
S1 
 

Supplementary Data 

 

 

A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ 

sensing 

 

Wenhu Zhou1,2, Jinsong Ding1 and Juewen Liu1,2,* 

 

 

1. School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China, 

410013.  

2. Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 

Waterloo, Ontario, Canada, N2L 3G1. 

*Email: liujw@uwaterloo.ca 

Fax: (+1) 519-746-0435 

Phone: (+1) 519-888-4567 extension 38919 

 

  



S2 
 

Table S1. DNA oligonucleotides used in this study. [2AP] = 2-aminopurine; r[2AP] = ribo-2-

aminopurine; rA = ribo-adenine; FAM = carboxyfluorescein. 

DNA name Sequences and modifications (from 5’-terminius) 

Ce13d TTTCGCCATAGGTCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

NaA43 TTTCGCCATCCAGGTCAAAGGTGGGTGAGGGGACGCCAAGAGTCCCCGCGGTTAGTGACTCGTGAC 

17E TTTCGCCATCTTCTCCGAGCCGGTCGAAATAGTGACTCGTGAC 

Ce13d-A20 TTTCGCCATAGGTCAAAGGTGGGTGCGAGTTTTTACTCGTAATAGTGACTCGTGAC 

Ce13d-C20 TTTCGCCATAGGTCAAAGGTGGGTGCGAGTTTTTACTCGTCATAGTGACTCGTGAC 

Ce13d-G20 TTTCGCCATAGGTCAAAGGTGGGTGCGAGTTTTTACTCGTGATAGTGACTCGTGAC 

Ce13d-A10C TTTCGCCATAGGTCAACGGTGGGTGCGAGTTTTTACTCGTTATAGT GAC TCG TGA C 

Ce13d-G14T TTTCGCCATAGGTCAAAGGTTGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

Ce13d-A3G TTTCGCCATGGGTCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

Ce13d-A8G TTTCGCCATAGGTCGAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

Ce13d-G14A TTTCGCCATAGGTCAAAGGTAGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

Ce13d-T17C TTTCGCCATAGGTCAAAGGTGGGCG CGA GTT TTT ACT CGT TAT AGT GAC TCG TGAC 

Ce13d-A10C+ T20A TTTCGCCATAGGTCAACGGTGGGTGCGAGTTTTTACTCGTAATAGTGACTCGTGAC 

Ce13d-G14T + T20A TTTCGCCATAGGTCAAAGGTTGGTGCGAGTTTTTACTCGTAATAGTGACTCGTGAC 

Ce13d-A82AP TTTCGCCATAGGTC[2AP]AAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

Ce13d-A92AP TTTCGCCATAGGTCA[2AP]AGGTGGGTGCGAGTTTTTACTCGTTATAGTGACTCGTGAC 

Sub-FAM GTCACGAGTCACTATrAGGAAGATGGCGAAA-FAM 

Sub-dA GTCACGAGTCACTATAGGAAGATGGCGAAA 

Sub-ribo-2AP GTCACGAGTCACTATr[2AP]GGAAGATGGCGAAA 

Sub-deoxyribo-2AP GTCACGAGTCACTAT[2AP]GGAAGATGGCGAAA 
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Figure S1. The secondary structures of the (A) Ce13d and (B) NaA43 predicted by the Mfold 

program (1). Based on the Mfold prediction, both structures contain a small hairpin in their 

identical loop in red. However, our biochemical characterizations (2) do not support such a small 

hairpin. Therefore, we draw the secondary structure of the Ce13d as in (C) and that of the NaA43 

in (D) in the main paper. 
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Figure S2. (A) To further confirm that 2AP modification does not disrupt Na+ binding, we 

characterized the Na+-induced Ce13d global folding using Tb3+-sensitized luminescence by 

following the method we previously introduced (3,4). Sensitized Tb3+ luminescence spectra with 

the 2AP-labeled Ce13d in buffer (25 mM Li+, 50 mM Tris, pH 7.5) and after further adding 25 

mM Li+ or Na+. The DNAzymes were prepared with Sub-ribo-2AP substrate and the enzyme 

(each 1 μM, see Table S1 for sequences). After annealing, various concentrations of Li+/Na+ 

were added. Then, 5 μM Tb3+ was added, followed by monitoring the spectra from 520 to 570 

nm by exciting at 290 nm. The peak intensity at 543 nm was quantified. The addition of Na+ 

cause stronger fluorescence decrease which is attributable to the specific Na+ binding, otherwise 

Li+ would decrease more due to its higher charge density. (B) To have quantitative 

understanding, a careful titration was performed. Normalized Tb3+ luminescence of the 2AP-

modified Ce13d as a function of Li+ and Na+ concentration, from which the binding affinity of 

Na+ (kd = 14 mM) was evaluated to be lower than that of Li+ (kd = 53 mM), confirming the Na+ 

binding by the 2AP-modified Ce13d. Besides confirming Na+ binding, this result also highlights 

the advantage of 2AP probe compared with previous used Tb3+-sensitized luminescence, in 

which 2AP signal is insensitive to non-specific interaction between metal ions and DNA (e.g., 

Li+ causes little fluorescence change), while the latter is strongly influenced by competing ions 

(e.g., Li+ also induces significant fluorescence decrease with higher concentrations). 
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Figure S3. Gel image showing the activity of the Ce13d in absence and presence of 10 μM Ce3+ 

after 1 h incubation. The assay was performed in 25 mM NaCl, 50 mM MES, pH 6.0. The result 

showed that without Ce3+, the Ce13d is inactive in presence of Na+ alone. 
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Figure S4. Normalized fluorescence enhancement at 370 nm of the NaA43 with ribo-2AP or 

deoxyribo-2AP substrate as a function of Na+ concentration. While the deoxy-2AP substrate 

yielded a slightly higher fluorescence increase, it is still less than 40% with 200 mM Na+.  
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Figure S5. Normalized 2AP fluorescence enhancement of various Ce13d mutants as a function 

of Na+ concentration. All these mutants were demonstrated to bind Na+ based on our previous 

Tb3+ sensitized luminescence experiment (4). Among them, the A10C mutant displayed the 

highest fluorescence response, and therefore it is the best candidate for further studies. 
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Figure S6. Normalized fluorescence intensity at 370 nm of Ce13d-A92AP (e.g. 2AP was 

introduced at A9 position) as a function of salt concentration. In this case, no significant 

fluorescence decrease was observed with increasing concentration of both Na+ and Li+. On the 

other hand, labeling the 2AP at the A8 position had a significant Na+-dependent change of 

fluorescence, indicating that the fluorescence change observed in this work is mainly due to the 

Na+ binding, instead of non-specific interactions.  
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Figure S7. The fluorescence spectra of our optimized Na+ sensor (with deoxyribo-2AP substrate 

and the double mutant enzyme) in absence or presence of 50 mM Na+. The addition of 100 mM 

18-crown-6 has little effect on the sensor response. 

  



S10 
 

 

 

Figure S8. (A) The standard addition method for Na+ detection in Atlantic Ocean water. The 

sensor (200 μL) was mixed with the ocean water (6 μL), and then further titrated with Na+ stock 

solutions (1 μL of each addition). With the linear increasing curve, the Na+ concentration was 

calculated to be 8.06 mM in the cuvette. Taking the dilution effect into consideration, the Na+ 

concentration was estimated to be 276 mM in the ocean water. (B) A comparison of Na+ 

concentration measured by Na+ sensor and standard ICP quantification, and each with the results 

of 276 mM and 266 mM Na+, respectively. With the error range, the results obtained by both 

methods are identical.  
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