

Supplementary Figure S1. Technique specific removal of false positive peaks in ChIP-exo data. (A) Colorcoded heat map enrichment profiles visualized within the Integrated Genome Browser (IGB) for the standard ChIP-seq input, the bead-bound ChIP-exo input and the ChIP-exo profiles without and with input treatment mapped onto chromosome 1. (B) Genome-wide correlations (1,000 bp window) for standard ChIP-seq inputs compared to the bead-bound ChIP-exo inputs in HeLa cells. (C) Venn diagram showing the intersect of peaks (gray) within the standard ChIP-seq input (not observable) and the ChIP-exo input (red) generated by the PAtCh-Cap method. Together, these data indicate that while a significant number of false positive peaks are shared between the standard ChIP-seq input and the bead-bound ChIP-exo input, there a significant number of additional false positive peaks that are unique to the ChIP-exo process. Use of the ChIP-exo input generated by PAtCh-Cap significantly removes these artifacts in the CTCF ChIP-exo data as demonstrated by the substantial reduction in green loci, particularly for pericentromeric regions in (A).

Supplementary Figure S2. (A) FastQC plots of nucleotide frequency as a function of base position for the ChIP-exo input, CTCF ChIP-exo, and ChIP-seq input replicates. The four colors represent the bases A (green), T (red), G (black) or C (blue). (B) FastQC plots showing that the GC count per read (red) for each ChIP-exo input, CTCF ChIP-exo, and ChIP-seq input data set relative to the theoretical distribution (blue).

Supplementary Figure S3. (A) Results for the *de novo* motif search analysis performed by RSAT on the highconfidence CTCF peaks identified from the ChIP-exo data without and with input treatment (refer to Figure 2A). The newly identified motif is only observed from the *de novo* search conducted on the input treated highconfidence pool. (B) Venn diagram from Figure 2B showing the overlap of high-confidence peaks identified from data sets with and without input treatment (top). Distribution analysis of the newly identified CTCF motif within each of these pools (color coded numbers; bottom) clearly shows that this sequence is found nearly exclusively within the population of high-confidence peaks that were only identified after input treatment (blue).

Supplementary Figure S4. (A) Representative immunoblot indicating CTCF protein depletion after HeLa cells were treated with two different siRNAs relative to a scrambled siRNA (Scr) control. (B) Sufficient CTCF depletion at the mRNA level in HeLa cells was further confirmed by qRT-PCR. mRNA levels are represented as the fold C_T change relative to *HPRT1* and a scrambled siRNA (normalized to 1).

	12	irna	s	siRNA 1		Scr			
	0.25	0.22	0.23	0.33	0.35	0.29	0.91	0.9	1
Scr	0.21	0.20	0.23	0.29	0.32	0.31	0.89	1	0.9
	0.30	0.36	0.33	0.42	0.40	0.39	1	0.89	0.91
Sil	0.77	0.75	0.73	0.93	0.92	1	0.39	0.31	0.29
Ř	0.77	0.79	0.80	0.89	1	0.92	0.40	0.32	0.35
2	0.69	0.73	0.71	1	0.89	0.93	0.42	0.29	0.33
sif	0.90	0.92	1	0.71	0.80	0.73	0.33	0.23	0.23
Ř	0.92	1	0.92	0.73	0.79	0.75	0.36	0.20	0.22
N	1	0.92	0.90	0.69	0.77	0.77	0.30	0.21	0.25

Supplementary Figure S5. (A) Genome-wide correlations (1,000 bp window) of the RNA-seq data acquired for each of the scrambled and CTCF siRNA replicates. (B) Comprehensive heat map from the RNA-seq data depicting gene transcripts exhibiting a two-fold up- (green) or down-regulation (red) after CTCF depletion relative to the scrambled siRNA control (p-value cut-off of 0.05).

Supplementary Table S1. Incidence of CTCF motif within ±1000 bps of regulated gene promoter TSS

	CTCF ChIP-exo	CTCF ChIP-exo Input Treated		
Total genes altered after CTCF depletion (from RNA-seq)	1127			
Number of ChIP-exo peaks intersected with above altered genes	771	448		
Number of intersected peaks containing core CTCF motif within promoter	398	396		
% CTCF motif	52%	88%		