>mobsacB</i>                       | Kan <sup>R</sup> ; plasmid for allelic exchange in <i>C. glutamicum</i> ; (pK18 <i>orN<sub>E.c</sub>., sacB, lacZ</i> α)                                                                                                                                                                              | (8)        |
| pK19mobsacB- <i>cgpS-</i><br><i>Strep</i> | Derivative of pK19 <i>mobsacB</i> containing the <i>cgpS</i> -<br><i>Strep</i> construct for the allelic exchange of the native<br><i>cgpS</i> gene to a C-terminally strep-tagged version in<br>the chromosome of <i>C. glutamicum</i> .                                                             | This study |
| pK18 <i>mobsacB</i> -                     | Kan <sup>R</sup> ; plasmid for integration of foreign DNA into the intergenic region between cg1121-cg1122 ( <i>orN</i> <sub>E.c.</sub> , <i>sacB</i> , <i>lacZ</i> $\alpha$ ).                                                                                                                       | (5)        |
| pEC-XC99E                                 | <i>cat<sub>l</sub></i> , <i>lacl</i> <sup><i>q</i></sup> , P <sub><i>trc</i></sub> , <i>rrnB</i> (T1 and T2), <i>oriV<sub>E.c</sub></i> , <i>per</i> and <i>repA</i> (pGA1) $_{C.g.}$ .<br><i>E. coli</i> – <i>C. glutamicum</i> shuttle and expression vector conferring chloramphenicol resistance. | (9)        |
| pEC-XC99E- <i>cgpS</i> -<br>mcherry       | Derivative of pEC-XC99E containing the <i>cgpS</i> gene cloned upstream of the <i>mcherry</i> gene under control of the <i>tac</i> promoter.                                                                                                                                                          | This study |

Table S2. Oligonucleotides used in this study for cloning, qPCR and affinitychromatography. Bold sequences represent the overlapping sequences needed for Gibsonassembly (10). Restriction sites are underlined.

| Application                                    | Oligo-<br>nucleotide | Sequence (5´→ 3´) and properties                     | Comment                                                                                                     |  |  |
|------------------------------------------------|----------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
|                                                | LF_cgpS_pK19_<br>fw  | CCTGCAGGTCGACTCTAGAG<br>CTGGTCGTCTGTGTAGCTAC         | PCR product contains an<br>overlapping sequence to<br><i>Bam</i> HI-digested<br>pK19 <i>mobsacB</i> plasmid |  |  |
|                                                | LF_cgpS_rv           | GTCCATAGTCCTAACCAATCATGT<br>AA                       |                                                                                                             |  |  |
|                                                | cgpS_strep_fw        | GATTGGTTAGGACTATGGAC<br>ATGGCCATTATTCAGTCGGTC        | PCR product contains an overlapping sequence to the                                                         |  |  |
| pK19 <i>mobsacB</i> -                          | cgpS_strep_rv        | TTACTTCTCGAACTGTGGGTG                                | left flank of <i>cgpS</i> (PCR product above)                                                               |  |  |
| cgpS-strep                                     | RF_cgpS_fw           | CACCCACAGTTCGAGAAGTAA<br>GAGCCCTGTGGAGAATTGTTG       | PCR product contains<br>overlapping sequences to                                                            |  |  |
|                                                | RF_cgpS_pK19<br>_rv  | AAAACGACGGCCAGTGAATT<br>ACGCGGCGACCTCATC             | cgpS-strep and to an EcoRI-<br>digested pK19mobsacB<br>plasmid                                              |  |  |
|                                                | Cgps_indel-fw        | GGACATTATCACCCAACCACAC                               | Oligonucleotides to verify the                                                                              |  |  |
|                                                | CgpS_indel_rv        | CAAGGAATCGTTTACCTATATCGA<br>G                        | correct integration of cgpS-<br>strep                                                                       |  |  |
|                                                |                      |                                                      | Restriction enzyme                                                                                          |  |  |
|                                                | C.a.fw               | GCGC <u>CATATG</u><br>ATGGCACGCCGCGAACTAAT           | Ndel                                                                                                        |  |  |
|                                                | C.a.fw               | CGCG <u>CCCGGG</u><br>ATGGCACGCCGCGAACTAAT           | Smal                                                                                                        |  |  |
|                                                | C.a.N.rv             | GCGC <u>GCTAGC</u><br>CTATACAACCGTGCTGTGATCAATA<br>G | Nhel                                                                                                        |  |  |
|                                                | C.a.rv               | GCGC <u>GGATCC</u><br>CTAGTTAGCGCTCTCGTACTTTTC       | BamHI                                                                                                       |  |  |
| pAN6 with the                                  | C.d.fw               | CGCG <u>CATATG</u><br>ATGGCACGTCGTGAAATC             | Ndel                                                                                                        |  |  |
| coding regions<br>for the N-                   | C.d.fw               | CGCG <u>CCCGGG</u><br>ATGGCACGTCGTGAAATC             | Smal                                                                                                        |  |  |
| terminal parts of<br>the CgpS/Lsr2<br>homologs | C.d.N.rv             | GCGC <u>GCTAGC</u><br>CTAGTGCGCTTTTTCTATGAAGGG       | Nhel                                                                                                        |  |  |
|                                                | C.d.rv               | GCGC <u>GGATCC</u><br>TTAGCGCTTGGTGGACTTAAG          | BamHI                                                                                                       |  |  |
|                                                | M.t.fw               | GCGC <u>CATATG</u><br>ATGGCGAAGAAAGTAACCGTC          | Ndel                                                                                                        |  |  |
|                                                | M.t.fw               | CGCG <u>CCCGGG</u><br>ATGGCGAAGAAAGTAACCGTC          | Smal                                                                                                        |  |  |
|                                                | M.t.N.rv             | GCGC <u>GCTAGC</u><br>CTAGACGCGACGGCCCG              | Nhel                                                                                                        |  |  |
|                                                | M.t.rv               | GCGC <u>TCTAGA</u><br>TCAGGTCGCCGCGTG                | Xbal                                                                                                        |  |  |

|                                                    | cgps_fw                  | CGCGC <u>CATATG</u><br>ATGGCCATTATTCAGTCGGTCG      | Ndel                                                                           |  |  |
|----------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| nAN6 canS/                                         | cgps_strep_rv            | CGCGC <u>GCTAGC</u><br>TTCGAAAGGAATGCCTTCTTTTC     | Nhel                                                                           |  |  |
| cgpS-strep/<br>cgpS-N/ cgpS-                       | cgps_rv                  | CGCGC <u>GAATTC</u> TTA<br>TTCGAAAGGAATGCCTTC      | EcoRI                                                                          |  |  |
| N-Strep                                            | cgpS_n_rv                | CGCGC <u>GCTAGC</u> TTA<br>CTGGCGTGCAGATTCCTC      | Nhel                                                                           |  |  |
|                                                    | cgpS_n_strep<br>_rv      | CGCGC <u>GCTAGC</u><br>CTGGCGTGCAGATTCCTC          | Nhel                                                                           |  |  |
|                                                    | alpA_OL_pAN<br>6_fw      | TGCAGAAGGAGATATACATA<br>ATGGCTCAAAAACAGGACACGAC    | PCR product contains                                                           |  |  |
| pAN6- <i>alpA-eytp</i>                             | eYFP-<br>OL_pAN6_rv      | AAAACGACGGCCAGTGAATT<br>TTATCTAGACTTGTACAGCTCGTCC  | Ndel and EcoRI-digested<br>pAN6 plasmid                                        |  |  |
|                                                    | PcgpS-pEC-fw             | GCGGTATTTCACACCGCATATG<br>CTGGTCGTCTGTGTGTAGCTAC   | PCR product contains                                                           |  |  |
| pEC-XC99E-                                         | cgpS-rv-OL-<br>mcherry   | CTCGCCCTTGCTCACCAT<br>TTCGAAAGGAATGCCTTCTTTTCG     | overlapping sequences to<br>Ndel -digested pEC-XC99E<br>plasmid and to mcherry |  |  |
| egpe menerry                                       | mcherry_fw               | ATGGTGAGCAAGGGCGAG                                 | PCR product contains an                                                        |  |  |
|                                                    | mCherry_rv_O<br>L        | AACAGCCAAGCTTGCATGCC<br>TTACTTGTACAGCTCGTCCATGC    | overlapping sequence to <i>Pstl</i><br>-digested pEC-XC99E<br>plasmid          |  |  |
|                                                    |                          | -                                                  |                                                                                |  |  |
| Application                                        | Oligo-<br>nucleotide     | Sequence (5´→ 3´)                                  | Comments                                                                       |  |  |
|                                                    | Phage-LC-for             | CCCACGTTCACCCCACAAACG                              |                                                                                |  |  |
| qPCR (circular<br>phage DNA and<br>reference gene) | Phage-LC-rev             | CTAAAATGAAGCCATCGCGACC                             |                                                                                |  |  |
|                                                    | ddh-LC-for               | ACGTGCTGTTCCTGTGCATGG                              |                                                                                |  |  |
|                                                    | ddh-LC-rev               | GCTCGGCTAAGACTGCCGCT                               |                                                                                |  |  |
| A 461-14-                                          | PalpAC-Biotin-<br>Tag fw | *GAGGAGTCGTCGATGTGGAGACC*<br>TCGCACTCAATAATGCGGTGG | Asterisks highlight the biotin                                                 |  |  |
| chromatography<br>with P <sub>alpAC</sub>          | Biotin-oligo             | *GAGGAGTCGTCGATGTGGAGACC*                          | iabelieu sequences                                                             |  |  |
|                                                    | PalpAC rv                | GCGCATACGCACATTACGC                                |                                                                                |  |  |

| Oligonucleotide | Sequence (5´ $ ightarrow$ 3´) and properties | Product<br>length (bp) | GC content of<br>product (%) |  |  |
|-----------------|----------------------------------------------|------------------------|------------------------------|--|--|
| gntK-Prom-fw    | ATGGTGGCGTCATGCTCGGCCG                       | 560                    | 49.3                         |  |  |
| gntK-Prom-rv    | GGATTTGCCGCAGCCAGAAACGC                      |                        |                              |  |  |
| cg0150fw        | GGGGTAATAAGACAAAACAGTGGG                     | 500                    | 39.6                         |  |  |
| cg0150rv        | TAGAAATCAGCGACAACCATGCTTC                    |                        |                              |  |  |
| cg0421fw        | GGATACTTTCTGTTTTGGTTGGTC                     | 500                    | 41.5                         |  |  |
| cg0421rv        | GAAATTACCAAGATGCACCACCTC                     |                        |                              |  |  |
| cg0432fw        | CCTTTTCTAGACAAGACCTGATC                      | 500                    | 42.0                         |  |  |
| cg0432rv        | ACCAACGACGTCGGATTAGG                         |                        |                              |  |  |
| cg0718fw        | ATAAGTCATGGTTCAACCTCGG                       | 500                    | 44.0                         |  |  |
| cg0718rv        | CCTAAAACGACACCATCTCAAAAG                     |                        |                              |  |  |
| cg0726fw        | TACCACTTGCCTTTGTAGCGTTC                      | 500                    | 46.0                         |  |  |
| cg0726rv        | ACTTGGAAACCGGCAGCAAG                         |                        |                              |  |  |
| cg1028fw        | TGGTCAGCGCAGCGAC                             | 500                    | 50.3                         |  |  |
| cg1028rv        | AAGTTGAGTCTTGGGCCGG                          |                        |                              |  |  |
| cg1517fw        | GTATGACCAAATGGGACGAAGG                       | 500                    | 42.0                         |  |  |
| cg1517rv        | GATAAGCCACTCAACCACCAAAC                      |                        |                              |  |  |
| cg2782fw        | GACGCTGAGAAGGACTACG                          | 500                    | 49.5                         |  |  |
| cg2782rv        | TTGAAGGTATCTCCGACAGCAAC                      |                        |                              |  |  |
| cg2805fw        | AAGAAGGCTGAGTTTAGTGGGG                       | 500                    | 44.8                         |  |  |
| cg2805rv        | AGAAGACGTCCAAAATCCCGTC                       |                        |                              |  |  |
| cg3060fw        | CAAAATCAATGCGAGAGCGAAG                       | 500                    | 44.0                         |  |  |
| cg3060rv        | CTGCAGAGCTGAAATTATCGAC                       |                        |                              |  |  |
| cg3304fw        | GGATAACTTCCCCACAATTGAC                       | 500                    | 47.7                         |  |  |
| cg3304rv        | AAGCGTGCCATTGTTCTCCC                         |                        |                              |  |  |
| cg1951fw        | CTCTATTGGCTCTTAATGGTCAATTAC                  | 500                    | 33.4                         |  |  |
| cg1951rv        | GCCTCTTAAAGCACAGTTATTGCG                     |                        |                              |  |  |
| cg1966fw        | GCTCAGTATCAATGTCGTCACC                       | 500                    | 36.3                         |  |  |
| cg1966rv        | GTCGAAGTGGTGTCGTTATTTAGG                     |                        |                              |  |  |
| cg2023fw        | GCACCACCAACAAGTGCC                           | 500                    | 40.7                         |  |  |
| cg2023rv        | TGGGAGCATTTCACTGCACG                         |                        |                              |  |  |
| cg1977fw        | GTTCTAAACATAAGGAACGCGC                       | 500                    | 39.1                         |  |  |
| cg1977rv        | CGATGGTGCAGTGACCATG                          |                        |                              |  |  |
| cg1936fw        | CATCGCTCATTGTTACTTAATTACCC                   | 500                    | 36.0                         |  |  |
| cg1936rv        | CCTGAAGAATTTGCTCAGCCG                        |                        |                              |  |  |
| cg1940fw        | CCATAGTCAAGATTCCCAATCAAC                     | 500                    | 39.5                         |  |  |
| cg1940rv        | GATTCAGGTGATGTAGCGCTG                        |                        |                              |  |  |
| cg1917fw        | CCTGTAGCCTGCGACGTTAA                         | 500                    | 42.2                         |  |  |
| cg1917rv        | GTGCACCGGTAGCCATAATAG                        |                        |                              |  |  |
| cg1895fw        | TCACGGGTGGAATCGGAG                           | 500                    | 38.3                         |  |  |
| cg1895rv        | GCITGGATCATCTGAACAGAGTG                      |                        |                              |  |  |
| cg2014fw        | AGCGTCAATCGGAATCTGCG                         | 500                    | 40.7                         |  |  |
| cg2014rv        | CAGTTGCGCTAGATAAGCGAG                        |                        |                              |  |  |
| cg1890fw        | GCGACAAACAAATAGATCAGCTG                      | 500                    | 41.8                         |  |  |
| cg1890rv        | GGGGTTTATTACCTGCCTGC                         |                        |                              |  |  |

 Table S3.
 Oligonucleotides used for the generation of DNA fragments for EMSA experiments.

**Table S4. Results of the ChAP-Seq experiment.** The 90 identified regions are evaluated regarding their peak width, peak maxima and area. Furthermore, the regions are classified into three categories as described in Figure S3. Genes within the CGP3 region are highlighted in green.

Table S5. Impact of CgpS countersilencing on the *C. glutamicum* transcriptome. CGP3 prophage genes are highlighted in green. ORFs exhibiting are more than two-fold altered mRNA ratio (of >2 or < 0.5, p-value <0.05) are shown.

**Table S6. PSI-BLAST results of CgpS.** e-value was set <= 0.005 across several orders of the phylum Actinobacteria and phages as annotated in the NCBI database (http://www.ncbi.nlm.nih.gov/).

#### **Supplementary Figures**



В

|    | Corynebacterium glutamicum ATCC 13032    | 100   | 27.52 | 25.66 | 25.96 | 27.27 | 25.45 | 21.55 | 23.42 | 24.76 | 24.55 | 21.1  |
|----|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Mycobacterium spec. MCS                  | 27.52 | 100   | 87.93 | 90.09 | 87.83 | 86.09 | 28.45 | 27.35 | 30.77 | 36.61 | 34.82 |
| 2  | Mycobacterium marinum M                  | 25.66 | 87.93 | 100   | 93.69 | 94.87 | 94.02 | 26.89 | 29.91 | 28.57 | 40.18 | 35.71 |
| 3  | Mycobacterium avium 104                  | 25.96 | 90.09 | 93.69 | 100   | 91.82 | 91.82 | 27.27 | 27.93 | 30.3  | 36.45 | 35.19 |
| 4  | Mycobacterium tuberculosis CDC1551       | 27.27 | 87.83 | 94.87 | 91.82 | 100   | 92.31 | 28.45 | 31.03 | 28.85 | 40.54 | 34.23 |
| 5  | Mycobacterium leprae TN                  | 25.45 | 86.09 | 94.02 | 91.82 | 92.31 | 100   | 27.59 | 28.45 | 28.85 | 37.84 | 35.14 |
| 6  | Corynebacterium kroppenstedtii DSM 44385 | 21.55 | 28.45 | 26.89 | 27.27 | 28.45 | 27.59 | 100   | 41.32 | 39.81 | 40.35 | 38.6  |
| 7  | Corynebacterium amycolatum SK46          | 23.42 | 27.35 | 29.91 | 27.93 | 31.03 | 28.45 | 41.32 | 100   | 40.74 | 41.74 | 43.48 |
| 8  | Corynebacterium diphtheria NCTC 13129    | 24.76 | 30.77 | 28.57 | 30.3  | 28.85 | 28.85 | 39.81 | 40.74 | 100   | 44.86 | 49.06 |
| 9  | Corynebacterium urealyticum DSM 7109     | 24.55 | 36.61 | 40.18 | 36.45 | 40.54 | 37.84 | 40.35 | 41.74 | 44.86 | 100   | 53.51 |
| 10 | Corynebacterium jeikeium K411            | 21.1  | 34.82 | 35.71 | 35.19 | 34.23 | 35.14 | 38.6  | 43.48 | 49.06 | 53.51 | 100   |

**Figure S1: CgpS orthologs. A.** Phylogenetic tree based on the multiple sequence alignments of CgpS/Lsr2 homologs of selected *Corynebacteria* (*C. kroppenstedtii, C. amycolatum, C. diphteriae, C. urealyticum, C. jeikeium*), and *Mycobacteria* (*M. tuberculosis, M. spec., M. leprae, M. marinum, M. avium*). Alignments were performed using Clustal Omega (11) with standard configurations. Data for phylogenetic tree were derived from alignments and visualized using tree vector (12). Analysis indicates that CgpS displays a higher sequence identity to mycobacterial Lsr2 proteins than to the corynebacterial orthologs.



**Figure S2: Silencing of CGP3 prophage induction.** A and B. Phage reporter cells (WT:: $P_{lys}$ -*eyfp*) were transformed with pAN6, pAN6-*cgpS* and pAN6-*cgpS*-*mcherry* and were cultivated in CGXII with 50 µM IPTG and in the presence or absence of 0.6 µM MMC. The mCherry (A) and eYFP (B) fluorescence as well as backscattered light were measured in the BioLector® microcultivation system and were used to calculate the specific fluorescence. The specific fluorescence after 20 h of cultivation is shown. The data represent average values from three biological replicates including the standard deviation.



**Figure S3: Threshold variation of the CgpS ChAP-Seq data.** Based on mean normalized coverage values which were obtained by ChAP-sequencing experiments, thresholds were varied to validate its impact on the estimated binding of CgpS to the CGP3 region and to the entire genome of ATCC 13032. Based on this analysis, bound regions showing a threshold T >3 were considered as CgpS targets in this study (20.46% of CGP3 and 1.49% of the genome).



**Figure S4**: **Genomic distribution of CgpS binding sites within genes, promoters or intergenic regions. A.** The 90 regions bound to CgpS were classified into three categories: i. Binding sites within open reading frames (genes), ii. 250 bp upstream of translational start or according to published transcription start sites (promoter regions), and, iii. intergenic regions. B. Distribution of the 90 CgpS-bound genomic regions. Overall, 60% of the peaks are located in promoter regions and 31% within genes. Only 9% are assigned to intergenic regions. **C.** The %GC content of the regions were plotted against peak areas. Red line illustrates average GC content of *C. glutamicum* ATCC 13032, which is about 53.8% (13). Interestingly, a trend to higher peak areas was observed for promoter regions in comparison to intergenic regions or ORFs.



Figure S5: Comparison of predicted and experimentally identified CgpS binding sites. The DNA binding motif derived from ChAP-Seq results (Fig. 3C) was checked for further hits in the genome of ATCC 13032 using FIMO (14). Here, 90 positions exhibiting highest probability (p-Values:  $2.7 \cdot 10^{-10} - 2.3 \cdot 10^{-6}$ ) (in blue) were compared with the 90 experimentally identified binding sites acquired by ChAP-Seq binding studies (in red). Potential CgpS site within the CGP3 region (purple boxes) and outside (green boxes) are highlighted. Correlation between experimentally identified and predicted CgpS binding sites ~75 %.



Figure S6: *In vitro* binding studies of CgpS to its putative target sites. Electrophoretic mobility shift assays (EMSAs) were performed with purified CgpS-Strep protein and 21 putative target DNA regions derived from ChAP-Seq data (Fig. 3). Green boxes indicate regions outside of CGP3 and the purple box sites within the CGP3 region. All tested DNA fragments had a size of about 500 bp and were chosen 250 bp up and downstream of the peak maxima, which were detected by the ChAP-Seq analysis. Overall, eleven candidate regions were chosen outside of CGP3 ((A) seven upstream and (C) four downstream of CGP3) and ten sites within the CGP3 region (B). In all lanes 90 ng DNA (12-14 pM) were incubated without (lane 1) or with increasing amounts of CgpS protein (lane 2: 1  $\mu$ M and lane 3: 2  $\mu$ M). The promoter region of *gntK* (560 bp) was used as a negative control. Annotations und potential functions of the bound regions are listed in **D**.



Figure S7: Complementation studies of a *E. coli* K-12  $\Delta hns$  strain with *cgpS* cloned into the overexpression plasmid pAN6. Cells were grown on bromothymol blue salicin indicator plates as described in Dole et al., 2002 (15). *E. coli* cells lacking *hns* were transformed with the empty plasmid pAN6, pAN6-cgpS or with the empty plasmid pKETW18 or pKETW20 carrying *hns*. Plates were incubated at 37°C overnight. Complementation is based on the utilization of salicin. Salicin can be used as carbon source if the *bgl* operon is expressed. This operon is repressed by H-NS in the wild type situation. Thus, in the absence of H-NS, salicin is metabolized leading to a decrease of the pH resulting in a colour shift from blue to yellow. Complementation of the  $\Delta hns$  phenotype was achieved by expressing either *hns* or *cgpS* suggesting a similar function of both proteins.



**Figure S8: Overexpression of** *hns* in *C. glutamicum* strains. H-NS encoding gene located on the overexpression plasmid pAN6 was overexpressed in the prophage reporter strain WT::P<sub>*lys*</sub>-*eyfp* and in the  $\Delta$ CGP3 strain. Cells were cultivated in CGXII minimal medium and *hns* expression was induced with 50 µM IPTG. The data represent average values of three biological replicates including the standard deviation.



Figure S9: *cgpS* overexpression in *E. coli* wild type cells. To verify whether CgpS is interfering with the function of H-NS in its native host, *E. coli* K-12 MG1655 wild type cells were transformed with the pAN6-*cgpS* plasmid. Cells were streaked on bromothymol blue salicin indicator plates (15) supplemented with 100  $\mu$ M IPTG. As control, the wild type strain and a  $\Delta hns$  mutant were transformed with the empty plasmid pAN6. The obtained results suggest that heterologous *cgpS* expression is not able to counteract H-NS silencing at the *bgl* promoter when compared to a mutant lacking the *hns* gene. However, it needs to be highlighted that the resulting *E. coli* strain expressing the *cgpS* gene (left plate) showed a significant growth defect in comparison to the empty vector controls (middle and right).



**Figure S10. Bioinformatic analysis of CgpS related proteins.** A PSI-BLAST search on CgpS homologs with an *e*-value of 0.005 was conducted and achieved 5230 hits (Table S6). 1920 sequence are individual and can be assigned to 863 taxonomical units; 618 of these can be allocated to bacteria or phages. Secondary structure predictions of the 618 sequences are shown in direct comparison in N->C (**A**) and C->N (**B**) orientation. The increasing length of the amino acid sequences entails distortet matches in secondary structure prediction and hence for a better overview the two possibilites are shown. **C.** Histogramm of the 618 sequences ordered according to their amino acid sequence length. The maximum of this distribution is located around 110 amino acids.

#### **Supplementary Videos**

Video S1: Time lapse video of a *C. glutamicum* microcolony under standard conditions (without IPTG, control). Cells of the prophage reporter strain ATCC 13032:: $P_{lys}$ -*eyfp* carrying the countersilencing plasmid pAN6-N-*cgpS* were cultivated in microfluidic chambers (16) in standard minimal medium (CGXII with 2% (w/v) glucose, 25 µg·ml kanamycin for 20 h without IPTG). The video shows the first 12 h of the cultivation.

Video S2: Time lapse video of the effect of CgpS countersilencing (150  $\mu$ M IPTG) on prophage activation. The same reporter strain (Video S1) was grown in the presence of 150  $\mu$ M IPTG inducing the expression of the truncated CgpS protein (aa 1-65) covering its oligomerization domain. The video shows the first 16.5 h of the experiment.

### References

- 1. Studier, F.W. and Moffatt, B.A. (1986) Use of Bacteriophage-T7 Rna-Polymerase to Direct Selective High-Level Expression of Cloned Genes. *J Mol Biol*, **189**, 113-130.
- Venkatesh, G.R., Koungni, F.C.K., Paukner, A., Stratmann, T., Blissenbach, B. and Schnetz, K. (2010) BglJ-RcsB Heterodimers Relieve Repression of the *Escherichia coli bgl* Operon by H-NS. *J Bacteriol*, **192**, 6456-6464.
- 3. Stratmann, T., Pul, U., Wurm, R., Wagner, R. and Schnetz, K. (2012) RcsB-BglJ activates the *Escherichia coli* leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. *Mol Microbiol*, **83**, 1109-1123.
- 4. Kinoshita, S., Udaka, S. and Shimono, M. (1957) Studies on the amino acid fermentation -Part I. Production of L-glutamic acid by various microorganisms. *J Gen Appl Microbiol*, **50**, 331-343.
- 5. Baumgart, M., Unthan, S., Rückert, C., Sivalingam, J., Grünberger, A., Kalinowski, J., Bott, M., Noack, S. and Frunzke, J. (2013) Construction of a prophage-free variant of *Corynebacterium glutamicum* ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. *Appl Environ Microbiol*, **79**, 6006-6015.
- 6. Helfrich, S., Pfeifer, E., Krämer, C., Sachs, C.C., Wiechert, W., Kohlheyer, D., Nöh, K. and Frunzke, J. (2015) Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. *Mol Microbiol*, **98**, 636-650.
- 7. Frunzke, J., Engels, V., Hasenbein, S., Gätgens, C. and Bott, M. (2008) Co-ordinated regulation of gluconate catabolism and glucose uptake in *Corynebacterium glutamicum* by two functionally equivalent transcriptional regulators, GntR1 and GntR2. *Mol Microbiol*, **67**, 305-322.
- 8. Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Pühler, A. (1994) Small Mobilizable Multipurpose Cloning Vectors Derived from the *Escherichia-Coli* Plasmids Pk18 and Pk19 - Selection of Defined Deletions in the Chromosome of *Corynebacterium-Glutamicum*. *Gene*, **145**, 69-73.
- 9. Kirchner, O. and Tauch, A. (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. *J Biotechnol*, **104**, 287-299.
- 10. Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A. and Smith, H.O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods*, **6**, 343-U341.
- Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J. *et al.* (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol*, 7, 539.
- 12. Pethica, R., Barker, G., Kovacs, T. and Gough, J. (2010) TreeVector: Scalable, Interactive, Phylogenetic Trees for the Web. *Plos One*, **5**.
- Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B.J., Gaigalat, L. *et al.* (2003) The complete *Corynebacterium glutamicum* ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. *J Biotechnol*, **104**, 5-25.
- 14. Grant, C.E., Bailey, T.L. and Noble, W.S. (2011) FIMO: scanning for occurrences of a given motif. *Bioinformatics*, **27**, 1017-1018.
- 15. Dole, S., Kühn, S. and Schnetz, K. (2002) Post-transcriptional enhancement of *Escherichia coli bgl* operon silencing by limitation of BglG-mediated antitermination at low transcription rates. *Mol Microbiol*, **43**, 217-226.
- Grünberger, A., Probst, C., Helfrich, S., Nanda, A., Stute, B., Wiechert, W., von Lieres, E., Nöh,
   K., Frunzke, J. and Kohlheyer, D. (2015) Spatiotemporal Microbial Single-Cell Analysis Using a
   High-Throughput Microfluidics Cultivation Platform. *Cytometry*, **87A**, 1101-1115.