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SECTION S1. MS2LDA WORKFLOW 
 

This section described the entire MS2LDA workflow developed within this study. 

The entire MS2LDA workflow is summarized in Figure S-1. 

 

Figure S-1. The MS2LDA workflow. 

 

S1.1 Data Conversion Stage 

Data conversion is an essential part of the MS2LDA workflow, since the acquired fragmentation data cannot 

readily be used for the purpose of mass fragmental pattern searching. Our workflow (illustrated in Figure S-1) 

accepts as input the combination of a single full-scan file for the MS1 peaks and a separate fragmentation file 

for the MS2 peaks (alternative strategies for peak detection and MS1-MS2 correspondence establishment that 

accept different combinations of input files, such as using just a single fragmentation file for both the MS1 and 

MS2 peaks, are also provided in our workflow). The data conversion process starts with the detection of MS1 

peak in the input .mzXML file obtained from full-scan mode spectra using the CentWave algorithm from 

XCMS (1) and the .mzML file obtained in MS/MS mode. Matching of a parent (MS1) LC-MS peak to fragment 

(MS2) peaks are then established using a script based on the RMassBank package (2), through greedy search for 

the most intense unique MS2 spectrum (more intense fragmentation spectra are generally information-richer) 

that can be linked to an MS1 LC-MS peak within a specified retention time (RT) window. A filtering step based 

on RT and intensity is applied to remove noisy peaks, as well as the washing part, equilibration part, and the 

start of the chromatogram prior to the injection peak. Finally, any MS1 peak not having paired MS2 peaks is 

discarded. This process leaves unique MS1-MS2 pairs, thereby omitting the lower intense fragmentation spectra 

of MS1 peaks that were fragmented multiple times. This greatly helps in the LDA modelling, as multiple spectra 

of the same MS1 peak could be considered as conserved mass fragmental motif in the data set. 
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 MS1_a MS1_b MS1_c MS1_d MS1_e … 

Fragment_119.0351 0 100 24 37 0  

Fragment_136.0629 87 0 17 18 0  

Fragment_156.0769 55 20 0 10 100  

…       

Loss_18.0080 56 0 0 10 15  

Loss_36.0183 0 0 30 0 0  

Loss_46.0053 40 40 10 87 100  

…       

 

Figure S-2. The data-frame extracted from fragmentation data: a matrix of XCMS-picked MS1 peaks (columns) and binned 

mass fragment (and neutral loss) features with normalized (0 – 100 scale) intensities. 

 

The next step in the data conversion stage is the transformation of the spectral data into a format that is suitable 

for concurring pattern discovery, which is a matrix consisting of the MS1 peaks (columns) and their 

correspondent MS2 fragments (rows) or losses (see Figure S-2). Drawing an analogy from text processing, each 

MS1 peak can now be seen as a ‘document’ while the linked MS2 spectrum associated to each MS1 peak 

produce the ‘word’ features in a document. Note that following the bag-of-words assumption, LDA does not 

take into account the word order, but merely the word count, i.e., the number of times a word occurs in a 

document (further described in Section S1.2). For each MS1 peak, two types of word features can be extracted 

from a MS2 fragmentation spectrum: 

 Fragment features, which are the discretized mass values of the MS2 peaks. A greedy binning process 

is used to group MS2 peaks within a certain user-defined m/z window from the next unprocessed MS2 

peak. This way, MS2 peaks with close-enough m/z values but observed in different precursor MS1 

peaks are linked and placed into the same discrete bin – each bin corresponds to a fragment feature. 

The input for inference in textual LDA is the count of occurrences of words in each document; in 

MS2LDA, the intensity values of MS2 peaks can be considered to be proxies for word counts. These 

intensity values are normalized by dividing to the largest intensity value in the fragmentation spectrum 

and discretized on a scale of 0 to 100 (integers).  

 Loss features, which is the discretized mass values of the neutral losses. Neutral losses are the mass 

differences between a precursor MS1 peak and each of its MS2 peaks in the spectrum. To produce the 

loss features, we find the m/z difference between each fragment peak to its precursor ion. Similar to 

fragment features, the normalized intensity values of the neutral losses, represented by the intensities of 

their resulting mass fragments, are used as proxies for the loss counts. 

 We provide a single configuration file that encodes user-defined data conversion parameters as key-value pairs 

in a human-readable textual (YAML) format, as many parameters of the data conversion step are platform-

dependent. A single ‘R’ script is then provided to load all the user-defined parameters from the configuration 

file and start the entire data conversion step. An example configuration file, used for data processing and 

analysis in this paper, is provided in our online repository. 

MS1 feature extracted
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Special feature extraction pipeline for GNPS and MassBank 
 

For validations of fixed Mass2Motifs (learnt from the beer dataset) that were applied to the GNPS and 

MassBank datasets, an alternative feature extraction pipeline was required. Firstly, a parser was written to read 

GNPS and MassBank datasets that are available in the .MGF format. Gaussian kernel density estimation was 

used to combine fragments and neutral losses observed in different spectra into a global fragment vocabulary. 

This was found, via visual inspection, to produce better fragment groupings for this data than the mass binning 

approach in Section S1.1. Gaussian kernel widths were set such that 3 standard deviations were equal to 7ppm 

for the fragments features and 15ppm for the loss features (the higher value for the loss features is justified by 

the fact that they are computed as the difference between two noise measurements). Features are extracted as the 

modes (maxima) of the density estimate with their width determined by when the density hits a minimum or the 

width exceeds a maximum (50ppm). 

 

S1.2 Mass2Motif Discovery Stage 

Given the matrix of features co-occurrences produced from the data conversion stage, our goal is to infer the 

concurring patterns of features shared by the fragmentation spectra. Following the Latent Dirichlet Allocation 

(LDA) model, a fragmentation spectrum can be seen as a mixture over potentially substructure patterns (which 

we called Mass2Motifs), each of which is itself a distribution over fragment/loss word features. A fragmentation 

spectrum, linked to a particular MS1 peak, can therefore be generated in this model by firstly sampling for the 

Mass2Motifs that the spectrum is comprised of and subsequently sampling the specific fragment/loss features 

from the selected Mass2Motifs. A brief summary of the LDA model in the context of fragmentation data and the 

inferential procedure is described next. To infer the latent Mass2Motifs present in the data, a Python 

implementation of a collapsed Gibbs sampling scheme is used in our MS2LDA workflow (3).  

We assume the bag-of-word word model, where within each fragmentation spectrum the observed MS2 word 

features are exchangeable, i.e., their order does not matter, only their observed counts (intensities) matter. Given 

some 𝐾 Mass2Motifs (indexed by 𝑘 = 1, … , 𝐾), the observation of the n-th word in the d-th MS1 document can 

be described by the following generative process: 

𝑤𝑑𝑛|𝜑𝑧𝑑𝑛
~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜑𝑧𝑑𝑛

) 

𝑧𝑑𝑛|𝜃𝑑  ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑑) 

𝜃𝑑|𝛼 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) 

𝜑𝑘|𝛽 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽) 

In other words, observation on the 𝑛-th word in the 𝑑-th MS1 fragmentation spectra (𝑤𝑑𝑛) is conditioned on the 

assignment of MS2 fragment/loss word 𝑤𝑑𝑛 to some k-th Mass2Motif multinomial distribution (corresponding 

to a concurring pattern of fragments and/or losses). This assignment is denoted by the indicator variable 𝑧𝑑𝑛, so 

𝑧𝑑𝑛 = 𝑘 if 𝑤𝑑𝑛 is assigned to a k-th multinomial. The k-th multinomial distribution that an MS2 word is 

assigned to is characterized by the parameter vector 𝜑𝑧𝑑𝑛
. However, 𝜑𝑧𝑑𝑛

 is itself drawn from a prior Dirichlet 

distribution with parameter vector 𝛽. The probability of seeing certain Mass2Motifs for each 𝑑-th fragmentation 

spectra is then drawn from a multinomial distribution with a parameter vector 𝜃𝑑. This parameter vector 𝜃𝑑 is in 

turn drawn from a prior Dirichlet distribution having parameter vector 𝛼. Intuitively, if we assume symmetric 

prior on the  𝛼 and 𝛽 vectors (i.e. they are scalar), a high value set on 𝛼 means each fragmentation spectra is 

likely to contain a mixture of most Mass2Motifs, while lower values on 𝛼 means fragmentation spectra will 

contain fewer Mass2Motifs. Similarly, higher 𝛽 means a Mass2Motif is likely contain a mixture of most words, 

while lower 𝛽 leads to a Mass2Motif containing a mixture of fewer words. 

Given the matrix of fragment/loss word counts produced from the feature extraction step and user-defined 

choices of hyper-parameters (𝛼, 𝛽, 𝐾) that suit the input data, the posterior distributions of documents-to-topics 

(all the 𝜃𝑑s) and topics-to-words (all the 𝜑𝑘s) can be approximated.  
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Gibbs sampling 
We follows the method described by (3) and uses a collapsed Gibbs sampling scheme to perform inference. 

Gibbs sampling is an instance of Markov chain Monte Carlo algorithm commonly used to approximate posterior 

distributions in Bayesian inference where direct sampling or closed form solutions are difficult to obtain. In this 

particular case of LDA inference, the input to Gibbs sampling is the observed counts of fragment/loss words co-

occurrences in fragmentation spectra (documents) and as output, we infer the latent Mass2Motif-to-words 

distributions and fragmentation spectra-to-Mass2Motif distributions present in the data. 

Since Dirichlet priors are conjugate to the multinomial distributions 𝜃 and 𝜑, we can marginalize out the 𝜃 and 

𝜑 parameters. Assuming a symmetric prior probability distribution on 𝛼 and 𝛽, the conditional probability for 

the assignment of the 𝑛-th fragment/loss word feature in the 𝑑-th fragmentation spectrum (linked to a particular 

MS1 peak) to the 𝑘-th Mass2Motif is denoted here: 

𝑃(𝑧𝑑𝑛 = 𝑘|𝑤𝑑𝑛 , … ) ∝
𝑐𝑘𝑛 + 𝛽

𝑐𝑘 + 𝑁𝛽
⋅ 𝑐𝑑𝑘 + 𝛼 

where: 

 𝑐𝑘𝑛 is the count of the number of word 𝑛 in the vocabulary that are currently assigned Mass2Motif 𝑘 

 𝑐𝑘 is the count of all words currently assigned to Mass2Motif  𝑘 

 𝑐𝑑𝑘 is the count of words from MS1 peak 𝑑 assigned to Mass2Motif 𝑘 

All these counts are computed after removing the current word 𝑤𝑑𝑛 being iterated upon in the Gibbs sampling 

step. Finally, to approximate the document-to-topic distributions (𝜃𝑑 for each MS1 peak or document 𝑑) and the 

topic-to-word (or Mass2Motif to fragment or loss feature) distributions (𝜑𝑘 for each topic 𝑘), we use the 

expectation of a Dirichlet distribution, the expected values of the parameters 𝜃 and 𝜑 given 𝑤 and 𝑧 are: 

𝜃𝑑𝑘 =
𝑐𝑑𝑘 + 𝛼

𝑐𝑑 + 𝐾𝛼
 

𝜑𝑘𝑛 =
𝑐𝑘𝑛 + 𝛽

𝑐𝑘 + 𝑁𝛽
 

In our Gibbs sampling implementation, only the last sample (after monitoring for convergence) was used for the 

purpose of analysis (as an alternative, we can also average the posterior estimates over the samples, although we 

found no discernible difference between using the final sample and using the mean taken over multiple 

samples). Due to the stochastic nature of the Gibbs sampling procedure, we might get slightly different results 

each time, which may be undesirable. To overcome this, we set a constant random seed for the sampler, 

allowing us to get the same inference results each time, provided the same parameters of 𝐾, 𝛼, 𝛽 are used with 

the same input files. 

Variational inference 
In addition to Gibbs sampling, we have also implemented Variational Bayesian inference for LDA using the 

algorithm described in (5). In essence, the variational method approximates the intractable posterior density via 

a product of densities which are updated in an iterative manner until convergence. Once converged, the 

algorithm provides the Mass2Motif to feature distributions, as well as Dirichlet distributions for the spectra to 

Mass2Motif relationship and the global Mass2Motif relationship. In our experiments we have found no 

discernible difference between the output of the Gibbs sampler and Variational Bayesian implementations 

although the Variational Bayes method is faster (see the Running Times section below). 

Cross-validation 
 

The number of Mass2Motifs and model fit are estimated via a 4-folds cross-validation approach. For each test 

fold being held out in the fragmentation spectra data set, an estimate of the model evidence is computed after 

training the model on the remaining training folds in the data set. A comparison of LDA against the multinomial 
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mixture model (clustering) is provided in Section S2.10. A crucial difference between LDA and standard 

mixture-model clustering lies in the modelling assumption that a document is a mixture of one or more topics 

(LDA) as opposed to each document having exactly one topic (clustering). We compare the model fit of LDA 

against clustering by evaluating the log evidence and perplexity on a held-out beer data file (beer3 positive 

ionization mode). The perplexity measures how well a probability distribution or probability model predicts a 

sample and is defined as: 

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑊) = 𝑒𝑥𝑝 (
∑ log (𝑃(𝑤𝑑)𝑑

∑ 𝑁𝑑𝑑

) 

where 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑊) is the perplexity on the whole held-out test collection, 𝑃(𝑤𝑑) is the marginal probability 

of a testing document d (integrating over all the parameters of the model), approximated via an importance 

sampling method as described by Wallach et al. (4) and 𝑁𝑑 is the number of words in each testing document 𝑑. 

We follow (3) and set the value of the hyperparameters α =K/50 and β =0.1 for LDA during the cross-validation 

experiment. For mixture model clustering, a non-informative Dirichlet prior (with constant parameter α =K/50, 

where K is now the number of clusters) is set on the proportions of the mixture components and another 

Dirichlet prior (with constant hyper-parameter β =0.1) is set on cluster-specific word distributions. The Gibbs 

sampler for LDA and multinomial mixture model is run for 1000 samples, discarding the first 500 for burn-in. 

The lower perplexity (shown in Section 2.10, Figure S-15) demonstrates that LDA provides a better model fit on 

the held-out data compared to multinomial mixture model. 

 

Incorporating previously defined Mass2Motifs 
In our experiments on Massbank, GNPS and urine data, we incorporated Mass2Motifs from the beer analysis 

into the MS2LDA framework. This is straightforward within the Variational Bayesian framework if features can 

be matched across the two analysis. In particular, when updating the Mass2Motif to feature probability 

distributions, we can leave some (the previously defined ones) unchanged and just update the others – i.e. our 

model consists of static, previously defined Mass2Motifs and new, learnable ones. In our experiment, we fixed 

the ~30 Mass2Motifs that where characterized in beer and updated the other 470 in the Variational Bayesian 

inference routing. To match the features, we took the features present in each of the characterized beer 

Mass2Motifs and searched for them in the features generated for the new analysis. For each Mass2Motif, we 

added up the feature probabilities for those that could be matched. A Mass2Motif was included in the new 

analysis if features making up at least 0.5 of their probability could be matched. 

 

Running times 
 

We provide an illustrative example of the running time of the MS2LDA pipeline for a beer sample on a laptop 

(Intel Core i7, 16GB RAM). The data conversion stage includes the peak detection step via the CentWave 

algorithm from XCMS, the linking of parent (MS1) peak to fragment (MS2) peaks using the script based on 

RMassBank, as well as the binning process to create fragment and loss features. This was completed in 20 

minutes and produces a matrix of features co-occurences that can be used for LDA inference. During inference, 

running Gibbs sampling with 1000 posterior samples requires approximately an hour. The alternative of running 

Variational Bayesian inference with 1000 steps takes half an hour. 

The running time required for the data processing and inference steps of a single sample in MS2LDA is 

therefore approximately 1.5 hours in total. 

 

S1.3 Candidate Elemental Formula Assignment 

The MS2LDA workflow provides two optional methods to assign candidate elemental formulae to the mass 

fragments, neutral losses, and precursor ions. The first is achieved by integrating SIRIUS (Sum formula 

Identification by Ranking Isotope patterns Using mass Spectrometry, (6)) into our workflow. SIRIUS assigns 

elemental formula by posing it as an integer decomposition problem and solving it through a dynamic 
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programming approach ('Round Robin') (7). SIRIUS is freely-available and, as it is written in Java, can in 

theory be run platform-independently on any Windows, Unix and Mac environment (in practice, library 

dependencies have to be satisfied before SIRIUS can be run on the target computer). Integration of SIRIUS into 

our workflow is achieved by wrapping calls to the Java package of SIRIUS through a separate sub-process, 

passing it a temporary .MGF file that corresponds to each fragmentation spectrum. SIRIUS assigns elemental 

formulae to each combination of MS1 and MS2 peaks independently, which may lead to mass fragments of 

similar m/z value being assigned an elemental formula in some spectra, but not in all. 

As an alternative strategy for annotation, our workflow also provides a pure Python implementation of an 

elemental formula assigner (called 'EF-Assigner') based on the Round Robin algorithm that also lies at the heart 

of SIRIUS. Once the initial assignment of potential candidate formulae to mass fragments, neutral losses and 

also precursor ion masses has been performed, the list of candidate formulae is further filtered using our 

implementation of the 7-golden rules, a set of heuristic rules introduced by Kind and Fiehn (8). This filtering 

step is used to remove chemically-unlikely elemental formula compositions from the candidate list. Advantages 

of the EF-Assigner module are its easy compatibility to the MS2LDAvis module (which is also written in 

Python) and it assigns elemental formulae to the binned fragments and losses in the matrix instead of to 

individual spectra. However, unlike SIRIUS that uses the complete information of the precursor ion and 

fragments peaks in a spectrum for annotation, EF-Assigner assigns the elemental formulae for the MS1 peaks, 

mass fragments and neutral losses independently.  

S1.4 Visualisation Using the MS2LDAvis Module 

Inference results from LDA can be challenging to interpret due to the (still) high dimensionality of the data. 

Analysis of Mass2Motifs to examine if they correspond to actual structural features or biochemical 

substructures is an iterative and exploratory process. In our workflow, this is made possible through the 

MS2LDAvis module -- an interactive web-based visualization that can be used to explore and validate 

Mass2Motifs from MS2 data. MS2LDAvis is extended from the Python port of the topic modelling 

visualization interface LDAvis (9), which is built upon the combination of the Javascript/D3 library. While 

initially based on LDAvis, the MS2LDAvis module has been greatly customized to suit our Mass2Motifs and 

fragmentation data exploration needs.  
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Figure S-3. A) The main MS2LDAvis screen, while B) is the network graph of beer3 extract positive ionization 

mode file where a number of Mass2Motifs were selectively colored before loading the network visualization. 

Mass2Motifs circles are proportional to their degree (number of connections), whereas small blue squares 

represent fragmented MS1 peaks. 

Similar to the original LDAvis, the left panel of our MS2LDAvis module shows a global view of the model, 

whilst the right panel zooms into a specific Mass2Motif (see Figure S-3A). However, unlike LDAvis where 

topics are displayed on the left panel through multidimensional scaling that projects topics to two dimensions, 

the two axes in our MS2LDAVis panel are the log-degree and the h-index of Mass2Motifs. We defined the 

degree of a Mass2Motif as the number of fragmentation spectra explained by the Mass2Motif at the user-

defined thresholding level 𝑡𝜃 on the fragmentation-spectra-to-Mass2Motif distributions (the θ parameters). The 

ℎ-index of a Mass2Motif is defined in a similar manner to the conventional h-index for scientific publications of 

a researcher. A Mass2Motif has an index of ℎ if it has ℎ fragment/loss features obtained after setting a user-

defined threshold 𝑡𝜑 on the Mass2Motif-to-word distributions (the φ parameters), each of which occur in the set 

of thresholded documents at least ℎ times. Intuitively, Mass2Motif with high degrees but low ℎ-index could 

potentially correspond to simple structural features or substructures that occur in many MS2 fragmentation 

spectra, while Mass2Motif with high ℎ-index but lower degrees could potentially correspond to more unique 

and complex substructures shared by fewer MS2 spectra. 

The left and right panels of our visualization are linked such that selecting a Mass2Motif on the left changes the 

information displayed on the right panel. We further enhanced MS2LDAvis by plotting the fragmentation 

spectra of each MS1 peak (documents) above the user-defined threshold 𝑡𝜃 in the selected Mass2Motif. The 

fragment and loss words in the fragmentation spectra that are explained by the currently selected Mass2Motif, 

i.e., above the user-defined threshold 𝑡𝜑, are highlighted in bold and user can easily flip through different 

fragmentation spectra explained by the topic by clicking the Previous MS1 and Next MS1 buttons under the 

fragmentation spectra plot. The bottom of the right panel displays two feature frequency histograms; the 

Mass2Motif Feature Frequencies histogram displays the counts of each Mass2Motif associated fragment or loss 

(above the user-defined threshold 𝑡𝜑 on the Mass2Motif-to-features distributions [the φ parameters]) within the 

fragmentation spectra explained by the Mass2Motif. Similarly, the Global Feature Frequencies histogram 

displays the overall frequency of the fragments or losses within the complete data set that can be explained by 

the currently selected Mass2Motif. This provides an estimate of how unique the fragment/loss features are in the 

whole data set. 

Finally, to complement our main view, we also allow the possibility of exploring the inferred substructure data 

in a pop-up network graph (see Figure S-3B), where Mass2Motifs and MS1 peaks form the nodes in the graph 

and edges are drawn between them if a document is explained by a topic with conditional probability above the 

user-defined threshold 𝑡𝜃. The graph view can be accessed by clicking on the Show Graph button on the top 

panel of the main window. To minimize clutter in the network graph, user can also define a threshold on the 

degree of the Mass2Motifs, i.e., all Mass2Motifs with a degree of 10 or lower can easily be removed from the 

graph. Nodes in the graph can also be shown, hidden and coloured according to user-defined specifications 

before the visualisation interface is called (see Figure S-2B). The two complementary views are linked such that 

clicking a topic node on the network graph will select the corresponding topic on the main view and vice versa. 

The network graph is particularly useful in exploring the relationships between Mass2Motifs and investigating 

which MS1 peaks have fragmentation spectra that can be explained by multiple Mass2Motifs. 
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SECTION S2. SUPPORTING RESULTS 
 

This section contains all the supporting Figures and Tables and accompanying explanatory texts that support the 

results in the manuscript. Please note that Supporting Tables S-4 and S-5 can be found as separate Word files. 

S2.1 Mass2Motif structural characterizations 

All Mass2Motifs in positive and negative mode ionization files with degrees of 10 or more were investigated to 

see if they represented any biochemical relevant substructure or structural feature. The resulting structural 

characterizations were collected in tabular format. Information on the key mass fragments, neutral losses, and 

degrees across the four beer files is shown in the Tables. A confidence was given to the structural 

characterization based on the collected evidence, using spectra matching to MzCloud (www.mzcloud.org) and 

expert knowledge. 

  

http://www.mzcloud.org/
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Table S-4. Table with Mass2Motifs (MSMs) discover in the four positive ionization mode fragmentation files of the beer extracts. 

Table with M2Ms in four beers – fragments/losses associated to the M2Ms can slightly differ in between beers due to degree and type of metabolites associated to the M2M. 

Experimental masses are within 5 ppm of theoretical masses as found in topics. Slight changes are observed per file. Annotated Mass2Motifs: Bold represents highest level of 

confidence (i.e., several fragments or specific mass value that can only point to a certain combination of ions), bold and italic is second-highest level of confidence (i.e., 

match on elemental formula (EF) only – but in the given sample matrix it is quite a likely structural annotation), just italic is the third-highest level of confidence (i.e., no 

specific structure found, often generic fragments that have multiple possible structural confirmations), and plain text represents the lowest level of confidence. 

 

Beer1 

  

Beer2 

  

Beer3 

  

Beer4 

  

Frag/ 

Loss 

 

m/z 

 

EF 

 

Characterization 

M2M Degree M2M Degree M2M Degree M2M Degree     

52 199 65 282 2 229 9 228 

Frag 70.0652 C4H8N 

Small nitrogen containing 

fragment ion – often proline 

or ornithine derived – most 

abundant fragment in all 

four beers 

37 127 182 142 260 123 193 142 

Loss 18.0080 H2O 

Water loss  - indicative of a 

free hydroxyl group) – often 

seen in sugary structures 

230 99 208 100 262 90 273 80 

Loss 46.0053 CH2O2 

Combined loss of H2O and 

CO – indicative for free 

carboxylic acid group 

(COOH) – generic 

substructure in amino acids 

and organic acids 

148 67 20 

 

106 195 98 77 49 Frag, 

Frag 

72.0807, 

55.0546 

C4H10N, 

C4H7 

Aliphatic amine (NH3 loss 

indicates free NH2 group 

coupled to aliphatic chain) 

24 24 168 25 226 29 189 25 
Loss 162.0531 C6H10O5 

Loss of [hexose-H2O] – 

indication of hexose 

conjugation (for example 
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glucose) 

55 14 - - - - - - 

Loss 74.0002 C2H3O2 

Free CO2 + CO loss, loss part 

of CH2O2-loss M2M for other 

beers 

217 61 89 101 158 66 169 38 Frag, 

Frag 

86.0965, 

132.1016 

C5H12N, 

C6H14NO2 

Leucine related substructure 

(mzCloud) – prevalent in 

Beer 2 

45 39 268 6 243, 

127 

30, 

14 

149 31 Frag 98.9839 

 

H4O4P Fragment ion indicative for 

conjugation of a phosphate 

group  (H4O4P) 

74 36 - - - - 210 98 Frag, 

Frag 

85.0283, 

57.0332 

C4H5O2, 

C3H5O 

Two small fragments with CO 

loss in between. Unclear if it 

points to a specific 

substructure. 

238 31 46 

297 

20 

21 

53 25 250 27 Loss, 

Loss 

179.0791, 

197.0899 

C6H13NO5, 

C6H15NO6 

Losses indicative of a hexose 

with NH2 group – EF fits 

129 18 37 22 98 23 28 22 Frag, 

Frag 

98.0600, 

144.0658 

C5H8NO, 

C6H10NO3 

Fragment ions possibly 

indicative for N-Methyl-oxo-

pyrrolidinecarboxylic acid like 

structure (loss of free carboxyl 

group) 

111, 

270 

123, 

27 

63 147 174, 

59 

114, 

20 

170 114 Frag, 

Frag, 

Frag 

84.0442, 

56.0498, 

130.0505 

C4H6NO, 

C3H6N, 

C5H8NO3 

 

Fragment ions indicative for 

pyroglutamic acid 

(pyroglutamate) or lysine 

(MzCloud) – structure can 

be formed from glutamic 

acid (glutamate) in the mass 

spectrometer as well. 

103 41 61 64 214 57 205 41 Loss 17.0247 NH3 Amine loss - Indicative for 

free NH2 group in 
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 fragmented molecule 

38 39 45 42 60 40 89 44 Loss 36.0183 H4O2 Double water loss, i.e., 

2*H20 – Generic feature for 

metabolites containing 

several free OH groups 

attached to a aliphatic chain, 

like sugars. 

263 36 90 31 151 35 202 19 Frag, 

Loss 

116.0712, 

115.0630 

C5H10NO2, 

C5H9NO2 

Fragment and loss of 

[proline-H2O] - indicative for 

conjugated proline – EF fits 

157 27 136 30 280 30 36 29 Loss 60.0210 C2H4O2 Loss possibly indicative of 

carboxylic acid group with 1-

carbon attached. 

264 25 81 12 40 15 - - Frag, 

Frag, 

Frag 

83.0604, 

56.0498, 

129.0658 

C4H7N2, 

C3H6N, 

C5H9N2O2 

Imidazole group linked to a 

carboxylgroup through one 

CH2 group, i.e., like in 

imidazole acetic acid - 

Prevalent in Beer1 

160 14 298 44 284 30 - - Frag, 

Frag, 

Frag 

109.0288, 

81.0333, 

53.0888 

C6H5O2, 

C5H5O, 

C4H5 

Fragments indicative for 

dihydroxylated benzene ring 

substructure (MzCloud) – 

C6H5O2 fragment 

corresponds to positively 

charged fragment with two 

hydroxyl groups. 

226 75 72 38 276 20 68 39 Frag, 

Frag, 

Frag, 

Frag 

105.0702, 

79.0541, 

91.0541, 

53.0388, 

C8H9, 

C6H7, 

C7H7, 

C4H5 

Alkyl aromatic substructure 

– indicative for aromatic 

ring with 2-carbon alkyl 

chain attached, i.e., 

phenylethene fragment from 

ethylbenzene as a result of 

the fragmentation process. 
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165 56 53 77 45 56 79 48 Frag, 

Frag, 

Frag 

84.0808, 

56.0498, 

67.0546 

 

C5H10N, 

C3H6N, 

C5H7 

 

Fragment ions indicative for 

pipecolic acid (pipecolate) 

(MzCloud) - Quite 

prevalent, especially in 

Beer2 

131 46 108 41 79, 

184 

20, 

22 

243 43 Frag, 

Frag, 

Frag 

58.0655, 

118.0861, 

59.0733 

C3H8N, 

C5H12NO2, 

C3H9N 

Fragment ions indicative for 

trimethylated amine 

connected to a carboxylic 

acid group, i.e., like in 

betaine (MzCloud) 

142 44 6 19 130 10 69 17 Frag, 

Frag, 

Loss, 

Loss 

112.0511, 

95.0239, 

132.0419, 

149.0685 

C4H6N3O, 

C4H3N2O, 

C5H8O4, 

C5H11NO4 

Fragment ions indicative for 

cytosine, and a loss of 

conjugated deoxyribose – 

possibly combined due to 

many spectra that combine 

these two substructures. 

Loss of NH2 group is likely 

from remaining fragment 

after loss of deoxyribose. – 

Quite prevalent in Beer1 

36 

36 

36 

36 

36 102 

102 

240 

240 

41 

 

59 

 

209 

 

209 

48 30 

86 + 

69!) 

25 

 

 

Frag, 

Frag, 

Frag, 

Frag 

114.05601, 

68.0498, 

69.0337, 

53.0026 

C4H8NO, 

C4H6N, 

C4H5O, 

C3HO 

Possibly suggests 2-

pyyrolidine substructure – 

Mass2Motif not consistent 

over the four beers. 

40 26 266 24 154 26 118 5 Frag, 

Frag 

71.0687, 

117.0740 

n/a, 

n/a 

C13 isotope peaks of proline 

(abundant ions taken for 

fragmentation) 

56 19 262 20 34 14 - - Loss, 88.0159, C3H4O3, Combination of small losses – 

free carboxylgroup and acetyl 

group loss + loss of NH2 
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Loss, 

Loss 

42.0107, 

105.0425 

C2H2O, 

C3H7NO3 

group in some cases 

293 18 33 15 - - 262 14 Loss, 

Loss, 

Frag 

60.0322, 

59.0483, 

60.0559 

CH4N2O, 

CH5N3, 

CH6N3 

Fragment and losses possibly 

indicative for guanidino group 

(CH6N3) 

225 17 51 20 168 18 258 18 Frag, 

Frag, 

Frag 

181.0970, 

209.0925, 

125.0708 

C9H13N2O2, 

C10H13N2O3, 

C6H9N2O 

Unclear yet what these 

fragments relate to. 

33 16 118 11 149 16 172 15 Frag, 

Frag 

96.0441, 

124.0398 

C5H6NO, 

C6H6NO2 

Possibly suggests 2-

pyridone/ol substructure 

185 15 166 23 220 32 24 19 Frag, 

Frag 

136.0629, 

119.0351 

C5H6N5, 

C5H3N4 

Fragments indicative 

adenine (C5H6N5) 

substructure – most 

prevalent in Beer3 

110 42 116 38 97 31 29 30 Loss, 

Loss, 

Frag, 

Frag, 

Frag 

180.0632, 

198.0738, 

85.0283, 

69.0337, 

81.0334 

C6H12O6, 

C6H14O7, 

C4H5O2, 

C4H5O, 

C5H5O 

Oxygen-rich losses and 

fragments also occurring in 

hexose spectra – related to 

M2M 211 (hexose [glucose] 

conjugatation) – possibly 

hydrated-hexose loss? 

279 23 202 22 55 23 157 27 Frag, 

Frag, 

Frag, 

Frag 

91.0541, 

119.0488, 

147.0437, 

65.0388 

C7H7, 

C8H7O, 

C9H7O2, 

C5H5 

Fragments indicative for 

cinnamic acid (cinnamate) 

substructure (MzCloud) 
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298 21 77 10 90 12 98 24 Loss, 

Loss, 

Loss, 

Loss 

78.0316, 

120.0420, 

108.0421, 

66.0320 

C2H6O3, 

C4H8O4, 

C3H8O4, 

CH6O3 

Combinations of small generic 

losses like CH2O2 + CH4O = 

C2H6O3 

294 19 289 27 241 21 47 25 Frag, 

Frag, 

Frag, 

Frag 

110.0718, 

156.0769, 

93.0450, 

95.0608 

C5H8N3, 

C6H10N3O2, 

C5H5N2, 

C5H7N2 

Fragments indicative for 

histidine (C6H10N3O2) 

substructure (MzCloud) 

114 18 - - - - 181 17 Loss, 

Loss, 

Loss, 

Loss 

59.0370, 

89.0476, 

42.0107, 

87.0320 

C2H5NO, 

C3H7NO2, 

CH2O, 

C4H9NO 

Combinations of small generic 

losses like C2H2O + NH3 = 

C2H5NO 

80 16 - - 13 10 - - Frag, 

Frag 

129.0658, 

147.0759 

C5H9N2O2, 

C5H11N2O3 

Fragment ions indicative for 

glutamine (C5H11N2O3) 

substructure 

177 21 117 50 115 28 110 26 Frag, 

Frag, 

Frag 

120.0808, 

103.0546, 

91.0541 

C8H10N, 

C8H7, 

C7H7 

Fragments indicative for 

[phenylalanine-CHOOH] 

based substructure 

67 14 269 18 162 12 11 13 Frag, 

Frag, 

Frag, 

Frag, 

Frag 

152.0560, 

153.0407, 

110.0346, 

135.0300, 

55.0295 

C5H6N5O, 

C5H5N4O2, 

C4H4N3O, 

C5H3N4O, 

C2H3N2 

Fragment ions indicative for 

guanine (C5H5N5O) based 

substructure 
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195 12 - - 104 5 - - Frag, 

Frag, 

Frag, 

Frag, 

Frag 

80.0495, 

164.0346, 

136.0397, 

53.0389, 

65.0388 

C5H6N, 

C8H6NO3, 

C7H6NO2, 

C4H5, 

C5H5 

Unclear what these fragments 

relate to. 

181 11 2 11 19 11 256 10 Frag, 

Frag, 

Frag, 

Frag, 

Frag 

177.0547, 

145.0284, 

89.0386, 

117.0331, 

149.0599 

C10H9O3, 

C9H5O2, 

C9H7, 

C8H5O, 

C9H9O2 

Fragments indicative for 

ferulic acid based 

substructure (MzCloud) 

22 38 133 50 58 42 185 55 Frag, 

Frag, 

Frag, 

Frag, 

Frag 

121.0649, 

103.0545, 

91.0541, 

53.0389, 

93.0698 

C8H9O, 

C8H7, 

C7H7, 

C4H5, 

C7H9 

Fragments indicative for 

ethylphenol substructure 

(i.e. resulting from 

Tyramine – MzCloud) 

85 37 - 

 

- 

 

 

69 47 164 39 Frag, 

Frag, 

Frag 

 

69.0337, 

57.0337, 

73.0285 

C4H5O, 

C3H5O, 

C3H5O2 

Fragment ions possibly 

indicative for ribose 

substructure (MzCloud) 

26 31 15 36 7 25 37 25 Frag, 

Frag 

104.1070, 

60.0810 

C5H14NO, 

C3H10N 

Possibly suggests 5-

aminopentanol substructure 

143 11 - - 72 5 - - Frag, 150.0557, C8H8NO2, Possibly suggests methoxy-

1H-indole-2,3-dione 
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Frag, 

Frag, 

Frag 

178.0501, 

95.0494, 

135.0310 

C9H8NO3, 

C6H7O, 

C7H5NO2 

(methoxy-isatin) substructure 

245 12 71 20 202 15 104 9 Frag, 

Frag, 

Frag, 

Frag, 

Frag 

118.0654, 

117.0571, 

91.0541, 

130.0645 

188.0706, 

 

C8H8N, 

C8H7N, 

C7H7, 

C9H8N, 

C11H10NO2 

Fragments indicative of 

[tryptophan-NH3] related 

substructure (C8H8N is the 

basic indole skeleton, a fused 

benzene and 5 membered N-

containing ring) 

244 16 291 22 - - - - Loss, 

Loss, 

Loss, 

Loss, 

Loss, 

Loss, 

Loss, 

Frag, 

Frag, 

36.0183, 

162.0525 

138.0526, 

196.0583, 

150.0526, 

64.0150, 

184.0578, 

112.0398, 

87.0316 

H4O2, 

C6H10O5, 

C7H8NO2, 

C6H12O7, 

C5H10O5, 

CH4O3, 

C5H12O7, 

C5H6NO2, 

C3H5NO2 

Possibly suggests iminosugar 

like substructure. Losses 

related to sugar 

(polyhydroxylated structure) 

146 27 238 9 82 28 286 8 Frag, 

Frag, 

Frag, 

Frag, 

131.1292, 

72.0809, 

114.1028, 

98.0600, 

C5H15N4, 

C4H10N, 

C5H12N3, 

C5H8NO, 

Possibly suggests agmatine 

based substructure 

(C5H15N4), with unknown 

conjugation…. 



 20 

Frag, 

Frag, 

Frag, 

Frag 

60.0559, 

157.1084, 

278.0554, 

207.0796 

CH6N3, 

C6H13N4O, 

C17H14O4, 

C15H11O 

5 12 126 13 68 10 101 7 Frag, 

Frag, 

Frag, 

Frag 

258.1335, 

276.1435, 

230.1398, 

212.1277 

C12H20NO5, 

C12H22NO6, 

C11H20NO4, 

C11H18NO3 

Possibly suggests iminosugar 

like substructure. Fragments 

have losses (H2O, CO) related 

to sugar (polyhydroxylated 

structure) 

211 81 111 124 131, 

129 

 

129 

73 

(huge  

overlap) 

52 58 Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

Frag 

85.0283, 

145.0550, 

127.0387, 

97.0284, 

69.0337, 

163.0605 

C4H5O2, 

C6H9O4, 

C6H7O3, 

C5H5O2, 

C4H4O, 

C6H11O5 

Fragments indicative of a 

[hexose-H2O] substructure – 

i.e., indicative for a hexose 

(like glucose) conjugation 

(MzCloud) 

2 7 113 57 102 67 233 46 Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

67.0545, 

81.0700, 

55.0540, 

149.1325, 

277.2173, 

295.2288, 

93.0698, 

71.0857, 

C5H7, 

C6H9, 

C4H7, 

C11H17 

C18H29O2, 

C18H31O3, 

C7H9, 

C5H11, 

Possibly suggests 

alkylbenzene substructure. 
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Frag, 

Frag 

141.1273, 

169.1226 

C9H17O, 

C10H17O2 

166 9 227 19 121 10 49 8 Frag, 

Frag, 

Frag, 

Frag 

146.0811, 

128.0703, 

81.0334, 

83.0490 

C6H12NO3, 

C6H10NO2, 

C5H5O, 

C3H7O 

Possibly suggests 4-

aminooxane-4-carboxylic acid 

like substructure? 

- - 75 14 - - 46 12 Frag, 

Frag, 

Frag 

86.0314, 

146.0528, 

128.0428 

N/A 

N/A 

N/A 

Isotope M2M of 111 

(glycoside/hexoside related) 

- - 162 86 176 57 129 80 Frag 91.0541 C7H7 Small abundant and generic 

aromatic fragment found 

across several mass patterns. 

- - 240 59 290 69 191 72 Frag, 

Frag 

69.0701, 

53.0026 

C5H9, 

C3HO 

Two small fragments, unclear 

if they represent a substructure 

- - 217 29 - - - - Loss 35.0343 

(35.0366!) 

H5NO Combined (sequential) H2O 

and NH3 loss 

184 9 36 13 207 13 116 17 Frag, 

Frag 

152.0703, 

134.0600 

C8H10NO2, 

C8H8NO 

Unclear what these fragments 

relate to. 

- - 88 62 221 42 263, 

 

0 

68, 

 

13 

Frag, 

Frag, 

Frag, 

Frag 

57.0701, 

85.0648, 

67.0546 

53.0026 

C4H9, 

C5H9O, 

C5H7, 

C3HO 

Unclear yet what these 

fragments relate to. 

- - 260 29 233 16 137 18 Loss, 64.0161, CH4O3, Combination of small losses 
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Loss 92.0108 C2H4O4 (CO2, H2O, etc.) – Unclear if 

they relate to a substructure 

loss. 

- - 134 18 222 11 - - Frag, 

Frag, 

Frag, 

Loss 

60.0448, 

106.0497, 

88.0392 

115.0268 

C2H6NO, 

C3H8NO3, 

C3H6NO2, 

C4H5NO3 

Fragments (and loss) 

indicative for serine 

substructure (MzCloud) - 

Present in Beer 2 & Beer 3 

- - 243 16 - - - - Loss, 

Loss 

143.0580, 

99.0682 

C6H9NO3, 

C5H9NO 

Unclear what these fragments 

relate to. 

- - 187 30 230 31 - - Frag, 

Loss, 

Frag, 

Frag 

87.0439, 

86.0366, 

104.0711, 

69.0337 

C4H7O2, 

C4H6O2, 

C4H10NO2, 

C4H5O 

Fragments indicative for y-

aminobutyric acid 

(amimobutyrate) 

substructure (MzCloud) – 

present in Beer 2 & Beer 3 – 

in beer 3 mainly based on 

C4H7O2 fragment. 

93 34 259 41 12 44 229 32 Loss, 

Loss, 

Loss, 

Loss 

27.9941, 

30.0100 

55.9897, 

54.0102 

CO, 

CH2O 

C2O2, 

C3H2O 

Combination of small losses 

(CO2, H2O, etc.) – Unclear if 

they relate to a substructure 

loss. 

- - 10 32 227 29 151 53 Frag, 

Frag, 

Frag 

111.0443, 

83.0490, 

55.0547 

C6H7O2, 

C5H7O, 

C4H7 

Possibly related to 1,4-

Cyclohex-2-enedione 

substructure – double CO loss 

between fragments. Could be 

alkaloid fragments as well. 

62 13 66 24 136 19 66 15 Frag, 

Frag 

95.0607, 

68.0498 

C5H7N2, 

C4H6N 

Unclear what these fragments 

relate to. Possibly small ring 
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structure (CHN loss) 

107 9 263 

 

16 - - - - Frag, 

Loss, 

Loss, 

Frag 

128.1074, 

60.0576, 

42.0470, 

110.0970 

C7H14NO 

C2H4O2, 

C2H2O, 

C7H12N 

 Unclear what these fragments 

relate to. 

6 6 290 11 67 3 67 5 Frag, 

Frag, 

Frag, 

Frag 

68.9972, 

111.0076, 

129.0186, 

157.0131 

C3HO2, 

C5H3O3, 

C5H5O4, 

C6H5O5 

Fragment ions indicative for 

aconitic acid substructure 

(C3HO2 fragment is quite 

specific) 

- - 224 10 - - 71 10 Loss, 

Loss 

53.0476, 

71.0583 

NH7O2, 

NH9O3 

Combination of small losses 

(NH3, H2O) – Unclear if they 

relate to a substructure loss. 

- - 153 19 294 11 - - Frag, 

Frag 

180.1013, 

162.0915 

C10H14NO3, 

C10H12NO2 

Unclear what these fragments 

relate to. 

281 9 77 10 249 12 26 11 Frag, 

Frag, 

Frag, 

Frag 

138.0545, 

140.1065, 

186.0758, 

168.0650 

C7H8NO2, 

C7H10NO2, 

C8H12NO4, 

C8H10NO3 

Unclear yet what these 

fragments relate to. 

125 13 246 18 17 6 8 10 Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

136.0760, 

107.0493, 

91.0543, 

95.0494, 

123.0447, 

C8H10NO, 

C7H7O, 

C7H7, 

C6H7O, 

C7H7O2, 

 

Fragments indicative for 

tyrosine substructure 

(MzCloud) 
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Frag, 

Frag 

119.0488, 

182.0822 

C8H7O, 

C9H12NO3 

228 5 200 10 4 6 121 11 Frag, 

Frag, 

Frag, 

Frag 

260.1117, 

128.0704, 

242.1011, 

100.0754 

C11H18NO6, 

C6H10NO2, 

C11H16NO5, 

C5H10NO 

Unclear yet what these 

fragments relate to. 

- - 173 25 41 32 128 5 Frag, 

Frag, 

Frag, 

Frag, 

Frag 

130.0506, 

97.0284, 

238.0714, 

226.0718, 

274.0920 

C5H8NO3, 

C5H5O2, 

C11H12NO5, 

C10H12NO5, 

C11H16NO7 

Unclear yet what these 

fragments relate to. 

- - 254 15 188 10 42 14 Frag, 

Frag, 

Frag, 

Frag 

73.0285, 

133.0499, 

57.0337, 

115.0391 

C3H5O2, 

C5H9O4, 

C3H5O, 

C5H7O3 

Unclear yet – possibly related 

to methylsuccinic acid…. 

- - - - 128 15 - - Loss 42.0107 C2H2O N/O-Acetylation (Beer 3) 

197 14 67 22 250 22 - - Loss, 

Loss, 

Loss 

63.0319, 

45.0578, 

91.0268 

CH5NO2, 

C2H7N, 

C2H5NO3 

Combination of small losses 

(i.e., NH3 and CH2O2) 

- - 96 18 272 12 199 14 Frag, 

Frag 

74.0598, 

56.0497 

C3H8NO, 

C3H6N 

Unclear if fragments relate to 

a specific substructure. 

- - 78 14 291 22 173 12 Frag, 55.0547, C4H7, Unclear if fragments relate to 

a specific substructure. H2O 
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Frag 73.0647 C4H9O loss between fragments. 

- - - - 139, 

180 

20, 

10 

132 15 Frag, 

Frag, 

Frag, 

Frag 

89.0600, 

133.0863, 

177.1128, 

111.0443 

C4H9O2, 

C6H13O3, 

C8H17O4, 

C6H7O2 

Unclear yet what these 

fragments relate to. 

286 6 145 9 42 17 - - Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

Frag 

74.0235, 

88.0392, 

70.0290, 

87.0554, 

133.0615, 

116.0344 

C2H4NO2, 

C3H6NO2, 

C3H4NO, 

C3H7N2O, 

C4H9N2O3, 

C4H6NO3 

Fragments indicative for 

asparagine substructure 

(MzCloud) – prevalent in 

Beer 3 

7 10 165 24 91 14 84 34 Frag, 

Frag, 

Frag 

108.0443, 

80.0495, 

53.0389 

C6H6NO, 

C5H6N, 

C4H5 

Fragments possibly suggest 

benzene ring substituted with 

one hydroxyl and one NH2 

group (fragments point to 

orientation from 3-

hydroxyanthranilic acid – i.e. 

MzCloud) – prevalent in Beer 

2 and 4 

124 7 4 19 166 10 78 6 Frag, 

Frag, 

Frag 

126.0665, 

109.03976, 

108.0560 

C5H8N3O, 

C5H5N2O, 

C5H6N3 

Fragment ions indicative for 

5-methylcytosine 

substructure (MzCloud) – 

prevalent in Beer 2 

130 11 29 18 211 24 181 17 Loss, 

Frag,  

Frag, 

59.0370, 

114.0912, 

72.0447, 

C2H5NO, 

C6H12NO, 

C3H6NO, 

Fragment ions indicative for 

N-acetylputrescine 

substructure (MzCloud) 
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Frag 60.0448 C2H6NO 

- - 92 27 156 22 99 36 Loss 132.0421 C5H8O4 [Ribose (pentose, C5-sugar)-

H2O] related loss –  

indicative for conjugated 

ribose sugar - EF fits 

201 9 185 8 270 8 246 12 Frag, 

Frag, 

Frag 

206.1024, 

86.0602, 

74.0600 

C8H16NO5, 

C4H8NO, 

C3H8NO 

Unclear yet what these 

fragments relate to. 

77 10 135 16 23 16 244 18 Loss, 

Loss, 

Loss 

144.04192, 

190.0474, 

160.0370 

C6H8O4, 

C7H10O6, 

C6H8O5 

Unclear yet what these losses 

relate to. 

- - 13 10 - - 282 14 Frag, 

Frag 

126.0600, 

94.0648 

C7H8NO, 

C6H8N 

Unclear yet what these 

fragments relate to. 

- - - - 35 11 161 18 Frag, 

Frag 

95.0494, 

137.0600 

C6H7O, 

C8H9O2 

Unclear yet what these 

fragments relate to. 
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Table S-5. Table with Mass2Motifs (MSMs) discover in the four negative ionization mode fragmentation files of the beer extracts. 

Table with M2Ms in four beers – fragments/losses associated to the M2Ms can slightly differ in between beers due to degree and type of metabolites associated to the M2M. 

Experimental masses are within 5 ppm of theoretical masses as found in topics. Slight changes are observed per file. Annotated Mass2Motifs: Bold represents highest level of 

confidence (i.e., several fragments or specific mass value that can only point to a certain combination of ions), bold and italic is second-highest level of confidence (i.e., 

match on elemental formula (EF) only – but in the given sample matrix it is quite a likely structural annotation), just italic is the third-highest level of confidence (i.e., no 

specific structure found, often generic fragments that have multiple possible structural confirmations), and plain text represents the lowest level of confidence. 

Beer1  Beer2  Beer3  Beer4   

Frag/ 

Loss 

 

m/z 

 

EF 

 

Characterization 

M2M Degree M2M Degree M2M Degree M2M Degree     

0 161 198 108 74 156 84 126 

Frag 71.0135 C3H3O2 

Fragment ion related to 3-

hydroxy-carboxilic acid 

substructure (C=C=O 

coupled to C-O[-]) - EF fits 

147 83 133 31 158 49 104 41 
Frag 101.0248 C4H5O3 

2-oxo-butyric acid (2-oxo-

butyrate) fragment - EF fits 

86 84 205 90 75 68 25 73 

Loss 43.9898 CO2 

Loss of carboxilic acid group 

- suggests free CO2 group 

(for example in 

underivatized amino acid) 

287 66 48 68 273 67 281 44 

Frag 85.0295 C4H5O2 

Fragment related to small 

organic acid - usually 

contains carboxylic acid 

group with 

(branched/unbranched) 3-

carbon alkylchain attached to 

it. 

116 66 240 81 50 71 253 49 Frag 78.9593 PO3 Fragment of phosphonate - 

indicates phosphate 
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substructure 

233 56 284 59 180 49 273 32 

Frag 59.0133 C2H3O2 

Fragment consisting of 

aldehyde and hydroxyl group 

- common structural motif in 

sugar fragmentation - EF fits 

54 54 - - - - - - 

Frag 80.9649 HSO3 

Fragment  of sulphate anion, 

fragmented from aliphatic 

chain - 

Only present in Beer 1 

137 137 184 43 292 34 105 30 

Loss 162.0529 C6H10O5 

Loss of [hexose-H2O] - 

indication of hexose 

conjugation (for example 

glucose) 

257 40 157 48 82 48 9 39 

Loss 18.0094 H2O 

Loss of water molecule 

(H2O) - indication of free 

hydroxyl group 

5 36 50 40 47 23 74 33 

Loss 62.0005 CH2O3 

Combined loss of CO2 and 

H20, possibly suggests two 

carboxylic acid groups in the 

fragmented metabolite 

156 25 30 18 201 26 133 14 

Loss 72.0212 C3H4O2 

Loss possibly indicative of 

carboxylic acid group with 2-

carbon alkyl chain attached.  

230 23 259 17 246 20 196 17 

Loss 60.0210 C2H4O2 

Loss possibly indicative of 

carboxylic acid group with 1 

carbon attached. 

163 23 28 24 145 12 43 28 

Frag 87.0086 C3H3O3 

Fragment related to pyruvic 

acid (pyruvate) or 

oxaloacetate - EF fits 
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111 22 263 21 162 22 60 18 
Loss 90.0318 C3H6O3 

Loss related to lactic acid 

(lactate) - EF fits 

65 20 108 14 256 11 158 12 

Loss 71.9849 C2O3 

CO2 loss and CO loss 

combined – not clear if this 

points to a substructure 

63 19 110 19 13 16 121 13 

Loss 116.0111 C4H4O4 

Loss possibly indicative of 

fumaric acid (fumarate) - EF 

fits 

72 20 297 15 88 24 69 29 

Frag 60.9927 CHO3 

Bicarbonate fragment  - 

possibly related to small 

oxygen rich organic acids 

195 15 - - 113 9 - 

 

- 

Frag 69.0343 C4H5O 

Fragment ion indicative for 

carboxylic acid group with a 

3-carbon alkyl chain attached. 

286 13 83 21 184 11 183 14 Frag, 

Loss 

114.0558, 

115.0637 

C5H8NO2, 

C5H9NO2 

Fragment and loss related to 

proline substructure - EF fits 

38 6 79 18 54 20 72 19 

Loss 46.0057 CH2O2 

Combined losses of H2O and 

CO - not sure if this relates to 

a particular structural feature 

6 67 131 8 216 11 264 8 Frag, 

Frag 
79.9575 SO3 

Fragment of sulphate ion, 

fragmented from aromatic 

structure 

167 53 228 54 101 45 148 

and 

221 

29 

 

11 

Frag 
89.0249, 

71.0136 

C3H5O3, 

C3H3O2 

Fragments indicating lactic 

acid (lactate) substructure  

(MzCloud) 

141 43 85 44 56 40 151 27 

Frag 128.0358 C5H6NO3 

Generic fragment - unclear if 

any specific substructure is 

related 
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178 36 226 42 105 35 118 33 
Frag 88.0407 C3H6NO2 

Fragment ion indicating 

alanine substructure - EF fits 

139 34 21 48 284 30 67 23 Frag, 

Frag 

94.0301, 

66.0346 

C5H4NO, 

C4H4N 

Fragments related to 

nicotinic acid (nicotinate) 

substructure - MzCloud 

152 32 298 24 32 37 296 37 

Frag 72.9928 C2HO3 

Fragment related to 2-

hydroxycarboxilic acid 

related substructure - 

indicative for a carboxylic 

acid group with one carbon 

attached bearing a hydroxyl 

group 

297 23 71 24 254 28 194 20 

Frag 75.0085 C2H3O3 

Fragment related to 2-

hydroxyethanoic acid 

substructure - MzCloud 

255 21 98 32 164 26 92 14 
Loss 180.0655 C6H12O6 

Loss possibly indicating 

hydrated hexose loss 

217 19 3 10 168 17 298 19 

Loss 27.9945 CO 

Loss of C=O - small loss, 

unclear what it points to in 

negative ionization mode 

214 11 277 13 130 21 3 5 

Loss 129.0428 C5H7NO3 

Loss possibly related to 

pyroglutamic acid 

(pyroglutamate) - EF fits 

42 33 - - - - - - Frag, 

Frag 

179.0572, 

161.0465 

C6H11O6, 

C6H9O5 

Fragments suggesting hexose 

substructure - EF fits – in 

Beer1 only 

271 28 215 24 62 28 101 14 
Frag 74.0245 C2H4NO2 

Glycine related fragment - 

EF fits 

284 26 213 18 174 22 131 16 Frag 73.0294 C3H5O2 Fragment indicative for 

ethylcarboxylate substructure 
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- MzCloud 

128 27 156 56 225 23 98 16 

Frag 130.0881 C6H12NO2 

Fragment indicative of 

leucine substructure - EF fits 

- MzCloud 

298 15 38 11 21 13 227 13 

Loss 87.9797 C2O4 

Loss of two CO2 molecules – 

indicative for two free 

carboxylic acid groups 

254 16 54 11 288 8 252 13 

Loss 132.0423 C5H8O4 

Loss indicating [pentose (C5-

sugar)-H2O] loss - indicative 

for conjugated pentose sugar 

- EF fits 

36 12 199 14 161 18 146 12 

Frag 102.0564 C4H8NO2 

Fragment possibly suggesting 

aminobutyric acid 

(aminobutyrate) substructure 

119 33 - - - - 214 14 Frag, 

Frag, 

Frag, 

Frag 

72.9928, 

59.0134, 

119.0348, 

91.0404 

C2HO3, 

C2H3O2, 

C4H7O4, 

C3H7O3 

Fragments possibly related to 

threose substructure 

76 16 174 17 237 12 162 12 

Frag 127.0510 C5H7N2O2 

Fragment indicative of 

glutamine substructure - EF 

fits with [glutamine-COOH] 

129 15 195 17 187 12 73 4 Loss, 

Loss 

120.0423, 

108.0425 

C4H8O4, 

C3H8O4 

Losses possibly related to 

small sugar like threose 

1 7 229 6 120 16 123 5 
Frag, 

Frag, 

Frag, 

545.1700, 

383.1197, 

221.0656, 

 

 

C8H13O7, 

Fragments related to 

polysaccharides - this 

mass2motif contains doubly 

charged species - it is unclear 

whether that points to a 

specific structural feature of 
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Frag, 

Frag 

1031.3366, 

161.0448 

 

C6H9O5 

the polysaccharide structure 

69 17 90 14 136 17 192 19 
Frag, 

Frag, 

Frag, 

Frag 

383.1197, 

161.0439, 

545.1700, 

221.0684 

 

C6H9O5 

 

C8H13O7 

Fragments related to 

polysaccharides - this 

mass2motif contains singly 

charged species - it is unclear 

whether that points to a 

specific structural feature of 

the polysaccharide structure 

1 7 14 14 291 11 - - Frag, 

Frag, 

Frag, 

Frag, 

Frag 

221.0684, 

179.0571, 

161.0464, 

119.0348, 

85.0294 

C8H13O7, 

C6H11O6, 

C6H9O5, 

C4H7O4, 

C5H5O2 

Fragments related to 

polysaccharides - this 

mass2motif contains just the 

smaller m/z fragments with 

C8H13O7 as largest 

fragment, indicative for a 

disaccharide 

226 9 115 13 95 6 235 7 Frag, 

Frag, 

Frag, 

Frag, 

Frag, 

Frag 

150.0420, 

133.0157, 

126.0316, 

151.0472 

66.0097, 

108.0209 

C5H4N5O, 

C5HN4O, 

C4H4N3O2, 

C2H7N4O4 

C2N3, 

C4H2N3O 

Fragments indicative for 

guanine (C5H4N5O) 

substructure – (MzCloud) 

25 7 275 28 199 12 33 

(no 93  

Fragme

nt) 

9 Frag, 

Frag, 

Frag, 

Loss, 

93.0349, 

191.0560, 

173.0456, 

174.0532, 

C6H5O, 

C7H11O6, 

C7H9O5, 

C7H10O5, 

Fragments indicative for 

caffeoylquinic acid like 

metabolites - prevalent in 

Beer 2 
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Frag 137.0616 C7H5O3 

202 7 230 8 - - - - 

Frag 125.0365 C5H5N2O2 

Fragment possibly suggests 

imidazoleacetic acid 

substructure – EF fits 

- - 180 15 191 20 - - 
Frag, 

Frag 

97.0296, 

69.0343 

 

C5H5O2, 

C4H5O 

Fragments indicative for 

polyhydroxylated benzene 

ring (e.g. pyrogallol) 

- - 239 19 128 35 18 23 

Frag 161.0464 C6H9O5 

Fragment related to hexose - 

unclear if it points to specific 

structural feature 

- - 258 9 271 18 - - 

Frag 179.0572 C6H11O6 

Fragment related to hexose - 

unclear if it points to specific 

structural feature 

9 12 144 12 287 12 245 5 Frag, 

Frag 

111.0084, 

173.0090 

C5H3O3, 

C6H6O6 

Fragments indicative for 

citric acid (citrate) 

substructure - (MzCloud) 

132 16 123 31 2 14 41 46 

Frag 125.0605 C7H9O2 

Fragment unclear yet what 

this points to - predominant in 

Beer 2 and 4. 

- - 288 17 106 16 229 21 

Frag 111.0451 C6H7O2 

Fragment possibly indicative 

for carboxylic acid group with 

a 5-carbon alkyl chain 

attached. 

58 14 181 16 193 14 271 14 

Loss 42.0103 C2H2O 

Loss of acetyl group - 

indicative for the 

conjugation of acetic acid. 

220 12 148 10 226 13 202 25 Frag, 

Frag 

59.9849, 

56.9952 

CO3, 

??!! 

Fragment possibly 

representing bicarbonate anion 

- unclear if this points to a 
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structural feature 

3 15 219 13 87 

And 

99 

5 

 

8 

66 10 
Frag,  

Frag 

164.0716, 

147.0452 

C9H11NO2, 

C9H8O2 

Fragments indicative to 

phenylalanine substructure 

34 11 65 13 140 16 38 18 

Frag 119.0508 C8H7O 

Fragment possibly suggests 

hydroxyphenylethylene 

substructure 

- - - - 133 14 297 12 Frag, 

Frag, 

Frag 

124.0400, 

94.0301, 

66.0346 

C6H6NO2, 

C5H4NO, 

C4H4N 

Fragments unclear yet to 

which substructure they relate 

- related to nicotinate 

substructure fragments 

7 9 3 7 2 12 86 9 

Frag, 

Frag 

96.9599, 

79.9575 

HSO4, 

SO3 

Fragments indicative for 

sulphate group substructure - 

unclear if there is a specific 

configuration that results in 

the HSO4 fragment 

 

 

  



 35 

S2.2 Feature Extraction in the MS2LDA Workflow 

All fragmentation files from the four Beers, including fragmentation files of the pooled beer sample, were run 

through the Data Conversion part of MS2LDA. Here, we explored three alternative methods for linking MS2 

spectra to MS1 peaks that were picked by XCMS after the Peak Detection step in the MS2LDA workflow. 

These three methods, labelled by their numbers in the list below, can be described as follows: 

1. This method uses an XCMS function (xcmsFragments) on the same fragmentation file for both MS1 

peak picking and finding correspondent MS2 spectra. 

2. This method is based on a modified xcmsFragments script that uses both a full scan file for MS1 peak 

picking and a separate fragmentation file for finding correspondent MS2 spectra. 

3. This method is similar to method 2 in that it uses two separate full-scan and fragmentation files for the 

MS1 peak picking and finding correspondent MS2 spectra, but it is based on the RMassBank scripts 

for MS1-MS2 pairing (2).  

Method 3 was also tested using different sources of fragmentation spectra, namely from the pooled beer sample 

run with the combined fragmentation mode, and the separate fragmentation mode, as well as from the 

corresponding sample, in both fragmentation modes.  

The following Table S-6 shows the number of mass features extracted by XCMS and number of unique MS1-

MS2 pairs (picked MS1 peaks that were fragmented at least once during the fragmentation run) found for the 

eight files used in the study and for the different MS1-M2 pairing methods. Table S-3 also shows that using 

method 3 and the fragmented sample (in ‘Separate Fragmentation Mode’, i.e., using one ionization mode) as 

source of fragmentation spectra, half of the detected features above 3E5 cts have an MS2 spectrum matched. 
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 XCMS -

total MS1 

features 

above 

3E5 cts 

Total 

MS2 

spectra 

within 

RT 

window 

3-21min 

Unique  

MS1-

MS2 

pairs 

Meth 1 

Unique  

MS1-

MS2 

pairs 

Meth 2 

Unique  

MS1- 

MS2  

pairs 

Meth 3 

Pooled 

Combined 

Unique 

MS1- 

MS2  

pairs 

Meth 3 

Pooled 

Separate 

Unique 

MS1- 

MS2 

pairs 

Meth 3 

Sample 

Combined 

Unique 

MS1-

MS2 

pairs 

Meth 3 

Sample 

Separate 

 

Beer1POS 3136 5474 700 933 817 1297 878 1282 

Beer2POS 3439 5499 808 1107 858 1403 818 1567 

Beer3POS 3268 5457 737 999 835 1320 832 1422 

Beer4POS 3222 5189 707 1004 764 1255 820 1363 

Beer1NEG 1980 4540 349 459 555 752 620 1178 

Beer2NEG 2082 4486 423 466 568 789 591 1178 

Beer3NEG 1932 4335 394 492 532 704 532 1126 

Beer4NEG 1807 4242 382 428 492 705 544 1018 

Table S-6. Number of mass features extracted by XCMS and number of unique MS1-MS2 pairs (picked MS1 

peaks that were fragmented at least once during the fragmentation run) found for the eight files used in the study 

and for the different MS1-M2 pairing methods. 

S2.3 Mass2Motifs and MS1 Peaks Statistics 

On average, ~70% of fragmentation spectra can be explained by at least one structurally annotated Mass2Motifs 

(Table S-7). 

File Total MS1 peaks 

fragmented 

MS1 peaks linked to at least 

one structurally annotated 

M2M 

% 

Beer1POS 1282 951 74 

Beer2POS 1567 1160 74 

Beer3POS 1422 1055 74 

Beer4POS 1363 930 68 

Table S-7. Mass2Motif coverage of MS1 peaks by percentage of MS1 peaks that can be explained by at least one 

structurally annotated Mass2Motif for the files acquired in positive ionization mode. 

 

S2.4 Metabolite Annotations Using Mass2Motif Membership and Spectral 

Matching to the Nist_msms and MassBank Databases 

To assess how MS2LDA contributes to metabolite annotation, the MS1 peaks associated to the structurally 

characterized Mass2Motifs related to ferulic acid (M2M_19), histidine (241), tyrosine (17) and tryptophan (202) 

in the Beer3 POS file were analysed in detail. Metabolite annotations were done using the structural information 

provided by MS2LDA. The resulting annotations can be found in Table S-8. Please note that most of those 

metabolites are no peptides thus representing small molecules differently from those encountered in 

proteomics/peptidomics and that out of the 51 associated MS1 peaks 9 were incorrectly associated to a 
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particular Mass2Motif by co-elution and co-fragmentation with an isobaric species that does genuinely contain 

the Mass2Motif substructure. To remove such incorrect associations, further improvements to obtain clear 

fragmentation spectra for each metabolite would be needed. Also, a fragment and an isotope were included in 

the associated MS1 peaks for histidine, leaving 39 metabolite features for further analysis. 

Table S-8. Metabolite annotations based on Mass2Motif membership. * indicates doubly charged species. The most likely 

annotation is presented based on Mass2Motif membership (classification) and the corresponding Metabolomics Standards 

Initiave Metabolite Identification level is indicated. The last column indicated whether or not the mass was annotated with a 

peptide. 

M2M Mass 

[M+H]+ 

EF [M+H]+ 

(most likely) 

RT 

(s) 

Class Annotation MSI 

MI 

level 

Peptide? 

19 540.3306 C30H44N4O5 276 - Co-elution and 

Co-fragmentation 

4 - 

19 307.1767 C15H23N4O3 547 Ferulic acid Feruloylagmatine 3 No 

19 540.2707 C29H38N3O7 263 Ferulic acid Diferuloyl-N1-

acetylspermidine 

3 No 

19 498.2599 C27H36N3O6 616 Ferulic acid Diferuloyl-

spermidine 

3 No 

19 307.0998 C8H15N6O7 613 - Co-elution and 

Co-fragmentation 

4 - 

19 369.1182 C17H21O9 296 Ferulic acid Feruloylquinic acid 3 No 

19 314.1386 C18H20NO4 270 Ferulic acid Feruloyltyramine 3 No 

19 265.1545 C14H21N2O3 1101 Ferulic acid Feruloylputrescine 3 No 

19 194.0812 C10H12NO3 364, 

378 

Ferulic acid Feruloylamine 3 No 

19 195.1130 C10H15N2O2 379 - Co-elution and 

Co-fragmentation 

4 - 

241 277.1582* C34H43N4OP 305 Histidine [Histidine-COOH] 

substructure present 

in molecule 

3 No 

241 318.1295 C12H20N3O7 569 Histidine Histidine-hexoside 3 No 

241 480.1822 C18H30N3O12 600 Histidine Histidine-dihexoside 3 No 

241 277.1585* C34H43N4OP 427 Histidine [Histidine-COOH] 

substructure present 

in molecule 

3 No 

241 310.2125 C16H28N3O3 240 Histidine Histidine-decanoate 

conjugate 

3 No 

241 156.0768 C6H10N3O2 621 Histidine Histidine 1 No 

241 198.0873 C8H12N3O3 481 Histidine Acetyl-histidine 3 No 

241 364.1614 C16H22N5O5 466 Histidine Histidine containing 3 Possibly 
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metabolite 

241 553.3097 C34H43N4OP 305 Histidine [Histidine-COOH] 

substructure present 

in molecule – singly 

charged species of 

277.1582 RT 305 

3 No 

241 362.2166 C15H30N4O6 503 Histidine Histidine-deoxy-

trimethylamino-

hexoside [conjugate 

of C9H22NO5-H2O] 

3 No 

241 110.0713 C5H8N3 621 Histidine Histidine fragm. - - 

241 235.1077 C12H15N2O3 409 - Fragments of 

histidine motif co-

fragmented by co-

elution 

4 - 

241 235.1187 C11H15N4O2 414, 

398 

Histidine [Histidine-COOH] 

substructure present 

in molecule - 

Possibly Histidine-

C5H5N conjugate 

3 No 

241 157.0801 C5[C13]H10N3O2 621 Histidine Histidine isotope - - 

241 277.1474 ? 435 Histidine Fragments from 

motif in MS2 

spectrum 

3 - 

241 251.1499 C12H19N4O2 409 Histidine [Histidine-COOH] 

substructure present 

in molecule - 

Possibly Histidine-

C6H9N conjugate 

3 No 

241 195.0876 C8H11N4O2 511 Histidine [Histidine-COOH] 

substructure present 

in molecule 

3 No 

241 157.0738 C7H11NO3 621 - Fragments of 

histidine motif co-

fragmented by co-

elution 

4 - 

241 272.0876 C10H16N3O6 592 Histidine [Histidine-COOH] 

substructure present 

in molecule – 

Conjugated with 

[C5H8O7-H2O] 

3 No 

241 363.1760 ? 904 - Only one fragment 

of Mass2Motif 

present in MS2 

spectrum 

4 - 

17 293.1131 C14H17N2O5 431 Tyrosine Pyroglutamyl-

Tyrosine 

3 Yes 
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17 182.0812 C9H12NO3 585 Tyrosine Tyrosine 1 No 

17 280.1543 C15H22NO4 255 Tyrosine Tyrosine-hexanoate 

conjugate (or 

structural isomer of 

[C6H12O2-H2O] 

3 No 

17 308.1856 C17H26NO4 234 Tyrosine Tyrosine-octanoate 

conjugate (or 

structural isomer of 

[C8H16O2-H2O] 

3 No 

17 161.0921 C6H13N2O3 385 - Not related to 

Tyrosine 

4 - 

17 154.0974 C8H12NO2 417 - Not related to 

Tyrosine – one 

abundant fragment in 

common 

4 - 

202 205.0972 C11H13N2O2 554 Tryptophan 

(indole) 

Tryptophan 1 No 

202 206.0811 C11H12NO3 414 Tryptophan 

(indole) 

3-Indolelactate 

(analogue of 

Tryptophan with 

NH2 replaced by 

OH; sharing the 

same indole 

backbone) 

3 No 

202 367.1500 C17H23N2O7 504 Tryptophan 

(indole) 

Tryptophan-hexoside 3 No 

202 218.0811 C12H12NO3 279 Tryptophan 

(indole) 

3-Indoleoxobutyrate 3 No 

202 334.1398 C16H20N3O5 541 Tryptophan 

(indole) 

Glutamyl-

Tryptophan 

3 Yes 

202 188.0706 C11H10NO2 553 Tryptophan 

(indole) 

Fragment of 

Tryptophan 

- - 

202 291.0973 C14H15N2O5 561 Tryptophan 

(indole) 

Indole containing 

molecule - 

cofragmentation 

3 No 

202 222.1124 C12H16NO3 288 Tryptophan 

(indole) 

Indole containing 

molecule 

3 No 

202 277.1585* C34H43N4OP 427 Tryptophan 

(indole) 

Indole containing 

molecule 

3 No 

202 277.1474 ? 436 - Cofragmentation 4 - 

202 237.0869 C11H13N2O4 470 Tryptophan Indole containing 3 No 
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(indole) molecule 

202 208.0597 C10H12NO4 445 Tryptophan 

(indole) 

Indole containing 

molecule 

3 No 

202 261.0934 ? 508 - Few low abundant 

fragments related to 

indole 

4 - 

202 190.1437 

(190.0861) 

C9H20NO3 

(C11H12NO2) 

 

435 Tryptophan 

(indole) 

Co-elution with:  

3-Indolepropionic 

acid 

3 No 

202 146.0599 C9H8NO 410 - Fragment of 3-

Indolepropionic acid 

- - 

 

In order to assess how well spectral matching would perform on the same set of metabolites annotated based on 

their Mass2Motif (see Table S-8). Spectral matching was performed using the mspepsearch program 

(http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch) against a local instance of the 

Nist_msms and the MassBank databases. For every fragmentation spectra in all the Beer datasets, an .MSP file 

was generated. This file was used as input for spectral matching using mspepsearch against the two spectral 

databases. The results from spectral matching were stored and used to obtain the matches for the metabolites 

from Table S-8 by specifying m/z and RT tolerances for the parent (MS1) peaks to search for, or by specifying a 

Mass2Motif ID (number). In the latter case, spectral annotations of all fragmentation spectra that can be 

explained by that Mass2Motif (at above the threshold on the Mass2Motif-to-spectra distributions) can be 

retrieved. Table S-9 presents the results of the spectral matching of ferulic acid, histidine, tyrosine, and 

tryptophan related metabolites, showing that out of the 39 with MS2LDA annotated metabolites, 7 resulted in 

correct hits with another 8 producing structurally related hits. These results clearly demonstrate the annotative 

power of MS2LDA, through which annotations can be made by matching only small portions of the spectra and 

therefore allowing annotation (classification) of molecules not present in database.  

Table S-9. Results of spectral matching of MS1-MS2 pairs explained by four Mass2Motifs. Masses for which a 

correct match was found in any of the three databases (Nist_msms, Nist_msms2, and MassBank) are indicated 

in bold and * indicates doubly charged species. Mass2Motif numbers correspond to the beer3 positive ionization 

data set. 

M2M Mass 

[M+H]+ 

EF [M+H]+ 

(most likely) 

RT 

(s) 

Database 

Annotations 

EFs top hits of 

each database 

Database Normaliz

ed Score 

19 540.3306 C30H44N4O5 276 Co-elution and 

Co-fragmentation 

- - - 

19 307.1767 C15H23N4O3 547 Pinolenic acid ethyl 

ester 

C20H34O2 Nist_msm

s 

6.79 

19 540.2707 C29H38N3O7 263 Leptomycin B 

Anti-Inflammatory 

Peptide 1| 

C33H48O6 

C45H82N12O1

4S2 

Nist_msm

s 

Nist_msm

s2 

32.3 

20.29 

19 498.2599 C27H36N3O6 616 Chicoric acid 

(2R,3R-O-

dicaffeoyltartaric 

C22H18O12 Nist_msm

s 

79.24 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch)
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acid) 

19 307.0998 C8H15N6O7 613 Co-elution and 

Co-fragmentation 

- - - 

19 369.1182 C17H21O9 296 Curcumin C21H20O6 Nist_msm

s 

67.72 

19 314.1386 C18H20NO4 270 Stearic acid ethyl 

ester 

C20H40O2 Nist_msm

s 

19.87 

19 265.1545 C14H21N2O3 1101 3,4-

Dihydroxycinnamic 

acid (L-alanine 

methyl ester) amide 

C13H15NO5 Nist_msm

s 

86.02 

19 194.0812 C10H12NO3 364, 

378 

3-Hydroxy-4-

methoxycinnamic 

acid 

(=ferulic acid) 

Prowl(TM) 

C10H10O4 

 

 

C13H19N3O4 

Nist_msm

s 

 

 

MassBank 

87.71 

 

 

3.75 

19 195.1130 C10H15N2O2 379 Co-elution and 

Co-fragmentation 

- - - 

241 277.1582* C34H43N4OP 305 Leu-Enkephalin, 

amide|1/4,L,Amidat

ed 

PyroGlu-Phe 

C28H38N6O6 

 

C14H16N2O7 

Nist_msm

s2 

 

Nist_msm

s 

13.21 

 

9.33 

241 318.1295 C12H20N3O7 569 5(S),6(R)-11-trans 

DiHETE 

Tyr-His 

C20H32O4 

 

C15H10N4O4 

Nist_msm

s 

 

Nist_msm

s 

93.28 

 

0.71 

241 480.1822 C18H30N3O12 600 1-(9Z-

Octadecenoyl)-sn-

glycero-3-

phosphoethanolamin

e 

C23H46NO7P Nist_msm

s 

48.9 

241 277.1585* C34H43N4OP 427 L-Saccharopine 

Leu-Enkephalin, 

amide|1/4,L,Amidat

ed 

L-Saccharopine 

C11H20N2O6 

C28H38N6O6 

 

C11H20N2O6 

MassBank 

Nist_msm

s2 

 

Nist_msm

s 

7.79 

6.28 

 

5.79 

241 310.2125 C16H28N3O3 240 Sar1,Ala8] 

Angiotensin 

II|1/0,G,N-

C43H67N13O1

0 

Nist_msm

s2 

81.08 
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Methyl|76/76 

D-erythro-

Sphingosine C-20 

 

 

C20H41NO2 

 

 

Nist_msm

s 

 

 

17.27 

241 156.0768 C6H10N3O2 621 His 

L-Histidine 

C6H9N3O2 

C6H9N3O2 

MassBank 

Nist_msm

s 

98.35 

98.35 

241 198.0873 C8H12N3O3 481 N-Acetylhistidine 

His-Leu-Lys 

C8H11N3O3 

C18h32N6O4 

MassBank 

Nist_msm

s 

98.94 

0.98 

241 364.1614 C16H22N5O5 466 pyro-Glu-His-Pro-

NH2 

TRH (Protirelin) 

C16H22N6O4 

C16H22N6O4 

Nist_msm

s 

MassBank 

89.01 

89.01 

241 553.3097 C34H43N4OP 305 Inosine 5'-

triphosphate 

R15K, HIV-1 

Inhibitory 

Peptide||26/26 

C10H15N4O14

P3 

C73H126N26O

18 

Nist_msm

s 

Nist_msm

s2 

21.35 

17.2 

241 362.2166 C15H30N4O6 503 pyro-Glu-His-Pro-

NH2 

TRH (Protirelin) 

C16H22N6O4 

C16H22N6O4 

Nist_msm

s 

MassBank 

89.14 

89.14 

241 110.0713 C5H8N3 621 - (fragment) - - - 

241 235.1077 C12H15N2O3 409 His-Pro C11H16N4O3 Nist_msm

s 

98.98 

241 235.1187 C11H15N4O2 414, 

398 

His-Pro 

 

His-Pro 

C11H16N4O3 

 

C11H16N4O3 

Nist_msm

s 

 

Nist_msm

s 

98.98 

 

98.98 

241 157.0801 C5[C13]H10N3

O2 

621 - (isotope) - - - 

241 277.1474 ? 435 L-Saccharopine 

Leu-Enkephalin, 

amide|1/4,L,Amidat

ed 

L-Saccharopine 

C11H20N2O6 

C28H38N6O6 

 

C11H20N2O6 

MassBank 

Nist_msm

s2 

 

Nist_msm

s 

7.79 

6.28 

 

7.79 

241 251.1499 C12H19N4O2 409 Trp-His-Arg C23H31N9O4 Nist_msm

s 

44.16 

241 195.0876 C8H11N4O2 511 Cys-His-Lys C15H26N6O4S Nist_msm 22.64 
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1,3-Dimethylurate C7H8N4O3 s 

MassBank 

7.68 

241 157.0738 C7H11NO3 621 Co-elution and 

Co-fragmentation 

- - - 

241 272.0876 C10H16N3O6 592 5-Androsten-

3.beta.,17.beta.-diol 

Androsterone 

C19H30O2 

 

C19H30O2 

Nist_msm

s 

 

MassBank 

18.48 

 

6.06 

241 363.1760 ? 904 -  - - - 

17 293.1131 C14H17N2O5 431 PyroGlu-Tyr 

Insulin-Like Growth 

[Tyr0] Factor II (33-

40) 

C14H16N2O5 

C47H83N21O1

4 

Nist_msm

s 

Nist_msm

s2 

97.81 

0.12 

17 182.0812 C9H12NO3 585 Etilefrine 

L-Tyrosine 

C10H15NO2 

C9H11NO3 

Nist_msm

s 

MassBank 

76.41 

6.67 

17 280.1543 C15H22NO4 255 Tyr-Val C14H20N2O4 Nist_msm

s 

65.96 

17 308.1856 C17H26NO4 234 DL-Octopamine 

Tyr-Met-Arg-Phe-

NH2|1/3,F,Amidate

d|38/38 

C8H11NO2 

C29H42N8O5S 

Nist_msm

s 

Nist_msm

s2 

95.56 

2.42 

17 161.0921 C6H13N2O3 385 Bethanechol cation 

L-2-Aminoadipic 

acid 

C7H17N2O2 

C6H11NO4 

Nist_msm

s 

MassBank 

62.46 

15.44 

17 154.0974 C8H12NO2 417 5-Aminosalicylic 

acid 

3-Sulfino-L-alanine 

C7H7NO3 

C3H7NO4S 

Nist_msm

s 

MassBank 

62.64 

3.14 

202 205.0972 C11H13N2O2 554 L-Tryptophan 

Trp 

C11H12N2O2 

C11H12N2O2 

Nist_msm

s 

MassBank 

98.99 

98.99 

202 206.0811 C11H12NO3 414 DL-Indole-3-lactic 

acid 

C11H11NO3 Nist_msm

s 

98.23 

202 367.1500 C17H23N2O7 504 Trp(Dioxidation)-

Glu 

C16H19N3O7 Nist_msm

s 

61.69 

202 218.0811 C12H12NO3 279 N-Acetyl-5-

hydroxytryptamine 

C12H14N2O2 Nist_msm

s 

64.65 

202 334.1398 C16H20N3O5 541 Trp-Lys 

Trp-Glu 

C17H24N4O3 

C16H19N3O5 

Nist_msm

s 

Nist_msm

97.37 

0.31 
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s 

202 188.0706 C11H10NO2 553 - (fragment) - - - 

202 291.0973 C14H15N2O5 561 (+)-Catechin C15H14O6  

Nist_msm

s 

93.7 

202 222.1124 C12H16NO3 288 2,6-Di-tert-

butylbenzoquinone 

C14H20O2 Nist_msm

s 

71.83 

202 277.1585* C34H43N4OP 427 L-Saccharopine 

L-Saccharopine 

C11H20N2O6 

C11H20N2O6 

MassBank 

Nist_msm

s 

7.79 

7.79 

202 277.1474 ? 436 Co-elution and 

Co-fragmentation 

- - - 

202 237.0869 C11H13N2O4 470 Carbetamide C12H16N2O3 Nist_msm

s 

73.34 

202 208.0597 C10H12NO4 445 L-Kynurenine 

Kynurenine 

C10H12N2O3 

C10H12N2O3 

Nist_msm

s 

MassBank 

32.88 

2.87 

202 261.0934 ? 508 Few low abundant 

fragments related to 

indole 

- - - 

202 190.1437 

(190.0861

) 

C9H20NO3 

(C11H12NO2) 

435 1H-Indole-2-

carboxylic acid, 

ethyl ester 

C11H11NO2 Nist_msm

s 

68.25 

202 146.0599 C9H8NO 410 Fragment of 3-

Indolepropionic acid 

- - - 

 

S2.5 Co-occurrences of Fragments and Losses in Matched Mass2Motifs 

from Different Samples 

The correspondence of different Mass2Motifs, discovered through running MS2LDA independently on each 

beer sample, can be established through matching of the fragment or loss features that comprise the 

Mass2Motifs. Figure S-10 shows the same histidine-related Mass2Motifs discovered through explorations of the 

Beer1 and Beer3 results via MS2LDAVis. The ‘Mass2Motif Feature Frequencies’ histograms (Figure S-6A, S-

6C) display how often particular fragments or losses appear in spectra including this Mass2Motif, indicating 

their consistency. For example, from Figure S-9A and S-9C we can see that the fragments 110.0718 ([C5H8N3]+) 

and 93.0450 ([C5H5N2]+) m/z are most consistently present in the histidine Mass2Motifs for Beer 1 and Beer 3. 

The ‘Mass2Motif Global Frequencies’ histograms (Figure S-9B, S-9D) show how specific these fragments and 

losses are to this Mass2Motif. The blue bars show the total abundance of each fragment (or loss) in the entire 

dataset whilst the red bars show the abundance that can be attributed to this Mass2Motif. We see from Figures 

S-6B and S-6D that globally, most of the observed fragments with m/z 110.0718 ([C5H8N3]+) are explained by 

these histidine-related Mass2Motifs, and whereas the fragment at m/z 95.0608 is consistently present in these 

Mass2Motifs, it is also abundantly present elsewhere.  
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Figure S-10. Similar sets of fragment and loss features can be seen in the MS2LDAVis Feature Frequency histograms for the 

histidine-related Mass2Motifs in positive mode of Beer1 (top) and Beer3 (bottom). The left-hand panels of A) and C) show 

the number of times each feature appears in spectra associated with this Mass2Motif while the right-hand panels of B) and 

D) show the proportion (red) of the total abundance (blue) of this feature within the dataset explained by this Mass2Motif. 

Using B) as an example, we see that this Mass2Motif accounts for the vast majority of the total abundance observed for the 

fragment with mass 110.0718 in Beer1. Conversely, we also see in B) that although the fragment with mass 95.0608 appears 

often in the spectra associated with this Mass2Motif, it appears widely elsewhere too. Because the analyses of the four beers 

were done separately, fragment masses do not exactly match across samples.  

S2.6 Similar yet Different Aromatic Substructures of Phenylethene, 

Ethylphenol, and Phenylethyleneamine 

The following three aromatic substructures (illustrated in Figure S-11) were present and could be annotated to 

Mass2Motifs found in all positive ionization mode Beer files: 

 Phenylethene 

 Proposed aromatic substructure derived from cinnamic acid (cinnamate) 

 [phenylalanine-CHOOH] or 1-(phenylethene)-amine. 
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Figure S-11. Three aromatic substructures annotated to Mass2Motifs found in all four Beer fragmentation files, 

with A) phenylethene, B) proposed aromatic substructure derived from cinnamic acid (cinnamate), and C) 

[phenylalanine-CHOOH] or 1-(phenylethene)-amine. 

Using the Beer2 positive ionization mode data as an example, the following list of Mass2Motifs is observed: 

 Mass2Motif 72 is a Phenylethene substructure motif. It has a degree of 38 and is characterized by the 

following fragment/loss features: fragment_105.0702 (C8H9), fragment_79.0541 (C6H7), 

fragment_91.0541 (C7H7), fragment_53.0388, C8H9 (C4H5). 

 Mass2Motif 202 is a Cinnamic acid (cinnamate)-based substructure motif. It has a degree of 22 and is 

characterized by the following fragment/loss features: fragment_91.0541 (C7H7), fragment_119.0488 

(C8H7O), fragment_147.0437 (C9H7O2), fragment_65.0388 (C5H5). 

 Mass2Motif 117 is a [phenylalanine-CHOOH]-based substructure motif. It has a degree of 50 amd is 

characterized by the following fragment/loss featues: fragment_118.0654 (C8H8N), 

fragment_117.0571 (C8H7N), fragment_91.0541 (C7H7), fragment_130.0645 (C9H8N), 

fragment_188.0706 (C11H10NO2). 

In the above list, all Mass2Motifs share one fragment, highlighted in red, which is related to the aromatic core 

(mono-substituted benzene ring), i.e., fragment C7H7 [M+H]+ (91.0541 m/z); however, in combination with 

other mass fragments, these three aromatic substructures are distinguishable by MS2LDA. 
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S2.7 Structurally Annotated Mass2Motifs Can Explain Matched Standards 

The following list describes the Mass2Motifs, alongside their annotations, which can be associated to the 

fragmentation spectra of the Standard peaks shown in Figure 3 of the paper. The degree of a Mass2Motif 

indicates the number of MS2 fragmentation spectra in the beer3 positive ionization mode data having fragment 

or loss features that can be explained by the Mass2Motif (at the specified thresholding level). 

 Mass2Motif 115 is a [phenylalanine-CHOOH]-based substructure motif. It has a degree of 28 and is 

characterized by the following fragment/loss features: fragment_120.0808 (C8H10N), 

fragment_103.0546 (C8H7), fragment_91.0541 (C7H7). 

 Mass2Motif 156 is a [ribose (pentose, C5-sugar)-H2O]-related loss motif. It has a degree of 22 and is 

characterized by by the following fragment/loss features: loss_132.0421 (C5H8O4). 

 Mass2Motif 202 is a [tryptophan-NH3]-related substructure. It has a degree of 15 and is characterized 

by the following fragment/loss features:  fragment_118.0654 (C8H7N), fragment_117.0571 (C7H7), 

fragment_91.0541 (C9H8N),  fragment_130.0645 (C9H8N), fragment_188.0706 (C11H10NO2)  

 Mass2Motif 211 is an N-acetylputrescine substructure motif. It has a degree of 24 and is 

charactererized by the following fragment/loss features:  loss_59.0370 (C2H5NO), fragment_114.0912 

(C6H12NO), fragment_72.0447 (C3H6NO), fragment_60.0448 (C2H6NO). 

 Mass2Motif 214 is an amine loss motif. It has a degree of 57 and is characterized by the following 

fragment/loss features:  loss_17.0247 (NH3). 

 Mass2Motif 220 is an adenine substructure motif. It has a degree of 32 and is characterized by the 

following fragment/loss features:  fragment_136.0629 (C5H6N5), fragment_119.0351 (C5H3N4) 

 Mass2Motif 241 is a histidine substructure motif. It has a degree of 21 and is characterized by the 

following fragment/loss features:  fragment_110.0718 (C5H8N3), fragment_156.0769 (C6H10N3O2), 

fragment_93.0450 (C5H5N2), fragment_95.0608 (C5H7N2). 

 Mass2Motif 262 is a combined loss of H2O and CO motif, indicative for free carboxylic acid group 

(COOH). It has a degree of 90 and is characterized by the following fragment/loss features:  

loss_46.0053 (CH2O2). 
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S2.8 GNPS and Massbank Results 

 

To evaluate and validate the discovered Mass2Motifs using Beer fragmentation files, we performed MS2LDA 

analyses of the MassBank (10) and the Global Natural Products service (GNPS) (11) data sets as used by 

Dührkop et al. to train and test their CSI:FingerID tool (12). These datasets contain fragmentation spectra of 

thousands of reference compounds from different sources as chemical standards or isolated natural products. 

The fragmentation spectra were all acquired in positive ionization mode and generated at different instruments 

across the world. In (12), spectra from Orbitrap instruments were omitted (which allowed us to also test the 

extent to which Mass2Motifs are transferable across measurement platforms). A special feature extraction 

pipeline was developed to successfully bin mass fragments and losses from the diverse set of fragmentation 

spectra (see Section S1.1 for details). For LDA inference, Variational Bayes inference was applied to both data 

sets (see Section S1.2 for details). The resulting 1953 and 5670 spectra from MassBank and GNPS, 

respectively, were decomposed into 500 Mass2Motifs each. 

Validation of beer-characterized Mass2Motifs in MassBank and GNPS data sets 
To assess how well Mass2Motifs characterized in another dataset can be used for metabolite annotation in 

another dataset, the ~30 Mass2Motifs structurally characterized in beer were incorporated into the model (see 

Section S1.2), whilst the remaining Mass2Motifs were inferred by MS2LDA. To match the beer Mass2Motifs, 

we searched for the chemical formulas of the relevant fragments and neutral losses in the GNPS and Massbank 

features. A Mass2Motif was incorporated into the analysis if features corresponding to at least 50% of the 

Mass2Motifs probability could be found in GNPS or Massbank. This resulted in slightly different Mass2Motifs 

being matched in the two datasets (some beer features did not exist in the GNPS and Massbank data set) but a 

set of 22 Mass2Motifs were found in both. This demonstrates that the patterns of fragment and loss features that 

comprise Mass2Motifs can be transferred across spectra from different instruments. 

As all the fragmented metabolite structures from the MassBank and GNPS datasets are known, we could 

validate the presence of beer-characterized Mass2Motif chemical substructures or chemical features in the 

molecular structures of spectra associations to these beer-characterized Mass2Motifs. Using 2D chemical 

structure images from ChemSpider (extracted via a search on InCHiKey using ChemSpiPy 

http://chemspipy.readthedocs.io/en/latest/) JvdH manually validated annotations on all molecules that included 

one or more of the beer Mass2Motifs by checking if the characterized substructure or structural feature were 

present in the molecular structures. In some cases, closely related substructures (not discriminable by mass 

spectrometry) were also considered as true, for example in case of isomeric substructures. In samples from one 

biological origin, substructures often relate to one isomer; however, in a set of thousands of standards, there is 

often more diversity. The resulting Tables for these analysis (GNPS_Mass2Motif_validations.csv and 

MassBank_Mass2Motif_validations.csv) can be found here: http://dx.doi.org/10.5525/gla.researchdata.313 . 

From this manual validation, we computed two performance measures, the proportion of correct annotations at a 

probability threshold of 0.1 (i.e. if the spectra to Mass2Motif probability was >=0.1) with the results that 81.5% 

of annotations were correct in MassBank and 63.3% in GNPS. This shows the application of MS2LDA on 

different type of fragmentation spectra (other instruments), and the set of standards from MassBank and GNPS 

allowed us to determine false positive rates for the discovery of common substructures/structural features by 

MS2LDA. To investigate the performance across the different Mass2Motifs, we computed the Area Under the 

ROC curve for molecules connected to each Mass2Motif. The results are shown in Figure S-12. In a small 

number of Mass2Motifs, either all of the annotated molecules were correct, or all were incorrect making it 

impossible to define an AUC value. In these cases, we have instead plotted the accuracy at a threshold of 0.1. 

These cases are: Massbank: Mass2Motif 19, all incorrect but with probabilities below 0.1, Mass2Motif 20, all 

incorrect but all below 0.1 and GNPS: Mass2Motif 21, all incorrect but all with probabilities below 0.1. 

http://chemspipy.readthedocs.io/en/latest/)
http://dx.doi.org/10.5525/gla.researchdata.313
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Figure S-12: GNPS and Massbank performance for the tested motifs. Motif numbers correspond to those in Table S-13. 

Motif names are shown in the table below. 

Verified 

Mass2Motif 

Description 

0 Small nitrogen containing fragment ion (often proline or ornithine derived) most 

abundant fragment in beer data. 

1 Fragments indicative for asparagine substructure (MzCloud)‚ prevalent in Beer 3. 

2 Oxygen-rich losses and fragments also occurring in hexose spectra - related to M2M 

211 (hexose [glucose] conjugatation) - possibly hydrated-hexose loss? 

3 Combined loss of H2O and CO, indicative for free carboxylic acid group (COOH) ‚ a 

generic substructure in amino acids and organic acids. 

4 Nitrogen containing substructure [C5H12N] (in beer related to Leucine). 

5 Alkyl aromatic substructure  - indicative for aromatic ring with 2-carbon alkyl chain 

attached i.e. phenylethene fragment from ethylbenzene as a result of the fragmentation 

process. 

6 Fragment indicative for aromatic compounds related to methylbenzene substructure 

(C7H7 fragment). 

7 [Pentose (C5-sugar)-H2O] related loss ‚ indicative for conjugated pentose sugar - EF 

fits. 

8 Fragment ions indicative for pyroglutamic acid (pyroglutamate) or glutamine (both in 

MzCloud) - structure can be formed from glutamic acid (glutamate) in the mass 

spectrometer as well. 

9 Fragments indicative of a glycosylation , .e., indicative for a sugar conjugation (in beer 

often related to glucose). 

10 Fragments indicative for histidine (C6H10N3O2) substructure (MzCloud) 

11 Imidazole group linked to a carboxylgroup through one CH2 group i.e. like in 

imidazole acetic acid. 
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12 Fragment ions indicative for alkylamine substructure C5H10N (in beer often pipecolic 

acid [pipecolate]). 

13 Fragments indicative for cinnamic/hydroxycinnamic acid substructure 

14 Double water loss i.e. 2*H20 - Generic feature for metabolites containing several free 

OH groups attached to a aliphatic chain like sugars. 

15 Water loss  - indicative of a free hydroxyl group (in beer often seen in sugary 

structures). 

16 Fragments indicative for [phenylalanine-CHOOH] based substructure. 

17 CO loss - indicative for presence of ketone/aldehyde/lactone group (C=O). 

18 Amine loss - Indicative for free NH2 group in fragmented molecule. 

19 Fragment ions indicative for C6H12NO substructure (in beer related to N-

acetylputrescine - MzCloud). 

20 Fragments indicative for ferulic acid based substructure (MzCloud). 

21 Fragments indicative for dihydroxylated benzene ring substructure (MzCloud) - 

C6H5O2 fragment corresponds to positively charged fragment with two hydroxyl 

groups. 

Table S-13: Characterisation of populated Mass2Motifs in GNPS and Massbank. 

Assessment of number of validated Mass2Motifs per MassBank and GNPS fragmentation 

spectrum 
MS2LDA can provide multiple annotations per molecule as multiple Mass2Motifs can be used to decompose an 

individual spectrum. Figure 4 in the manuscript demonstrates this for a single example. Here we investigate the 

extent to which the GNPS and Massbank molecules contain multiple validated beer Mass2Motif annotations. 

I.e., for each of the spectra with validated annotations, we count the number that have 1, 2, 3 or 4 validated 

annotations (i.e. to have 2 validated annotations, the molecule must include 2 of the Mass2Motifs structurally 

characterized in beer, both of which have been manually validated to be correct). The results can be seen in 

Figure S-14. In summary, of the 694 Massbank spectra that had one or more validated annotations, 173 had two, 

36 3 and 3 4. For GNPS, of the 613 spectra with one or more, 34 had 2 and 4 had 3. In both cases, this 

demonstrates the large number of molecules for which MS2LDA can provide multiple annotations, thereby 

aiding in structural characterization. It is particularly noteworthy that all of this is from just the small number 

(~30) Mass2Motifs that we characterized from our beer analysis not including any MassBank or GNPS 

discovered Mass2Motifs. 
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Figure S-14: the number of validations per spectra in the Massbank (blue) and GNPS (orange) data sets. 

MS2LDA finds not previously characterized Mass2Motifs in MassBank and GNPS data sets 
 

To assess whether MS2LDA could also discover new Mass2Motifs within the MassBank and GNPS data sets 

that were not previously characeterized in beer, we checked the resulting MS2LDA networks for non-beer- 

characterized mass2motifs, and we were able to structurally characterize 6 for each of the data sets to 

demonstrate the versatility of MS2LDA: 

MassBank: 

 motif_377:    kaempferol/glycosylated kaempferol substructure (flavonoid – plant metabolite) 

 motif_439:    quercetin/glycosylated quercetin substructure (flavonoid – plant metabolite) 

 motif_472:    atenolol related (antihypertensive drug) 

 motif_273:    loss of [deoxyhexose-H2O] 

 motif_377:    loss of methyl group – indicative for presence of a methoxy [O-CH3] group 

 motif_191:    loss of C3H6 - indicative for the presence of an isopropyl group  

GNPS:  

 motif_214:    benzene sulfonamide 

 motif_176:    2-oxochromen-7-yl (mainly dimethylated) 

 motif_436:    2-oxochromen-7-yl (mainly trimethylated) 

 motif_121:    sterone related 

 motif_72:      benzene chloride 

 motif_287:    C4H8 loss indicative for saturated C4-alkyl substructure (mainly tert-butylgroup and  loss 

from 8,8-Trimethyl-2-oxo-9,10-dihydro-2H,8H-pyrano[2,3-f]chromen-5-yl substructure) 

 

This indicates that MS2LDA can find a wide range of structurally diverse mass2motifs not related to the beer 

motifs, which are in fact complementary to those found in the beer data. 

 

MS2LDA applied to urine data 
 

MS2LDA was applied to fragmentation data from a human urine sample, representing a complex sample matrix 

(13). As with the GNPS and Massbank analyses, the structurally characterized Mass2Motifs from the beer 

analysis were incorporated through matching the relevant features. To validate the annotations provided by 
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these structurally characterized Mass2Motifs we detected the same 45 standard molecules that we were able to 

detect in the beer analysis via mass and RT matching (the urine sample was run in the same batch as the beer 

samples ensuring that only minimal RT drift had occurred). As the structural identify of these 45 molecules is 

known we manually validated the resulting annotations and found that at a threshold of 0.1, 74.3% of the 

annotations were validated. We also investigated the extent to which the same Mass2Motifs could be found in 

an analysis without them being fixed in the analysis a-priori. By matching features after processing and 

considering two Mass2Motif to match if shared features account for at least 0.5 of the probability in the 

Mass2Motif in both beer and urine, we found matches for 21 out of the 38 motifs structurally characterized in 

beer 3. These two analyses demonstrate the robustness of Mass2Motifs discovered through MS2LDA. 

 

S2.9 Molecular Networking of Beer Fragmentation Files 

To compare Molecular Networking with MS2LDA, the generated .mzXML files of the Beer fragmentation 

.RAW files were uploaded into the Global Natural Products Social Molecular Networking (GNPS) environment 

(http://gnps.ucsd.edu, a free account is required to log in) using FTP to transfer all the files and a text file 

containing information on the files as there are more than 6 different samples (files) that should be compared. 

Parameter optimization for molecular network generation for the high-resolution mass spectrometry data sets 

resulted in the following settings. The data was clustered with MS-Cluster with a precursor mass tolerance of 

0.25 Da and a MS/MS fragment ion tolerance of 0.005 Da to create consensus spectra. Then, consensus spectra 

that contained less than 2 spectra were discarded. A network was created where edges were filtered to have a 

cosine score above 0.55 and 2 or more matched peaks. Further edges between two nodes were kept in the 

network if and only if each of the nodes appeared in each other's respective top 10 most similar nodes. The 

spectra in the network were then searched against GNPS' spectral libraries. The library’s spectra were filtered in 

the same manner as the input data. All matches kept between network spectra, and the library’s spectra were 

required to have a cosine score above 0.6 and at least 4 matched peaks. Analog search was enabled against the 

library with a maximum mass shift of 100.0 Da. Running times were under 10 minutes. The following list 

details all molecular networking parameters and their values used to generate the molecular networks used in the 

manuscript. 

1. PAIRS_MIN_COSINE=0.55 

2. ANALOG_SEARCH=1 

3. tolerance.PM_tolerance=0.25 

4. tolerance.Ion_tolerance=0.005 

5. MIN_MATCHED_PEAKS=2 

6. TOPK=10 

7. CLUSTER_MIN_SIZE=2 

8. MAXIMUM_COMPONENT_SIZE=120/100* 

9. MIN_PEAK_INT=500.0 

10. FILTER_STDDEV_PEAK_INT=2.0 

11. RUN_MSCLUSTER=On 

12. FILTER_PRECURSOR_WINDOW=0 

13. FILTER_LIBRARY=1 

14. WINDOW_FILTER=0 

15. SCORE_THRESHOLD=0.6 

16. MIN_MATCHED_PEAKS_SEARCH=4 

17. MAX_SHIFT_MASS=100.0 

 

For the MAXIMUM_COMPONENT_SIZE parameter, 120 was used for the positive ionization mode, and 100 

for the negative ionization mode. These values were determined by starting at 80 and increase in steps of 20 till 

the largest network was smaller than the maximum component size. 

Cytoscape, network visualization software, was used to further process and visualize the downloaded molecular 

network data. The recommended graphical layout style is FM3 which is available for Cytoscape versions 2.8.1 

and below. Thus, the molecular network was uploaded into Cytoscape (version 2.8.1) following the 

http://gnps.ucsd.edu/
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documentation available on the GNPS website. After applying the FM3 layout plugin, the molecular network 

was saved in .cys format (Cytoscape Session File) and reopened in Cytoscape version 3.2.0, where labelling and 

colouring of nodes and edges was conducted. Most importantly, the nodes were labelled with precursor masses, 

coloured using the rainbow pallet (two nodes having the same colour means that they are present in the same set 

of files, and accordingly, two nodes having similar colours means that they are present in a similar set of files, 

often differing in one or two files), and the size of the nodes was made proportional to the number of unique 

files from where the node spectra originated, i.e., the larger the node, the more unique files its spectra came 

from. The edges were labelled with the cosine similarity score of the two nodes they connect. The resulting 

molecular networks for both ionization modes were then inspected in the Cytoscape environment (see also (13)). 

MS2LDA and Molecular Networking Comparison 
 

Inspection of other clusters produced by Molecular Networking allowed us to identify clusters based on the core 

structures for histidine, tyrosine and tyramine (ethylphenol), as well as hydroxycinnamic acid, guanine and citric 

acid, in positive and negative ionization mode respectively. After a more detailed analysis of the Mass2Motifs 

related to ferulic acid, histidine, tyrosine, and tryptophan, we could annotate ferulic acid conjugates to 

polyamine structures like putrescine, histidine metabolites conjugated to hexose and organic acid moieties as 

well as a family of indole (tryptophan) related metabolites (see Supporting Information section 5.6 for more 

details). Two of those annotated beer metabolites were found to be dipeptides, whereas all others represent 

amino acids conjugated with other compound classes.  

Based on the example shown in Figure 4 of the paper, it is likely that annotations of many molecules in these 

clusters could benefit from the flexibility of better decomposition of the spectra into multiple Mass2Motifs, 

rather than each parent ion having to be assigned to a single cluster alone. To illustrate with an example, we see 

in Figure S-15 a matrix of cosine similarities of some parent ions drawn from the ferulic acid based cluster and 

the tyramine based cluster constructed through molecular networking. We see clear, distinct groupings of these 

spectra into two clusters based on the parent ions’ cosine similarities. Members of each cluster can therefore be 

explained by a single Mass2Motif (the ferulic acid cluster by M2M_19, and the tyramine cluster by M2M 58). 

However, one parent ion can also be explained by the two Mass2Motifs together. In cosine clustering, this 

parent ion would have to go into one cluster or the other based on its cosine similarity. 

 

 
Figure S-15. Cosine clustering results of spectra drawn from the ferulic acid based cluster and the tyramine based cluster. 

The last row represents the spectrum containing both substructures, and is connected to one of the clustered based on cosine 

similarity scoring. 
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S2.10 Perplexity Comparison of MS2LDA and Multinomial Mixture Model 

To validate the assumption of Mass2Motifs representing biological building blocks (i.e. fragmentation spectrum 

contains more than one Mass2Motifs), we compared the LDA model at the heart of the MS2LDA workflow to a 

multinomial mixture model that can be used for the clustering of fragmentation spectra (like Molecular 

Networking). The latter is equivalent to LDA with each spectrum being forced to consist of only one 

Mass2Motif. If MS2LDA is indeed finding structural features as conserved patterns of fragments and losses, it 

should explain the data with fewer Mass2Motifs than the mixture model. This is because the mixture model has 

to create separate Mass2Motifs for all observed combinations of structural features.  

For model comparison, we plot perplexity (a measure of model fit; lower values indicate a better fit) for the two 

models as a function of K, the number of Mass2Motifs (for LDA) or clusters (for the mixture model). This is 

shown in Figure S-16. The lower perplexity values for 𝐾 > 100 demonstrates that LDA provides a better model 

fit on the held-out data when compared to the mixture model, thus validating our assumption that allowing 

multiple conserved blocks to be present in small molecule fragmentation data is a better representation of the 

biochemical properties of the fragmented molecules. Details of the mixture models and on hyper-parameter 

optimizations and the cross-validation procedures of the two models are available in Section S1.2.  

 

Figure S-16. Results of model comparisons of LDA and multinomial mixture model on the beer3 positive ionization mode 

dataset. The lower perplexity values for 𝐾 > 100 demonstrates that LDA provides a better model fit on the held-out data 

when compared to the mixture model. 

 

S2.11 Differential Analysis of Mass2Motifs 

By linking the MS2LDA analysis with fold changes of MS1 peaks, we can assess the DE of Mass2Motifs, 

allowing us to identify biochemical changes across groups of samples based on which metabolites can be 

explained by a Mass2Motif. The advantage of this approach is for the purpose of differential analysis, there can 

more fragmentation spectra explainable by the MassMotifs in comparison to the number of spectra that can be 

annotated/identified through conventional means (see Discussion in the paper). This can be very useful, for 

example, in the case of a pathway-related Mass2Motif where we can assess the change in pathway activity 

across groups of samples without first having to identify and map molecules to the pathway. 

For every Beer extract, LC-MS runs were processed using an in-house metabolomics pipeline (based on XCMS 

(1) and mzMatch(14)). Peak tables were exported to .csv files, and the linking of MS1 peaks in the MS2LDA 

analysis to the MS1 peaks in the exported peak tables was performed through a greedy matching scheme. For 

each MS1 peak in MS2LDA, we find its corresponding MS1 peak in the exported peak table within a specified 
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mass and RT tolerance values (3 ppm, 30 seconds). If there are multiple possible matches, the one with the 

nearest m/z difference is selected. Following this, for each Mass2Motif, we construct a matrix where each row is 

a linked MS1 peak that can be explained by that Mass2Motif and the columns are intensity values from the 

different case/control groups. This matrix is used as input to our implementation of PLAGE (15), the output of 

which are the PLAGE scores of differentially expressed Mass2Motifs.  

Figure S-17 shows four examples of Mass2Motifs with high PLAGE scores, which we have annotated as related 

to guanine, tryptophan, tyrosine and pentose loss substructures (details on their MS1 peak annotations are in 

Table S-18). Comparing against spectral similarity clustering, the molecules explainable by the pentose 

Mass2Motif (Figure S-17D) are distributed over 10 spectral clusters. Similarly, the 9 tryptophan (indole) related 

metabolites (many of which are considerably more abundant in Beer 2 than Beer 3) that can be explained by the 

tryptophan Mass2Motif (Figure S-17B) were distributed over 7 spectral clusters. 

 

Figure S-17: Log fold change heat-maps for the A) guanine, B) tryptophan, C) tyrosine and D) pentose loss Mass2Motifs. 

Each row is an annotated MS1 peak and columns represent samples. For this validation, Metabolite identification was 

performed manually based on the Metabolite Standard Initiative Metabolite Identification scheme. Bold labels indicate 

identification at the highest level of confidence (1), while italic labels indicate identification at the next level of confidence 

(2). The remainder are level (3) or (4). 
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Table S-18. Annotation details on all MS1 peaks that can be explained by the four differentially-expressed Mass2Motifs in 

Figure S-17. All metabolites were annotated and validated from the Beer2 positive mode ionization data. 

Mass 

[M+H]+ 

EF [M+H]+ 

(most likely) 

RT (s) Class Annotation MSI MI level 

364.0651 C10H15N5O8P 625 Guanine Guanosine 5'-monophosphate 2 

(Nist; MassBank)  

567.1912 Artefact 582 Guanine Ion product of 

284.0988 

- 

284.0988 C10H15N5O5 583 Guanine Guanosine 1  

(Nist; MassBank) 

399.1623 C15H23N6O7 579 Guanine Guanine based metabolite with 

conjugation of C10H17NO6 

3 

298.1146 C11H16N5O5 485 Guanine 2’-O-Methyl-guanosine 3 

(mzCloud) 

298.1146 C11H16N5O5 497 Guanine 7-Methyl-guanosine 2 

(Nist; mzCloud) 

152.0569 C5H6N5O 583 Guanine Guanine 1 

(Nist + standard) 

446.1514 C16H24N5O10 675 Guanine Pentosyl-hexosylguanine 3 

205.0972 C11H13N2O2 554 Tryptophan 

(indole) 

Tryptophan 1 

205.1183 C8H11N2O4 597 Tryptophan 

(indole) 

Co-fragmentation with Tryptophan - 

236.0916 C12H14NO4 399 Tryptophan 

(indole) 

Hydroxy-Indole-3-lactic acid 3 

425.1916 C21H25N6O4 298 Tryptophan 

(indole) 

Indole (tryptophan) containing 

peptide? Co-fragmentation with 

isobars 

4 

217.0971 C12H13N2O2 522 Tryptophan 

(indole) 

Glycine-indole? – Indole containing 

metabolite 

4 

218.0811 C12H12NO3 364 Tryptophan 

(indole) 

Indole-3-oxo-butyric acid 3 

367.1500 C17H23N2O7 504 Tryptophan 

(indole) 

Tryptophyl-O-hexopyranose 3 

236.1281 C13H18NO3 270 Tryptophan 

(indole) 

Indole-3-hydroxy- pentanoic acid 3 

252.0864 C10H12N4O4 414 Tryptophan 

(indole) 

Indole-3-malic acid 3 
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529.2027 C23H33N2O12 546 Tryptophan 

(indole) 

β-D-Fructofuranosyl 2-O-L-

tryptophyl-α-D-glucopyranoside 

3 

262.1396 C10H20N3O5 487 Tryptophan 

(indole) 

co-fragmentation with isobar 

containing indole 

- 

409.1869 Artefact 553 Tryptophan 

(indole) 

Ion product of 205.1183 - 

293.1131 C14H17N2O5 431 Tyrosine Pyroglutamyl-Tyrosine 3 

182.0812 C9H12NO3 585 Tyrosine Tyrosine 1 

308.1856 C17H26NO4 234 Tyrosine Tyrosine-octanoate conjugate (or 

structural isomer of [C8H16O2-

H2O] 

3 

182.0812 Artefact 610 Tyrosine Shoulder peak of 182.0812 - 

194.0811 C10H12NO3 362 Tyrosine Noisy peak – not Tyrosine related 

(two fragments overlap) or 

fragment metabolite containing 

Tyrosine substructure 

- 

239.1123 - 509 Tyrosine Co-fragmentation with isobars - 

506.1873 C21H32NO13 571 Tyrosine β-D-Fructofuranosyl 2-O-L-

tyrosinyl-α-D-glucopyranoside 

3 

344.1339 C15H22NO8 536 Tyrosine Tyrosinyl-O-hexopyranose 3 

378.1160 C15H22O11 592 Tyrosine Not tyrosine related – some 

fragments overlap 

- 

279.1547 C11H23N2O6 412 Tyrosine Not tyrosine related – some 

fragments overlap 

- 

268.1039 C10H14N5O4 469 Pentose 

loss 

Adenosine 1 

284.0988 C10H15N5O5 583 Pentose 

loss 

Guanosine 1  

(Nist; MassBank) 

269.0879 C10H13N4O5 523 Pentose 

loss 

Inosine 1 

298.1146 C11H16N5O5 485 Pentose 

loss 

2’-O-Methyl-guanosine 

(146.0723 loss is also part of 

Mass2Motif) 

3 

(mzCloud) 

298.1146 C11H16N5O5 497 Pentose 

loss 

7-Methyl-guanosine 2 

(Nist; 

mzCloud) 

446.1514 C16H24N5O10 675 Pentose 

loss 

Pentosyl-hexosylguanine 3 

282.1190 C11H16N5O4 675 Pentose N-methyladenosine 3 
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loss 

390.1520 C13H29NO10P 622 Pentose 

loss 

Metabolite containing pentose 

moiety 

4 

244.0926 C9H14N3O5 558 Pentose 

loss 

Cytidine 1 

245.0767 C9H13N2O6 499 Pentose 

loss 

Uridine 1 

255.0973 C11H15N2O5 1070 Pentose 

loss 

Pentose containing metabolite 

(C6H6N2O core) 

3 

256.0814 C11H14NO6 583 Pentose 

loss 

Pentosyl-niacin 2 

(mzCloud for 

niacin fragments) 

296.1353 C12H18N5O4 405 Pentose 

loss 

N,N-Dimethyladenosine 2 

 

 

S2.12 MS2LDA Uses High-Resolution Mass Spectrometry Information in 

the MS2 Domain 

High-resolution mass spectrometry results in accurate mass measurements, also of detected mass fragments in 

the smaller m/z range of 50 – 70 Da. While it is generally true that fragments below 70 Da are found in more 

different annotated motifs than those above 70 Da, we could observe 19 different fragments with a nominal 

mass of 70 or lower. In 6 cases, two of those fragments have the same nominal mass, and in 1 case even three 

fragments share the same nominal mass: 60.0448 (C2H6NO, [M+H]+), 60.0559 (CH6N3, [M+H]+), and 

60.0810 (C3H10N, [M+H]+). This shows the importance of using accurate mass fragmentation data as input to 

enable distinction between those fragment sets, and other isobaric fragments of higher m/z. Some of these 

fragments are unique for a substructure, for example, for CH6N3 the guanidine group is the only likely 

formation of the atoms, especially taking biological extracts as samples into account. Others are more generic, 

i.e., C4H5 and C4H7, but are part of Mass2Motifs pointing to different structural features in combinations with 

mass fragments of higher m/z. 
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S2.13 Spectral Matching of Mass2Motifs Using Their Reconstructed Mass 

Spectra 

Table S-19 shows the results from reconstructing fragmentation spectra from various Mass2Motifs discovered 

through MS2LDA (see for examples Figure S-20) and using them to perform spectral matching to the NIST 

MSMS (Nist_msms) and MassBank spectral databases. Reconstruction of the spectra was performed by taking 

into account all the fragment features above the user-defined threshold 𝑡𝜑 on the Mass2Motif-to-features 

distributions [the φ parameters]). Here, 𝑡𝜑 is set to 0.01, which is the same value used for visualisation in 

MS2LDAvis. The counts of fragment features from the data that can be explained the Mass2Motif are then 

converted into relative intensities. This shows the potential to automatically structurally characterize 

Mass2Motifs. 

M2M Database Annotations EFs top hits of each 

database 

Database Score 

13 L-Glutamine C5H10N2O3 Nist_msms 94.38 

17 L-Tyrosine C9H11NO3 Nist_msms 78.95 

19 trans-Ferulic acid C10H10O4 Nist_msms 76.94 

40 Gln-Gly-Lys C13H25N5O5 Nist_msms 11.07 

42 L-Asparagine 

Asn 

C4H8N2O3 

C4H8N2O3 

Nist_msms 

MassBank 

97.15 

97.15 

45 L-Lysine C6H14N2O2 Nist_msms 71.93 

55 4-Hydroxycinnamic acid (L-

phenylalanine methyl ester) 

amide 

4-Coumaric acid 

(=4-hydroxycinnamic acid) 

C19H19NO4 

 

 

C9H8O3 

Nist_msms 

 

 

MassBank 

50.69 

 

 

11.33 

58 Phenol, 4-(2-aminoethyl) 

(=Tyramine) 

C8H11NO Nist_msms 75.33 

67 cis-Aconitic acid C6H6O6 Nist_msms 97.4 

69 D-(+)-Arabitol C5H12O5 Nist_msms 40.51 

79 Betaine 

Betaine 

C5H11NO2 

C5H11NO2 

Nist_msms 

MassBank 

98.64 

98.64 

82 Guanidine, (4-aminobutyl)- C5H14N4 Nist_msms 71.18 

91 5-Aminosalicylic acid C7H7NO3 Nist_msms 83.59 

98 1-Aminocyclohexane-

carboxylic acid 

L-2-Aminoadipic acid 

C7H13NO2 

 

C6H11NO4 

Nist_msms 

 

MassBank 

88.76 

 

1.88 

115 2-Amino-1-phenylethanol 

(Phenylethanolamine) 

C8H11NO Nist_msms 91.03 
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129 Lactulose C12H22O11 Nist_msms 32.74 

130 Uridine 

L-Asparagine 

C9H12N2O6 

C4H8N2O3 

MassBank 

Nist_msms 

58.13 

17.1 

131 D-(+)-Cellobiose C12H22O11 Nist_msms 54.02 

158 Gly-Leu C8H16N2O3 Nist_msms 54.26 

162 Acyclovir 

(acycloguanosine) 

C8H11N5O3 Nist_msms 89.55 

166 5-Methylcytosine 

5-Methylcytosine 

C5H7N3O 

C5H7N3O 

Nist_msms 

MassBank 

52.69 

52.69 

174 L-Glutamic acid 

N-Acetylglutamate 

C5H10N2O3 

C7H11NO5 

Nist_msms 

MassBank 

15.89 

10.27 

184 Trimethylamine N-oxide C3H9NO Nist_msms 88.62 

202 L-Tryptophan C11H12N2O2 Nist_msms 72.71 

211 N-acetylputrescine 

Guanidine, (4-aminobutyl) 

C6H14N2O 

C5H14N4 

MassBank 

Nist_msms 

79.53 

18.75 

220 .beta.-Nicotinamide 

adenine dinucleotide, 

reduced 

Adenosine 

C21H29N7O14P2 

 

 

C10H13N5O4 

Nist_msms 

 

 

MassBank 

16.98 

 

 

8.55 

222 L-Serine C3H7NO3 Nist_msms 95.01 

226 15-Deoxy-.DELTA.12,14-

prostaglandin D2 

C20H30O4 Nist_msms 17.29 

230 L-NG-Nitroarginine methyl 

ester 

C7H15N5O4 Nist_msms 24.84 

241 N-.alpha.-(tert-

Butoxycarbonyl)-L-

Histidine 

L-Histidine 

C11H17N3O4 

 

 

C6H9N3O2 

Nist_msms 

 

 

MassBank 

73.25 

 

 

15.32 

276 2,6-Xylidine C8H11N Nist_msms 88.45 

284 1,2,3-Benzenetriol C6H6O3 Nist_msms 91.25 

Table S-19. Reconstructed mass spectra from conserved patterns found in fragment-based Mass2Motifs searched in Nist and 

MassBank databases – top annotations for each database (if any) are indicated with their scores and highlighted in bold if 

they structurally matched manual annotations.  
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Figure S-20 shows examples of reconstructed Mass2Motifs of tyrosine (M2M_17), ferulic acid (M2M_19), 5-

Methylcysteine (M2M_166) and histidine (M2M_241) related motifs. These reconstructed spectra were then 

used to search in the Nist_msms and MassBank libraries.  

A) Mass2Motif 17 – Tyrosine related 

Reconstructed MS2 peak list and mass spectrum: 

m/z [M+H+] Relative intensity 

136.07599   100.0 

182.08217   36.1 

123.04467   22.7 

165.05388   19.4 

160.90206   18.6 

119.04874   16.3 

102.0547   12.7 

95.04936   10.0 

247.1084   8.65 

161.0686   7.50 

119.04991   6.93 

165.05578   6.74 

154.08575   6.54 

 

B) Mass2Motif 19 – Ferulic acid related 

Reconstructed MS2 peak list and mass spectrum: 

m/z [M+H+] Relative intensity 

177.05475   100.0 

89.03864  76.7 

145.02839   72.1 

117.03316   60.6 

364.22203   18.4 

149.05998   14.7 

307.17496   14.4 

100.07536   6.90 

171.1487   6.52 

134.03657   6.39 

78.04655   5.89 

234.11111   5.77 

 
C) Mass2Motif 166 – 5-Methylcysteine related 

Reconstructed MS2 peak list and mass spectrum: 

m/z [M+H+] Relative intensity 

126.0665  100.0 

109.03967   46.1 

127.03204   16.4 

83.06041   9.52 

186.10718   6.90 

69.05759   4.77 

68.04977   4.61 

108.05597   4.28 

81.04501   3.62 
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D) Mass2Motif 241 – Histidine related 

Reconstructed MS2 peak list and mass 

spectrum: 

m/z [M+H+] Relative intensity 

110.07176   100.0 

83.06041   29.1 

93.04509   18.1 

156.07684   12.7 

56.04977   5.88 

363.17581   5.88 

143.11757   4.47 

81.04501   4.41 

95.06076   3.23 

 

Figure S-20 Reconstructed mass spectra from Mass2Motifs found in beer data that could be used for spectral matching. 
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SECTION S3. BEER SAMPLES INFORMATION 
 

Beer samples from three commercial beers and one home-brewed beer were used as representative complex 

mixtures of diverse biochemical:  

 Beer1 is from a home-brewed bottle of German Wheat Beer (the Beer sheet can be found in S3.1 – 

S3.6 below).  

 Beer2 is from a bottle of ‘Jaw Glyde Ale’ (a Golden/Blond Ale; http://www.jawbrew.co.uk).  

 Beer3 is from a bottle of ‘Seven Giraffes Extraordinary Ale’ (an IPA style beer; 

http://www.williamsbrosbrew.com/beerboard/bottles/seven-giraffes).  

 Beer4 is from a bottle of ‘Black Sheep Ale’ (a Golden Bitter Ale; 

https://www.blacksheepbrewery.com/beers/15/black-sheep-ale). 

S3.1 General information 

Type German Wheat Beer - Weizen/Weissbier (15 A) 

Type All Grain 

Batch Size 19.00 l 

Boil Size 27.97 l 

Boil Time 60 min 

End of Boil Vol 23.70 l 

Final Bottling Vol 16.16 l 

Fermentation Ale, Single Stage 

Date 02 Jan 2015 

Brewer Paul Simon 

Equipment Paul's Kit 

Efficiency 50.00 % 

Est Mash Efficiency 60.0 % 

Taste Rating 30.0 

S3.2 Ingredients 

# Name Type Amt %/IBU 

1 White Wheat Malt (4.7 EBC) Grain 4075.88 g 53.7% 

2 Pale Malt (2 Row) UK (5.9 EBC) Grain 3000.0 g 39.5 % 

3 Munich Malt (17.7 EBC) Grain 335.0 g 4.4% 

4 Melanoiden Malt (39.4 EBC) Grain 113.0 g 1.5% 

5 Caramel/Crystal Malt - 40L (78.8 EBC) Grain 40.0 g 0.5% 

6 Chocolate Malt (689.5 EBC) Grain 28.00 g 0.4% 

7 Hallertauer Hersbrucker [4.00 %] - Boil 60.0 min Hop 30.66 g 13.4 IBUs 

8 Hallertauer Hersbrucker [4.00 %] - Boil 15.0 min Hop 17.01 g 3.7 IBUs 

 

S3.3 Gravity, Alcohol Content and Color 

Est Original Gravity 1.063 SG 

Est Final Gravity 1.016 SG 

Estimated Alcohol by Vol 6.2 % 

Bitterness 17.1 IBUs 

Est Color 17.1 EBC 

Measured Original Gravity 1.070 SG 

Measured Final Gravity 1.020 SG 

Actual Alcohol by Vol 6.6 % 

http://www.williamsbrosbrew.com/beerboard/bottles/seven-giraffes)
https://www.blacksheepbrewery.com/beers/15/black-sheep-ale
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Calories 675.7 kcal/l 

 

S3.4 Mash Profile 

Mash Name Single Infusion, Medium Body 

Sparge Water 4.69 l 

Sparge Temperature 75.6 C 

Adjust Temp for Equipment TRUE 

Total Grain Weight 7591.88 g 

Grain Temperature 20.0 C 

Tun Temperature 20.0 C 

Mash PH 5.20 

 

S3.5 Mash Steps 

Name Description Step Temperature Step Time 

Mash In Add 20.88 l of water at 

75.5 C 

66.7 C 60 min 

Mash Out Add 11.09 l of water at 

95.8 C 

75.6 C 10 min 

Sparge Fly sparge with 4.69 l of 

water at 75.6 C 

  

Mash Notes: Simple single infusion mash for use with most modern well modified grains (about 95% of the 

time). 

S3.6 Carbonation and Storage 

Carbonation Type Bottle 

Pressure/Weight 110.11 g 

Keg/Bottling Temperature 21.1 C 

Fermentation Ale, Single Stage 

Volumes of CO2 2.7 

Carbonation Used Bottle with 110.11 g Table Sugar 

Age for 30.00 days 

Storage Temperature 18.3 C 
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SECTION S4. DATA ACQUISITION WORKFLOW 
Blank runs, quality control samples, and 3 standard mixes containing 150 reference compounds were run to 

assess the quality of the mass spectrometer and aid in metabolite annotation and identification (16). The pooled 

sample was run prior to and across the batch to monitor the stability and quality of the LC-MS run, whereas the 

samples were run in a randomized order. Immediately after acquisition, all .raw files were converted into 

MzXML format, thereby centroiding the mass spectra and separating positive and negative ionization mode 

spectra into two different mzXML files using the command line version of MSconvert (ProteoWizard). 

Fragmentation files were also converted into .mzML formats using the GUI version of MSconvert.  

Accurate masses of standards were obtained well within 3 ppm accuracy and intensities of the quality control 

samples (a beer extract and a serum extract) were as expected. Six runs were collected for each beer sample, as 

well as the pooled beer sample, so that three combined full scan mode files were recorded, one combined 

fragmentation mode file, and two separate fragmentation mode files, one for (+) and one for (-) mode. 
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SECTION S5. MS AND MS/MS SETTINGS 

S5.1 Positive Negative Ionization Combined Fragmentation Mode 

A duty cycle consisted of a full scan in positive ionization mode, followed by a TopN data dependent MS/MS 

(MS2) fragmentation event taking the 10 most abundant ion species not on the dynamic exclusion list, followed 

by the same two scan events in negative ionization mode. Data acquisition was carried out in positive (+) and 

negative (-) switching ionization mode, using m/z 74.0964 (+) (ACN cluster), 88.07569 (+) (contaminant), and 

m/z 112.98563 (-) (Formic Acid cluster) as locking masses. The set up was calibrated [Thermo calmix, with 

additional masses at lower m/z; 74.0964 m/z (+) and 89.0244 (-)] in both ionization modes before analysis and a 

tune file targeted towards the lower m/z range was used.  

In both ionization modes full scan (MS1) data was acquired in profile mode at 35,000 resolution using 1 

microscan, an AGC target of 1E6 cts, a maximum injection time of 120 milliseconds, with spray voltages +3.8 

kV (+) and −3.0 kV (-), probe heater temperature 150 °C, capillary temperature 320 °C, sheath gas flow rate 40, 

auxiliary gas flow rate 15 a.u., sweep gas flow rate 1 a.u, and a full scan mass window of 70–1050 m/z. 

MS/MS (data dependent-MS2) data was acquired in profile mode at 35,000 resolution using 1 microscan, an 

AGC target of 1E5 cts, a maximum injection time of 120 milliseconds, a loop count of 10, a MSX count of 1, a 

TopN of 10, an isolation window of 1.0 Da, an isolation offset of 0.0 Da, a stepped normalized collision energy 

(NCE) higher collision dissociation (HCD) mode combining 25.2, 60.0, and 94.8 NCEs into one fragmentation 

scan, an undefill ratio of 20%, an intensity threshold of 1.7E5 cts, and the dynamic exclusion was set to 15 

seconds. These settings result in a maximum duty cycle time (with two full scans and 20 MS2 scans) of 2.64 

seconds, whilst in practice cycle times are shorter as not all 10 MS2 scans are always recorded or the ACG 

target was reached prior to the maximum filling time. Further settings were: no apex trigger, no charge 

exclusion, peptide match was off, exclude isotopes was on, and if idle, the machine did not pick up other ions. 

S5.2 Positive or Negative Ionization Separate Fragmentation modes 

As for the combined files, with the following modifications: full scan (MS1) resolution was set to 70,000, 

MS/MS (MS2) resolution was set to 17,500, MS/MS maximum injection time was set to 80 milliseconds and 

the undefill ratio set to 10%, with a resulting intensity threshold of 1.3E5 cts. The duty cycle consisted of one 

full scan (MS1) event and one Top10 MS/MS (MS2) fragmentation event. These settings result in a maximum 

duty cycle time (with one full scan and 10 MS2 scans) of 920 milliseconds, whilst in practice cycle times are 

shorter as not all 10 MS2 scans are always recorded or the ACG target was reached prior to the maximum filling 

time. 
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