## Supplementary Data

# Novel TDP2 ubiquitin interactions and their importance for the repair of topoisomerase II-mediated DNA damage

Timsi Rao<sup>1</sup>, Rui Gao<sup>2</sup>, Saeko Takada<sup>1</sup>, Muthana Al Abo<sup>2</sup>, Xiang Chen<sup>3</sup>, Kylie J. Walters<sup>3</sup>, Yves Pommier<sup>2</sup>, Hideki Aihara<sup>1,4</sup>

<sup>1</sup>Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA

<sup>2</sup>Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA <sup>3</sup>Structural Biophysics Loboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, USA

<sup>4</sup>To whom correspondence should be addressed. Email: <u>aihar001@umn.edu</u>



Figure S1. (**A**), Coomassie-stained SDS-PAGE gel (4-20% gradient) for purified Ub, diUbs and SUMO proteins. (**B**), Titration experiment of increasing concentrations of monoUb into <sup>15</sup>N labeled *Ce*TDP2 UBA. The region of <sup>1</sup>H, <sup>15</sup>N HSQC spectra that contains Thr56 is displayed with the peaks at different molar ratios of Tdp2 UBA:Ub color-coded. (**C**), The same region of the HSQC spectra as in *B*, with and without 8-fold molar excess of SUMO added into <sup>15</sup>N labeled *Ce*TDP2 UBA.



Figure S2. **CeTDP2 UBA gave a well-dispersed 2D** <sup>15</sup>N HSQC spectrum. (A) and (B), 2D <sup>15</sup>N HSQC spectra of zebrafish (residues 1-106) and human (residues 24-80) TDP2 UBA. (C), 2D <sup>15</sup>N HSQC spectrum of CeTDP2 UBA with peak assignments shown.



Figure S3. (**A**), <sup>1</sup>H,<sup>15</sup>N HSQC spectra of <sup>15</sup>N labeled monoUb (teal) and <sup>15</sup>N labeled monoUb mixed with excess CeTDP2 UBA (pink) are superimposed. (**B**), <sup>1</sup>H,<sup>15</sup>N HSQC spectra of <sup>15</sup>N labeled monoUb alone (black) and with 2-fold molar excess *Hs*TDP2 UBA (residues 1-110, red). Some of the significantly shifted peaks are labeled and their bound-state peaks indicated by black arrows on both panels.



Figure S4. (**A-B**) The combined (<sup>1</sup>H and <sup>15</sup>N) CSPs of significantly shifted peaks of (**A**) <sup>15</sup>N labeled CeTDP2 UBA at indicated molar ratios with K48 diUb, and (**B**) <sup>15</sup>N labeled CeTDP2 UBA at indicated molar ratios with K63 diUb. The range of K<sub>d</sub> values calculated for the chosen residues is shown on each graph. (**C-G**) <sup>1</sup>H, <sup>15</sup>N HSQC spectra strips of significantly shifted peaks upon titration with increasing concentration of unlabeled CeTDP2 UBA are compared for (**C**) <sup>15</sup>N labeled monoUb, (**D**) K48 diUb with <sup>15</sup>N labeled proximal Ub, (**E**) K48 diUb with <sup>15</sup>N labeled distal Ub, (**F**) K63 diUb with <sup>15</sup>N labeled species to unlabeled UBA is indicated on top of each strip. Residue peaks are labeled.



Figure S5. Paramagnetic relaxation enhancement (PRE) data from <sup>15</sup>N Ub complexed with TDP2 UBA M43C MTSL (top panel) and <sup>15</sup>N TDP2 UBA complexed with Ub G75C MTSL (middle panel). Residues with the intensity ratio below the upper cutoff (shown on each panel with a dashed red line) were categorized in the 1.8 - 23 Å distance range. Paramagnetic relaxation enhancement (PRE) data from <sup>15</sup>N Ub complexed with TDP2 UBA S84C MTSL (bottom panel). The upper cutoff for residues categorized in the 1.8 - 23 Å distance range is shown on the panel with a dashed red line. Inverted Red triangles denote Ub residues that were prolines and hence excluded from analyses.



Figure S6. (**A**) Western blot analysis using anti-flag antibody to compare the total expression levels and the nuclear *vs.* cytoplasmic distribution of *Hs*TDP2 wild type (WT) and mutant (del 1-100 or F62R) clones in *TDP2-/-/-* DT40 cells. For the total cell extracts (left), equal number  $(2x10^5)$  of cells were loaded in each lane. Cytoplasmic load was one third of nuclear load. (**B**) Quantitation of band intensities from panel *A*, showing comparison of the total *Hs*TDP2 expression levels on the left and nuclear/cytoplasmic ratios on the right. (**C**) Cell survival assay (similar to Figure 8B) testing 11 clones transfected with a triple mutant targeting the TDP2 UBA-Ub surface (F62R+V35R+R56D) against increasing concentrations of Top2 poison, etoposide.



Figure S7. FACS analysis profiles for cells shown in Figure 8B sorted based on intensity of labeling by propidium iodide cell death marker. WT denotes TDP2<sup>-/-/-</sup> DT40 cells complemented with the full-length wild-type HsTDP2. F62R #5 and 11 are two independent cell lines complemented with HsTDP2 F62R mutant.



Figure S8. Comparison of TDP2 UBA – diUb models. (**A**) Superposition of hypothetical models of TDP2 UBA with K48-diUb (grey) and K63-diUb (orange). (**B**) TRIDOCK model of human HR23A UBA2 with K48-diUb; pdb id 1ZO6 (1). The K48 side chain is highlighted in red. (**C**) Theoretical model of *Ce*TDP2 UBA with K48-diUb shown in the same conformation as diUb in panel B. The K48 side chain is highlighted in red.



Figure S9. <sup>1</sup>H,<sup>15</sup>N HSQC spectra of <sup>15</sup>N labeled CeTDP2 UBA alone (black) and in the presence of 6-fold molar excess of (**A**) monoUb (red), (**B**) K48-diUb (blue) or (**C**) K63-diUb (green) superimposed.

Supplemental Table 1: List of active and passive residues involved in TDP2 UBA-Ubiquitin interaction as defined by chemical shift perturbation plots

| Protein     | Active residues                                     | Passive residues  | Flexible<br>segments |
|-------------|-----------------------------------------------------|-------------------|----------------------|
| TDP2<br>UBA | 55,57,60,61,65,68,75,76,79,80,82,<br>83,84,86,93,94 | 51,54,59,64,71,73 | 49-96                |
| Ubiquitin   | 6,8,14,42,44,46,47,48,49,68,70,71,<br>72            | 9,12,51,66,74     | 4-16,40-53,64-76     |

# Supplemental Table 2: Comparison of HADDOCK runs with varying numbers of unambiguous restraints

|                                                | Ambiguous (Amb)<br>only |         | Amb+M43C<br>MTSL PREs |         | Amb+ G75C<br>MTSL PREs |          | Amb+ half <sup>¶</sup> M43C +<br>half G75C MTSL<br>PREs |      |
|------------------------------------------------|-------------------------|---------|-----------------------|---------|------------------------|----------|---------------------------------------------------------|------|
|                                                | UBA                     | Ub      | UBA                   | Ub      | UBA                    | Ub       | UBA                                                     | Ub   |
| Starting Structure                             | 4GEW                    | 1D3Z    | 4GEW                  | 1D3Z    | 4GEW                   | 1D3Z     | 4GEW                                                    | 1D3Z |
| Ambiguous<br>restraints                        | 16                      | 13      | 16                    | 13      | 16                     | 13       | 16                                                      | 13   |
| Unambiguous<br>restraints (PREs)               | 0                       | 0       | 60                    | 0       | 0                      | 25       | 30                                                      | 13   |
| Clusters<br>determined by<br>HADDOCK           | 9                       |         | 3                     |         | 6                      |          | 2                                                       |      |
| Structures in top scored cluster               | 38                      |         | 189                   |         | 16                     |          | 184                                                     |      |
| RMSD from<br>lowest energy<br>structure        | 10.8±0.2 Å              |         | 1.5±0.3 Å             |         | 1.6±0.5 Å              |          | 1.7±0.4 Å                                               |      |
| Van der Waals<br>energy                        | -34.7±7.3               |         | -34.5±7.6             |         | -44.5±8.2              |          | -40.2±10.1                                              |      |
| Electrostatic<br>energy                        | -198.2±66.1             |         | -346.4±50.5           |         | -200.6±58.0            |          | -146.3±64.2                                             |      |
| Desolvation<br>energy                          | -5.0±7.3                |         | -2.8±6.6              |         | -0.1±4.8               |          | 2.0±7.0                                                 |      |
| Restraint violation 3.6±1.2                    |                         | 3.7±1.3 |                       | 5.4±1.5 |                        | 4.7±-1.3 |                                                         |      |
| Buried surface area                            | 1197.1±172.7            |         | 1181.0±138.2          |         | 1408.2±129.2           |          | 1289.1±176.0                                            |      |
| Backbone r.m.s.d.<br>from final best*<br>model | 1.9 Å                   |         | 1.7 Å                 |         | 1.4 Å                  |          | 1.5 Å                                                   |      |

\* Root mean square deviation (r. m. s. d.) for backbone atoms of the best-scored model from each run was calculated against the best-scored final model (from Amb+85 PRE HADDOCK run). r.m.s.d. was calculated using the "super" script in PyMOL Molecular Graphics System, Version 1.5, Schrodinger, LLC (2). Amb, ambiguous.

<sup>¶</sup> Only half of the restraints for each spin label were included in this modeling run

Supplemental Table 3: validation of the HADDOCK model through comparison of PRE experimental restraints derived from S84C MTSL labeling of TDP2 UBA (Figure S8) to the corresponding distances in the final best scored model

| #  | UBA<br>Bes | Ub<br>Res | Experimental<br>Restraints | On model,<br>distance |
|----|------------|-----------|----------------------------|-----------------------|
|    |            |           |                            | between HN            |
|    |            | U         | PRE range (Å)              | pairs (Å)             |
| 1  | S84        | L8        | 2.0 - 23.0                 | 15                    |
| 2  | S84        | Т9        | 2.0 – 23.0                 | 17                    |
| 3  | S84        | E24       | 2.0 - 23.0                 | 21                    |
| 4  | S84        | A46       | 2.0 - 23.0                 | 21                    |
| 5  | S84        | G47       | 2.0 - 23.0                 | 19                    |
| 6  | S84        | Q49       | 2.0 - 23.0                 | 15                    |
| 7  | S84        | D52       | 2.0 – 23.0                 | 17                    |
| 8  | S84        | G53       | 2.0 – 23.0                 | 19                    |
| 9  | S84        | T66       | 2.0 – 23.0                 | 24                    |
| 10 | S84        | L69       | 2.0 - 23.0                 | 16                    |
| 11 | S84        | L71       | 2.0 - 23.0                 | 10                    |
| 12 | S84        | R72       | 2.0 - 23.0                 | 9                     |
| 13 | S84        | R74       | 2.0 - 23.0                 | 9                     |
| 14 | S84        | G75       | 2.0 - 23.0                 | 10                    |
| 15 | S84        | G76       | 2.0 - 23.0                 | 10                    |

# References

- 1. Varadan,R., Assfalg,M., Raasi,S., Pickart,C. and Fushman,D. (2005) Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. *Mol. Cell*, **18**, 687–698.
- 2. Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.5.0.4.