
Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and
Robust Ensembles to Basic Algorithmic Schemes – Supporting Information

Carlo Baldassi,1, 2 Christian Borgs,3 Jennifer Chayes,3 Alessandro
Ingrosso,1, 2 Carlo Lucibello,1, 2 Luca Saglietti,1, 2 and Riccardo Zecchina1, 2, 4

1Dept. Applied Science and Technology, Politecnico di Torino,
Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

2Human Genetics Foundation-Torino, Via Nizza 52, I-10126 Torino, Italy
3Microsoft Research, Cambridge, MA, USA

4Collegio Carlo Alberto, Via Real Collegio 30, I-10024 Moncalieri, Italy

S2

CONTENTS

S1. Introduction and notation S2
A. The network model S2
B. Patterns S2
C. Energy definition S3

S2. Replicated Simulated Annealing S3
A. Computing the energy shifts efficiently S4
B. Efficient Monte Carlo sampling S5
C. Numerical simulations details S7

S3. Replicated Gradient Descent S8
A. Gradient computation S8
B. Numerical simulations details S10

S4. Replicated Belief Propagation S11
A. Belief Propagation implementation notes S11
B. Focusing BP vs Reinforced BP S14
C. Focusing BP vs analytical results S16
D. Focusing BP on random K-SAT S16

References S18

S1. INTRODUCTION AND NOTATION

This Supporting Information text contains all the technical details of the algorithms described in the main text,
the techniques and the parameters we used to obtain the results we reported. We also report some additional results
and report other minor technical considerations.

Preliminarily, we set a notation used throughout this document which is slightly different from the one of the main
text, but more suitable for this technical description.

A. The network model

As described in the main text, we consider an ensemble of y neural networks with K units and binary variables
W ka
i ∈ {−1, 1} where k ∈ {1, . . . ,K} is the unit index, i ∈ {1, . . . ,N/K} is the synaptic index and a ∈ {1, . . . , y} is

the replica index. Each network has thus N synapses, where N is divisible by K. For simplicity, we assume both
K and N/K to be odd. The output of each unit is defined by a function τ (ξ;W) = sign

(∑N/K
i=1 Wiξi

)
. The output

of the network is defined by a function ζ
({
ξk
}
k

;
{
W k
}
k

)
= sign

(∑K
k=1 τ

(
ξk;W k

))
where ξk represents the input

to the k-th unit. In the case K = 1, this is equivalent to a single-layer network (also known as perceptron). In the
case where all ξk are identical for each k, this is equivalent to a fully-connected two-layer network (also known as
committee machine or consensus machine). If the ξk are different for different values of k, this is a tree-like committee
machine. Note that, due to the binary constraint on the model, adding weights to the second layer is redundant,
since for all negative weights in the second layer we could always flip both its weight and all the weights of the unit
connected to it. Therefore, without loss of generality, we just set the weights of the second layer to 1, resulting in the
above definition of the output function ζ.

The scalar product between two replicas a and b is defined as W a ·W b =
∑K
k=1

∑N/K
i=1 W ka

i W kb
i . For brevity of

notation, in cases where the unit index does not play a role, we will often just use a single index j ∈ {1, . . . , N},
e.g. W a ·W b =

∑N
j=1W

a
j W

b
j .

B. Patterns

The networks are trained on random input/output associations, i.e. patterns, (ξµ, σµD) where µ ∈ {1, . . . , αN} is
the pattern index. The parameter α > 0 determines the load of the network, so that the number of patterns is

S3

proportional to the number of synapses. The inputs are binary vectors of N elements with entries ξkµi ∈ {−1,+1},
and the desired outputs are also binary, σµD ∈ {−1,+1}. Both the inputs and the outputs are extracted at random
and are independent and identically distributed (i.i.d.), except in the case of the fully-connected committee machine
where ξkµi = ξk

′µ
i for all k, k′ and therefore we only extract the values for k = 1.

We also actually exploit a symmetry in the problem and set all desired outputs to 1, since for each pattern its
opposite must have an opposite output, i.e. we can always transform an input output pair (ξµ, σµD) into (ξµ′, 1), where
the new pattern ξµ′ = σµDξ

µ has the same probability as ξµ.

C. Energy definition

The energy, or cost, for each pattern is defined as the minimum number of weights which need to be switched in
order to correctly classify the pattern, i.e. in order to satisfy the relation ζ

({
ξkµ
}
k
,
{
W k
}
k

)
= 1. The total energy

is the sum of the energies for all patterns, E (W) =
∑αN
µ=1E

µ (W).
If the current configuration of the weights W satisfies the pattern, the corresponding energy is obviously 0. There-

fore, if the training problem is satisfiable, the ground states with this energy definition are the same as for the easier
energy function given in terms of the number of errors.

If the current configuration violates the pattern, the energy can be computed as follows: we need to compute the
minimum number cµ of units of the first level which need to change their outputs, choose the cµ units which are
easiest to fix, and for each of them compute the minimum number of weights which need to be changed. In formulas:

Eµ (W) = Θ (−∆µ
out)

cµ∑
k=1

sµk (S1)

where:

∆µ
k = ξkµ ·W k (S2)

∆µ
out =

∑
k

sign (∆µ
k) (S3)

sµ = sort

({
−1

2
(∆µ

k − 1) , ∀k : ∆µ
k < 0

})
(S4)

cµ =
1

2
(−∆µ

out + 1) (S5)

where the sort (·) function returns its argument sorted in ascending order. The above auxiliary quantities all depend
on W , but we omitted the dependency for clarity of notation.

In the single-layer case K = 1 the expression simplifies considerably, since ∆µ
out = ξµ ·W and reduces to Eµ (W) =

Θ (−∆µ
out)

1
2 (−∆µ

out + 1) .

S2. REPLICATED SIMULATED ANNEALING

We run Simulated Annealing (plus “scoping”) on a system of interacting replicas. For simplicity, we trace away the
reference configuration which mediates the interaction. Thus, at any given step, we want to sample from a probability
distribution

P ({W a}) ∝
∑
W

exp

−β y∑
a=1

E (W a) + γ

y∑
a=1

N∑
j=1

W a
j Wj


∝ exp

−β y∑
a=1

E (W a) +
∑
j

log

(
2 cosh

(
γ

y∑
a=1

W a
j

)) (S6)

The reference configuration is traced out in this representation, but we can obtain its most probable value by
just computing W̃j = sign

∑y
a=1W

a
j . It is often the case that, when the parameters are chosen appropriately,

S4

E
(
W̃
)
≤ 〈E (W a)〉a, i.e. that the energy of the center is lower than that of the group of replicas. In fact, we found

this to be a good rule-of-thumb criterion to evaluate the choice of the parameters in the early stages of the algorithmic
process.

The most straightforward way to perform the sampling (at fixed β and γ) is by using the Metropolis rule; the
proposed move is to flip a random synaptic weight from a random replica. Of course the variation of the energy
associated to the candidate move now includes the interaction term, parametrized by γ, which introduces a bias that
favors movements in the direction of the center of mass of the replicas.

We also developed an alternative rule for choosing the moves in a biased way which implicitly accounts for the
interaction term while still obeying the detailed balance condition. This alternative rule is generally valid in the
presence of an external field and is detailed at the end of this section. Its advantage consists in reducing the rejection
rate, but since the move proposal itself becomes more time consuming it is best suited to systems in which computing
the energy cost of a move is expensive, so its usefulness depends on the details of the model.

A. Computing the energy shifts efficiently

Here we show how to compute efficiently the quantity E (W ′) − E (W) when W ′ and W only differ in the value
of one synaptic weight j and the energy is defined as in eq. (S1). To this end, we define some auxiliary quantities in
addition to the ones required for the energy computation, eqs. (S2)-(S5) (note that we omit the replica index a here
since this needs to be done for each replica independently):

P+ = {µ : ∆µ
out = 1} (S7)

P− = {µ : ∆µ
out < 0} (S8)

χµ =

{
1 if sµ < 0 ∧ cµ < K ∧ sµcµ = sµcµ+1

0 otherwise
(S9)

These quantities must be recomputed each time a move is accepted, along with (S2)-(S5). Note however that in later
stages of the annealing process most moves are rejected, and the energy shifts can be computed very efficiently as we
shall see below.

Preliminarily, we note that any single-flip move only affects the energy contribution from patterns in P+ ∪ P−.
The contribution to the energy shift ∆Eµ for a proposed move W k

i → −W k
i is most easily written in pseudo-code:

Algorithm 1: Energy shift function
1 Function ∆Eµ(µ, k, i, W kµ

i)
2 if µ ∈ P+ then
3 if ξµi 6= W kµ

i then return 0
4 if sign (∆µ

k) 6= 1 then return 0
5 return 1
6 else if µ ∈ P− then
7 if ∆µ

k > 1 then return 0
8 d := −ξµi W

kµ
i

9 if ∆µ
k > 0 ∧ d = 1 then return 0

10 if ∆µ
k = 1 then return 1

11 v := −(∆µ
k + 1)/2 + 1

12 if v > sµcµ then return 0
13 if v < sµcµ then return -d
14 if d = 1 then return -1
15 if χµ = 1 then return 0
16 return 1
17 else
18 return 0
19 end
20 end

Indeed, this function is greatly simplified in the single-layer case K = 1.

S5

B. Efficient Monte Carlo sampling

Here we describe a Monte Carlo sampling method which is a modification of the Metropolis rule when the system
uses N binary variables Wj and the Hamiltonian function can be written as:

H (W) = E (W)− 1

β

N∑
j=1

kjWj (S10)

where the external fields kj can only assume a finite (and much smaller than N) set of values. The factor β−1 is
introduced merely for convenience. Comparing this to eq. (S6), we see that, having chosen a replica index a uniformly
at random, we can identify

kj =
1

2

log

 cosh
(
γ + γ

∑
b 6=aW

b
j

)
cosh

(
−γ + γ

∑
b 6=aW

b
j

)
 (S11)

.
Given a transition probability to go from state W to state W ′, P (W →W ′), the detailed balance equation reads:

P (W)P (W →W ′) = P (W ′)P (W ′ →W) (S12)

Let us split the transition explicitly in two steps: choosing the index j and accepting the move. The standard
Metropolis rule is: pick an index j ∈ {1, . . . , N} uniformly at random, propose the flip ofWj , accept it with probability
min

(
1, e−β∆EW→W ′−2kjWj

)
, where ∆EW→W ′ = E (W ′)−E (W). We want to reduce the rejection rate and incorporate

the effect of the field in the proposal instead. We write:

P (W →W ′) = C (W →W ′)A (W →W ′) (S13)

where C is the choice of the index, and A is the acceptance of the move. Usually C is uniform and we ignore it, but
here instead we try to use it to absorb the external field term in the probability distribution. From detailed balance
we have:

A (W →W ′)

A (W ′ →W)
=
p (W ′)

p (W)

C (W ′ →W)

C (W →W ′)

= e−β∆EW→W ′−2kjWj
C (W ′ →W)

C (W →W ′)
(S14)

so if we could satisfy:

e−2kjWj
C (W ′ →W)

C (W →W ′)
= 1 (S15)

then the acceptance A would simplify to the usual Metropolis rule, involving only the energy shift ∆E. This will turn
out to be impossible, yet easily fixable, so we still first derive the condition implied by eq. (S15). The key observation
is that there is a finite number of classes of indices inW , based on the limited number of values thatWjkj can take (in
the case of eq. (S11) there are y possible values). Let us call Kc the possible classes, such that Wj ∈ Kc ⇔Wjkj = c,
and let us call nc = |Kc| their sizes, with the normalization condition that

∑
c nc = N . Within a class, we must

choose the move j uniformly.
Then C (W →W ′) is determined by the probability of picking a class, which in principle could be a function of all

the values of the nc: Pc ({nc′}c′). Suppose now that we have picked an index in a class Kc. The transition to W ′
would bring it into class K−c, and the new class sizes would be

n′c′ =


nc′ + 1 if c′ = −c
nc′ − 1 if c′ = c

nc′ otherwise

therefore:

C (W ′ →W)

C (W →W ′)
=

nc
Pc ({nc′}c′)

P−c
(
{n′c′}c′

)
n−c + 1

(S16)

S6

Since the only values of nc′ directly involved in this expression are nc and n−c, it seems reasonable to restrict the
dependence of Pc and P−c only on those values. Let us also call qc = nc + n−c, which is unaffected by the transition.
Therefore we can just write:

C (W ′ →W)

C (W →W ′)
=

nc
qc − nc + 1

P−c (qc − nc + 1, qc)

Pc (nc, qc)
(S17)

Furthermore, we can assume – purely for simplicity – that:

Pc (nc, qc) + P−c (qc − nc, qc) =
qc
N

(S18)

which allows us to restrict ourselves in the following to the case c > 0, and which implies that the choice of the index
will proceed like this: we divide the indices in super-classes Dc = Kc ∪ K−c of size qc and we choose one of those
according to their size; then we choose either the class Kc or K−c according to Pc (nc, qc); finally, we choose an index
inside the class uniformly at random. Considering this process, what we actually need to determine is the conditional
probability of choosing Kc once we know we have chosen the super-class Dc:

P̂c (nc, qc) =
N

qc
Pc (nc, qc) (S19)

Looking at eq. (S15) we are thus left with the condition:

P̂c (nc + 1, qc) = e−2c nc + 1

qc − nc

(
1− P̂c (nc, qc)

)
(S20)

Considering that we must have P̂c (0, qc) = 0, this expression allows us to compute recursively P̂c (nc, qc) for all
values of nc. The computation can be carried out analytically and leads to P̂c (nc, qc) = φ

(
nc, qc, e

−2c
)
where the

function φ is defined as:

φ (n, q, λ) = λ
n

q − n+ 1
2F1 (1, 1− n; q − n+ 2;λ) (S21)

with 2F1 the hypergeometric function. However, we should also have P̂c (qc, qc) = 1, while φ (q, q, λ) = 1 − (1− λ)
q

and therefore this condition is only satisfied for c = 0 (in which case we recover P̂c (nc, qc) = nc
qc
, i.e. the standard

uniform distribution, as expected).
Therefore, as anticipated, eq. (S15) can not be satisfied1, and we are left with a residual rejection rate for the

case nc = qc. This is reasonable, since in the limit of very large c (i.e. very large γ in the case of eq. (S11)) the
probability distribution of each spin must be extremely peaked on the state in which all replicas are aligned, such
that the combined probability of all other states is lower than the probability of staying in the same configuration.
Therefore we have (still for c > 0):

P̂c (nc, qc) = φ
(
nc, qc, e

−2c
)

(1− δnc,qc) + δnc,qc (S22)
A (W →W ′)

A (W ′ →W)
= e−β∆EW→W ′

(
1− δnc,qc

(
1− e−2c

)qc) (S23)

where δn,q is the Kronecker delta symbol. The last condition can be satisfied by choosing a general acceptance rule
of this form:

A (W →W ′) = min
(
1, e−β∆EW→W ′

)
ac (nc, qc) (S24)

where

ac (nc, qc) =

{
1− δnc,qc

(
1− e−2c

)qc
if c > 0

1 if c ≤ 0

1 Strictly speaking we have not proven this, having made some assumptions for simplicity. However it is easy to prove it in the special
case in which kj ∈ {−1,+1}, since then our assumptions become necessary.

S7

In practice, the effect of this correction is that the state where all the variables in class Kc are already aligned in
their preferred direction is a little “clingier” than the others, and introduces an additional rejection rate

(
1− e−2c

)qc
(which however is tiny when either c is small or qc is large).

The final procedure is thus the following: we choose a super-class Dc at random with probability qc/N, then we
choose either Kc or K−c according to P̂c and finally pick another index uniformly at random within the class.

This procedure is highly effective at reducing the rejection rate induced by the external fields. As mentioned above,
depending on the problem, if the computation of the energy shifts is particularly fast, it may still be convenient
in terms of CPU time to produce values uniformly and rejecting many of them, rather then go through a more
involved sampling procedure. Note however that the bookkeeping operations required for keeping track of the classes
compositions and their updates can be performed efficiently, in O (1) time with O (N) space, by using an unsorted
partition of the spin indices (which allows for efficient insertion/removal) and an associated lookup table. Therefore,
the additional cost of this procedure is a constant factor at each iteration.

Also, the function φ (n, q, λ) involves the evaluation of a hypergeometric function, which can be relatively costly; its
values however can be pre-computed and tabulated if the memory resources allow it, since they are independent from
the problem instance. For large values of q − n (1− λ), it can also be efficiently approximated by a series expansion.
It is convenient for that purpose to change variables to

x = q − n (1− λ)

ρ =
nλ

x

(note that ρ ∈ [0, 1]). We give here for reference the expansion up to x−2, which ensures a maximum error of 10−5

for x ≥ 40:

φ

(
xρ

λ
, x

(
1 + ρ

1− λ
λ

)
, λ

)
= ρ

(
1− (1− ρ) (1− λ)

x

(
1 +

1− (2− 3ρ) (1− λ)

x

(
1 +O

(
1

x

))))
(S25)

Finally, note that the assumption of eq. (S18) is only justified by simplicity; it is likely that a different choice could
lead to a further improved dynamics.2

C. Numerical simulations details

Our Simulated Annealing procedure was performed as follows: we initialized the replicated system in a random
configuration, with all replicas being initialized equally. The initial inverse temperature was set to β0, and the initial
interaction strength to γ0. We then ran the Monte Carlo simulation, choosing a replica index at random at each
step and a synaptic index according to the modified Metropolis rule described in the previous section, increasing
both β and γ, by a factor 1 + βf and 1 + γf respectively, for each 1000y accepted moves. The gradual increase of
β is called ‘annealing’ while the gradual increase of γ is called ‘scoping’. Of course, since with our procedure the
annealing/scoping step is fixed, the quantities βf and γf should scale with N . The simulations are stopped as soon
as any one of the replicas reaches zero energy, or after 1000Ny consecutive non-improving moves, where a move is
classified as non-improving if it is rejected by the Metropolis rule or it does not lower the energy (this definition
accounts for the situation where the system is trapped in a local minimum with neighboring equivalent configurations
at large β, in which case the algorithm would keep accepting moves with ∆E = 0 without doing anything useful).

In order to compare our method with standard Simulated Annealing, we just removed the interaction between
replicas from the above described case, i.e. we set γ0 = 0. This is therefore equivalent to running y independent
(except for the starting configurations) procedures in parallel, and stopping as soon as one of them reaches a solution.

In order to determine the scaling of the solution time with N , we followed the following procedure: for each
sample (i.e. patterns assignment) we ran the algorithm with different parameters and recorded the minimum num-
ber of iterations required to reach a solution. We systematically explored these values of the parameters: β0 ∈
{0.1, 0.5, 1, 2, 3, . . . , 10}, βf ∈ {0.1, 0.2, . . . , 4.9, 5.0}, γ0 ∈ {0.1, 0.5, 1, 1.5}, γf ∈ {0, 0.01, 0.02, . . . , 0.4} (the latter two
only in the interacting case, of course). This procedure gives us an estimate for the minimum number of iterations
required to solve a typical problem at a given value of N , K and α. We tested 10 samples for each value of (N,K,α).
Since the interacting case has 2 additional parameters, this implies that there were more optimization opportunities,
attributable to random chance; this however is not remotely sufficient to explain the difference in performance be-
tween the two cases: in fact, comparing instead for the typical value of iterations required (i.e. optimizing the average

2 We did in fact generalize and improve this scheme after the preparation of this manuscript, see [1].

S8

10²

10³

10⁴

10⁵

10⁶

105 205 405 805 1605

m
in

.
n

u
m

.
o

f
it
e

ra
ti
o

n
s

number of variables �

non-interacting (γ = 0)

interacting (γ > 0)

Figure S1: Replicated Simulated Annealing on the fully-connected committee machine, with K = 5 hidden units,
comparison between the interacting version (i.e. which seeks regions of high solution density) and the

non-interacting version (i.e. standard SA), at α = 0.2 using y = 3 replicas. This is the analogous of figure 2 of the
main text for a committee machine, showing similar results. 10 samples were tested for each value of N (the same
samples were used for the two curves). The bars represent averages and standard deviations (taken in logarithmic
scale) while the lines represent fits. The interacting case was fitted by a function aN b with a ' 0.02, b ' 2.0, while
the non-interacting case was fitted by a function aN becN

d

with a ' 0.08, b ' 1.7, c ' 4.2 · 10−5, d ' 1.5. The two
data sets are slightly shifted relative to each other for presentation purposes.

iterations over (β0, βf , γ0, γf)) gives qualitatively similar results, since once a range of good values for the parameters
is found the iterations required to reach a solution are rather stable across samples.

The results are shown in figure 2 of the main text for the single-layer case at α = 0.3 and figure S1 for the fully-
connected two-layer case (committee machine) at α = 0.2 and K = 5. In both cases we used y = 3, which seems to
provide good results (we did not systematically explore different values of y). The values of α were chosen so that the
standard SA procedure would be able to solve some instances at low N in reasonable times (since the difference in
performance between the interacting and non-interacting cases widens greatly with increasing α). The results show a
different qualitative behavior in both cases, polynomial for the interacting case and exponential for the non-interacting
cases. All fits were performed directly in logarithmic scale.

S3. REPLICATED GRADIENT DESCENT

A. Gradient computation

As mentioned in the main text, we perform a stochastic gradient descent on binary networks using the energy
function of eq. (S1) by using two sets of variables: a set of continuous variables Wk

i and the corresponding binarized
variables W k

i , related by W k
i = sign

(
Wk
i

)
. We use the binarized variables to compute the energy and the gradient,

and apply the gradient to the continuous variables. In formulas, the quantities at time t + 1 are related to those at

S9

time t by: (
Wk
i

)t+1
=
(
Wk
i

)t − η 1

|m (t)|
∑

µ∈m(t)

∂

∂W k
i

Eµ
(
W t
)

(S26)

(
W k
i

)t+1
= sign

((
Wk
i

)t+1
)

(S27)

where η is a learning rate and m (t) is a set of pattern indices (a so-called minibatch). A particularly simple scenario
can be obtained by considering a single layer network without replication (K = 1, y = 1) and a fixed learning
rate, and by computing the gradient one pattern at a time (|m (t)| = 1). In that case, Eµ (W) = R (−

∑
iWiξ

µ
i)

where R (x) = 1
2 (x+ 1) Θ (x) and the gradient is ∂Wi

Eµ (W) = − 1
2ξ
µ
i Θ (−

∑
iWiξ

µ
i). Since the relation (S27) is

scale-invariant, we can just set η = 4 and obtain

Wt+1
i =Wt

i − 2ξµi Θ

(
−
∑
i

W t
i ξ
µ
i

)
(S28)

where now the auxiliary quantities W are discretized: if they are initialized as odd integers, they remain odd integers
throughout the learning process. This is the so-called “Clipped Perceptron” (CP) rule, which is the same as the
Perceptron rule (“in case of error, update the weights in the direction of the pattern, otherwise do nothing”) except
that the weights are clipped upon usage to make them binary. Notably, the CP rule by itself does not scale well with
N ; it is however possible to make it efficient (see [2, 3]).

In the two-layer case (K > 1) the computation of the gradient is more complicated; it is however simpler than the
computation of the energy shift which was necessary for Simulated Annealing (Algorithm 1), since we only consider
infinitesimal variations when computing the gradient. The resulting expression is:

∂Wk
i
Eµ (W) =

{
− 1

2ξ
kµ
i if (∆µ

out < 0) ∧ (1 + 2sµcµ ≤ ∆µ
k < 0)

0 otherwise
(S29)

i.e. the gradient is non-zero only in case of error, and only for those units k which contribute to the energy computation
(which turn up in the first cµ terms of the sorted vector sµ, see eqs. (S2)-(S5)). Again, since this gradient can take
only 3 possible values, we could set η = 4 and use discretized odd variables for the W.

It is interesting to point out that a slight variation of this update rule in which only the first, least-wrong unit is
affected, i.e. in which the condition (1 + 2sµcµ ≤ ∆µ

k) is changed to (1 + 2sµ1 ≤ ∆µ
k), was used in [4], giving good results

on a real-world learning task when a slight modification analogous to the one of [3] was added. Note that, in the later
stages of learning, when the overall energy is low, it is very likely that cµ ≤ 1, implying that the simplification used
in [4] likely has a negligible effect. The simplified version, when used in the continuous case, also goes under the name
of “least action” algorithm [5].

Having computed the gradient of E (W) for each system, the extension to the replicated system is rather straight-
forward, since the energy (with the traced-out center) becomes (cf. eqs. (4) and (5) in the main text):

H ({W a}) =

y∑
a=1

E (W a)− 1

β

N∑
j=1

log
(
e−

γ
2

∑y
a=1(W

a
j −1)

2

+ e−
γ
2

∑y
a=1(W

a
j +1)

2)
(S30)

and therefore the gradient just has an additional term:

∂H

∂W a
i

({
W b
})

=
∂E

∂Wi
(W)

∣∣∣∣
W=Wa

− γ

β

(
tanh

(
γ

y∑
b=1

W b
i

)
−W a

i

)
(S31)

Note that the trace operation brings the parameter β into account. Using η′ = γ
βη as control parameter, the update

equation (S26) for a replica a becomes (we omit the unit index k for simplicity):

(Wa
i)
t+1

= (Wa
i)
t − η 1

|m (t)|
∑

µ∈m(t)

∂Eµ

∂Wi
(W)

∣∣∣∣
W=(Wa)t

+ η′

(
tanh

(
γ

y∑
b=1

(
W b
i

)t)− (W a
i)
t

)
(S32)

In the limit β, γ →∞, η′ stays finite, while the tanh reduces to a sign.
The expression of eq. (S32) is derived straightforwardly, gives good results and is the one that we have used in the

tests shown in the main text and below. It could be noted, however, that the two-level precision of the variables used

S10

in the algorithm introduces some artifacts. As a clear example, in the case of a single replica (y = 1) or, more in
general, when the replica indices W a

i are all aligned, we would expect the interaction term to vanish, while this is not
the case except at γ =∞.

One possible way to fix this issue is the following: we can introduce a factor in the logarithm in expression (S30):

log

(
e−

γ
2

∑y
a=1(W

a
j −1)

2

+ e−
γ
2

∑y
a=1(W

a
j +1)

2

f
(
W 1
j , . . . ,W

y
j

))
(S33)

such that f
(
W 1
j , . . . ,W

y
j

)
= 1 whenever its arguments lie on the vertices of the hypercube, W a

j ∈ {−1, 1}. This does
not change the Hamiltonian for the configurations we’re interested in, but it can change its gradient. We can thus
impose the additional constraint that the derivative of the above term vanishes whenever the W a

j are all equal. There
are several ways to achieve this; however, if we assume that the function f has the general structure

f
(
W 1
j , . . . ,W

y
j

)
= a

(
g
(
W 1
j

)
, . . . , g

(
W y
j

))
(S34)

with g (1) = g (−1) and with a (. . .) being a totally symmetric function of its arguments3, then it can be easily shown
that necessarily

∂

∂W a
i

log

(
e−

γ
2

∑y
b=1(W

b
j−1)

2

+ e−
γ
2

∑y
b=1(W

b
j +1)

2

a
(
g
(
W 1
j

)
, . . . , g

(
W y
j

)))
= γ

(
tanh

(
γ

y∑
b=1

W b
i

)
− tanh (γy)W a

i

)
(S35)

This expression has now two zeros corresponding to the fully aligned configurations of the weights at +1 and −1,
as desired, and is a very minor correction of the original one used in eq. (S32) (the expressions become identical at
large values of γy). In fact, we found that the numerical results are basically the same (the optimal values of the
parameters may change, but the performances for optimal parameters are very similar for the two cases), such that
this correction is not needed in practice.

An alternative, more straightforward way to fix the issue of the non-vanishing gradient with aligned variables is
to perform the trace over the reference configurations in the continuous case (i.e. replacing the sum over the binary
hypercube with an integral). This leads to the an expression for the interaction contribution to the gradient of
this form: γ

(
1
y

∑y
b=1W

b
i −W a

i

)
. This, however, does seem to have a very slightly but measurably worse overall

performance with respect to the previous ones (while still dramatically outperforming the non-interacting version).
In general, the tests with alternative interaction terms show that, despite the fact that the two-level gradient

procedure is purely heuristic and inherently problematic, the fine details of the implementation may not be exceedingly
relevant for most practical purposes.

The code for our implementation is available at [6].

B. Numerical simulations details

Our implementation of the formula in eq. (S32) follows this scheme: at each time step, we have the values Ti =∑y
b=1W

b
i , we pick a random replica index a, compute the gradient with respect to some m (t) patterns, update the

values Wa and W a, compute the gradient with respect to the interaction term using T and W a, and update the
values of T and – again – of Wa and W a. This scheme is thus easy to parallelize, since it alternates the standard
learning periods in which each replica acts independently with brief interaction periods in which the sum T is updated,
similarly to what was done in [7].

An epoch consists of a presentation of all patterns to all replicas. The minibatches m (t) are randomized at the
beginning of each epoch, independently for each replica. The replicas were initialized equally for simplicity.

In our tests, we kept fixed the learning rates η and η′ during the training process, since preliminary tests did
not show a benefit in adapting them dynamically in our setting. We did, however, find beneficial in most cases to
vary γ, starting at some value γ0 and increasing it progressively by adding a fixed quantity dγ after each epoch,
i.e. implementing a “scoping” mechanism as in the Simulated Annealing case (although even just using γ = ∞ from
the start already gives large improvements against the non-interacting version).

All tests were capped at a maximum of 104 epochs, and the minimum value of the error across all replicas was kept
for producing the graphs.

3 One possibility is using g (w) = cosh(γyw)
cosh(γy)

exp
(γy

2

(
1− w2

))
and a (. . .) equal to the average of its arguments.

S11

0%

5%

10%

15%

0.1 0.2 0.3 0.4 0.5 0.6 0.7

e
rr

o
r

ra
te

non-interacting (γ = 0)

interacting (γ > 0)

0

500

1000

1500

2000

2500

0.1 0.2 0.3 0.4 0.5 0.6 0.7

e
p
o
c
h
s
 t
o
 s

o
lu

ti
o

n

patterns per synapse �

Figure S2: Replicated Stochastic Gradient descent on a fully-connected committee machine with N = 1605 synapses
and K = 5 units in the second layer, comparison between the non-interacting (i.e. standard SGD) and interacting

versions, using y = 3 replicas and a minibatch size of 10 patterns. Each point shows averages and standard
deviations on 10 samples with optimal choice of the parameters, as a function of the training set size. Top:

minimum training error rate achieved after 104 epochs. Bottom: number of epochs required to find a solution. Only
the cases with 100% success rate are shown.

In the interacting case, we systematically tested various values of η′, γ0 and dγ, and, for each α, we kept the
ones which produced optimal results (i.e. lowest error rate, or shorter solution times if the error rates were equal) on
average across the samples. Because of the overall scale invariance of the problem, we did not change η.

Figure S2 shows the results of the same tests as shown in figure 3 of the main text for different values of the number
of replicas and the minibatch size. The results for the interacting case are slightly worse, but still much better than
for the non-interacting case.

For the perceptron case K = 1 we did less extensive tests; we could solve 10 samples out of 10 with N = 1601
synapses at α = 0.7 in an average of 4371± 661 epochs with y = 7 replicas and a minibatch size of 80 patterns.

S4. REPLICATED BELIEF PROPAGATION

A. Belief Propagation implementation notes

Belief Propagation (BP) is an iterative message passing algorithm that can be used to derive marginal probabilities
on a system within the Bethe-Peierls approximation [8–10]. The messages Pj→µ (σj) (from variable node j to factor
node µ) and Pµ→j (σj) (from factor node a to variable node j) represent cavity probability distributions (called
messages) over a single variable σj . In the case of Ising systems of binary ±1 variables like the ones we are using in the
network models considered in this work, the messages can be represented as a single number, usually a magnetization
mi→µ = Pi→µ (+1)− Pµ→i (−1) (and analogous for the other case).

Our implementation of BP on binary networks follows very closely that of [11], since we only consider the zero
temperature case and we are interested in the “satisfiable” phase, thus considering only configurations of zero energy.
However, in order to avoid some numerical precision issues that affected the computations at high values of α, y and
γ, we lifted some of the approximations used in that paper. Here therefore we recapitulate the BP equations used

S12

(a) BP factor graph scheme. This scheme exemplifies a factor
graph for a committee machine with N = 15 variables, K = 3

units in the second layer, trained on 2 patterns. The two patterns
are distinguished by different colors. The graph can represent a
fully-connected committee machine if the patterns are the same
for all first-layer units, or a tree-like one if they are different. The
variable nodes are represented as circles, the interaction by other

geometrical figures. The hexagons at the bottom represent
pseudo-self-interaction nodes (see main text, figure 4), the large
squares with rounded corners represent perceptron-like nodes, the
small squares at the top represent external fields enforcing the

desired output of the machine. The synaptic variables Wk
j are at

the bottom (black circles), while the rest of the variables are
auxiliary and represent the output of each unit for a given pattern.

�μ→�

��→μ

σ�

�μ→τ�τ→μ

τ

ξ�
μ

(b) BP messages naming scheme used in section S4A for a
perceptron-like factor node. The node µ is represented by the

central square. Input variables, denoted by σj , are at the bottom.
The output variable is called τ . The couplings ξµj parametrize the

factor node (one parameter per input edge) and can either
represent an input pattern (for the first layer of the network) or be

1 (for the second layer of the network).

Figure S3

and highlight the differences with the previous work. The factor graph scheme for a committee machine is shown for
reference in figure S3a. The BP equations for the messages from a variable node j to a factor node µ can be written
in general as:

mt
j→µ = tanh

 ∑
ν∈∂j\µ

tanh−1
(
mt
ν→j

)
+ tanh−1

(
mt
?→j

) (S36)

where ∂j represent the set of all factor nodes in which variable j is involved. This expression includes the Focusing
BP (fBP) extra message m?→j described in the main text. The general expression for perceptron-like factor nodes is
considerably more complicated. For the sake of generality, here we will use the symbol σ to denote input variables of
the node (with subscript j indicating the variable), and τ for the output variable. To each perceptron-like factor µ
is associated a vector of couplings ξµ: in a committee-machine, these represent the patterns for the first layer nodes,
and are simply vectors of ones in the second layer. See figure S3b.

Let us define the auxiliary functions:

fµj

(
{mi→µ}i∈∂µ\j ,mτ→µ, σj

)
=

∑
τ,σ∂µ\j

(
1 + τ mτ→µ

2

)
Θ

τ
 ∑
i∈∂µ\j

ξµi σi + ξµj σj

 ∏
i∈∂µ\j

(
1 + σimi→µ

2

)
(S37)

fµ
(
{mi→µ}i∈∂µ , τ

)
=
∑
σ∂µ\j

Θ

τ
∑
i∈∂µ

ξµi σi

 ∏
i∈∂µ

(
1 + σimi→µ

2

)
(S38)

where ∂µ represents the set of all input variables involved in node µ, σ∂µ = {σi}i∈∂µ the configuration of input variables
involved in node µ, mτ→µ the message from the output variable τ to the node µ (see figure S3b for reference). With

S13

these, the messages from factor node µ to the output variable node τ can be expressed as:

mt+1
µ→τ =

fµ
({
mt
i→µ

}
i∈∂µ ,+1

)
− fµ

({
mt
i→µ

}
i∈∂µ ,−1

)
fµ
({
mt
i→µ

}
i∈∂µ ,+1

)
+ fµ

({
mt
i→µ

}
i∈∂µ ,−1

) (S39)

while the message from factor node µ to input variable node j is:

mt+1
µ→j =

fµj

({
mt
i→µ

}
i∈∂µ\j ,m

t
τ→µ,+1

)
− fµj

({
mt
i→µ

}
i∈∂µ\j ,m

t
τ→µ,−1

)
fµj

({
mt
i→µ

}
i∈∂µ\j ,m

t
τ→µ,+1

)
+ fµj

({
mt
i→µ

}
i∈∂µ\j ,m

t
τ→µ,−1

) (S40)

These functions can be computed exactly in O
(
N3
)
operations, where N is the size of the input, using either

a partial convolution scheme or discrete Fourier transforms. When N is sufficiently large, it is also possible to
approximate them in O (N) operations using the central limit theorem, as explained in [11]. In our tests on the
committee machine, due to our choice of the parameters, we used the approximated fast version on the first layer and
the exact version on the much smaller second layer.

In the fast approximated version, eqs. (S39) and (S40) become:

mt+1
µ→τ = erf

(
atµ√
2btµ

)
(S41)

mt+1
µ→j = mt

τ→µ
gtµ→j (+1)− gtµ→j (−1)

2 +mt
τ→µ

(
gtµ→j (+1) + gtµ→j (−1)

) (S42)

where we have defined the following quantities:

atµ =
∑
i∈∂µ

ξµi m
t
i→µ (S43)

btµ =
∑
i∈∂µ

(
1−

(
mt
i→µ

)2) (S44)

gtµ→j (σ) = erf

atµ→j + σξµj√
2
(
btµ→j

)
 (S45)

atµ→j = atµ − ξ
µ
jm

t
j→µ (S46)

btµ→j = btµ −
(

1−
(
mt
j→µ

)2) (S47)

In [11], eq. (S42) was approximated with a more computationally efficient expression in the limit of large N . We
found that this approximation leads to numerical issues with the type of architectures which we used in our simulation
at large values of α, y and γ. For the same reason, it is convenient to represent all messages internally in “field
representation” as was done in [11], i.e. using hµ→j = tanh−1 (mµ→j) (and analogous expressions for all messages);
furthermore, some expressions need to be treated specially to avoid numerical precision loss. For example, computing
hµ→τ according to eq. (S41) requires the computation of an expression of the type tanh−1 (erf (x)), which, when
computed naïvely with standard 64-bit IEEE floating point machine numbers and using standard library functions,
rapidly loses precision at moderate-to-large values of the argument, thus requiring us to write a custom function to
avoid this effect. The same kind of treatment is necessary throughout the code, particularly when computing the
thermodynamic functions.

The code for our implementation is available at [12].
After convergence, the single-site magnetizations can be computed as:

mj = tanh

∑
ν∈∂j

tanh−1 (mν→j) + tanh−1 (m?→j)

 (S48)

and the average overlap between replicas (plotted in Fig. 5 of the main text) as:

q =
1

N

∑
j

m2
j (S49)

S14

The local entropy is computed from the entropy of the whole replicated system from the BP messages at their fixed
point, as usually done within the Bethe-Peierls approximation, minus the entropy of the reference variables. The result
is then divided by the number of variables N and of replicas y. (This procedure is equivalent to taking the partial
derivative of the free energy expression with respect to y.) Finally, we take a Legendre transform by subtracting the
interaction term γS, where S is the estimated overlap between each replica’s weights and the reference:

S =
1

N

∑
j

mj→?m?→j + tanh (γ)

1 +mj→?m?→j tanh (γ)
(S50)

From S, the distance between the replicas and the reference is simply computed as (1 + S) /2.

B. Focusing BP vs Reinforced BP

As mentioned in the main text, the equation for the pseudo-self-interaction of the replicated Belief Propagation
algorithm (which we called “Focusing BP”, fBP) is (eq. (6) in the main text):

mt+1
?→j = tanh

(
(y − 1) tanh−1

(
mt
j→? tanh γ

))
tanh γ (S51)

See also figure 4 in the main text for a graphical description. The analogous equation for the reinforcement term
which has been used in several previous works is (eq. (7) in the main text):

mt+1
?→j = tanh

(
ρ tanh−1

(
mt
j

))
(S52)

The reinforced BP has traditionally been used as follows: the reinforcement parameter ρ is changed dynamically,
starting from 0 and increasing it up to 1 in parallel with an ongoing BP message-passing iteration scheme. Therefore,
in this approach, the BP messages can only converge (when ρ = 1) to a completely polarized configuration, i.e. one
where mj ∈ {−1,+1} for all j.

The same approach can be applied with the fBP scheme, except that eq. (S51) involves two parameters, γ and y,
rather than one, and both need to diverge in order to ensure that the marginals mj become completely polarized as
well.

In this scheme, however, it is unclear how to compare directly the two equations, since in eq. (S51) the self-reinforcing
message m?→j is a function of a cavity marginal mj→?, while in eq. (S52) it is a function of a non-cavity marginal
mj . In order to understand the relationship between the two, we take a different approach: we assume that the
parameters involved in the two update schemes (γ and y on one side, ρ on the other) are fixed until convergence of the
BP messages. In that case, one can then remove the time index t from eqs. (S51),(S52) and obtain a self-consistent
condition between the quantities m?→j , mj→? and mj at the fixed point:

mj = tanh
(
tanh−1 (m?→j) + tanh−1 (mj→?)

)
(S53)

Therefore eq. (S52) in this case becomes equivalent to:

mj = tanh

(
1

1− ρ
tanh−1 (mj→?)

)
(S54)

to be compared with the analogous expression for the fBP case:

mj = tanh
(
tanh−1 (mj→?) + tanh−1

(
tanh

(
(y − 1) tanh−1 (mj→? tanh γ)

)
tanh γ

))
(S55)

This latter expression is clearly much more complicated, but by letting γ → ∞ and setting y = 1
1−ρ it simplifies

to eq. (S54). Therefore, we have an exact mapping between fBP and the reinforced BP. The interpretation of this
mapping in terms of the reweighted entropic measure (eq. (3) of the main text) is not straightforward, because of the
requirement γ =∞. The γ =∞ case at finite y is an extreme case: as mentioned in the main text, the BP equations
applied to the replicated factor graph (figure 4 of the main text) neglect the correlations between the messages m?→j
targeting different replicas. Since as γ → ∞ these messages become completely correlated, the approximation fails.
As demonstrated by our results, though (figures 5 and 6 in the main text, and figure S5 below), this failure in the
approximation only happens at very large values of γ, and its onset is shifted to larger values of γ as y is increased,
so that even keeping y fixed (but sufficiently large) and gradually increasing γ gives very good results (figure 6 in the

S15

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

�
�

ρ = 0.1

� = 0

� = ½

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

ρ = 0.3

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

�
�

���⋆

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

���⋆

ρ = 0.9ρ = 0.7

Figure S4: Plots of eq. (S55), comparison of protocols defined by eqs. (S57) and (S56) with two different values of
the parameter x. The x = 0 case (thick red lines) corresponds to standard reinforcement. The curves are in fact
very similar across the whole range of ρ ∈ [0, 1] and x ∈ [0, 1], and consequently display similar performance

properties in practice.

main text). A different approach to the interpretation of the reinforcement protocol is instead to consider that it is
only one among several possible protocols. One possible generalization, in which both γ and y start from low values
and are progressively increased, is:

γ = tanh−1 (ρx) (S56)

y = 1 +
ρ1−2x

(1− ρ)
(S57)

The second expression was obtained by assuming the first one and matching the derivative of the curves of eqs. (S54)
and (S55) in the point mj→? = 0. Note that with this choice, both γ → ∞ and y → ∞ in the limit ρ → 1, thus
ensuring that, in that limit, the only fixed points of the iterative message passing procedure are completely polarized,
and consistently with the notion that we are looking regions of maximal density (y →∞) at small distances (γ →∞).
When setting x = 0, this reproduces the standard reinforcement relations. However, other values of x produce the
same qualitative behavior, and are quantitatively very similar: figure (S4) shows the comparison with the case x = 0.5.
In practice, in our tests these protocols have proved to be equally effective in finding solutions of the learning problem.

S16

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

lo
c
a

l
e

n
tr

o
p

y

overlap with the reference � ⋆

RS theory

1RSB theory (� = ∞)

fBP

Figure S5: Comparison of local entropy curves between the fBP results and the analytical predictions, for the case of
the perceptron with α = 0.6. The algorithmic results (blue curve) were obtained with N = 1001 at y = 21, averaging
over 50 samples. Error bars indicate the estimated standard deviation of the mean. The RS results (red curve) were
also obtained with y = 21. The 1RSB results, however, are for the y =∞ case, and it is therefore to be expected

that the corresponding curve is slightly higher.

C. Focusing BP vs analytical results

We compared the local entropy curves produced with the fBP algorithm on perceptron problems with the RS and
1RSB results obtained analytically in [4, 13]. We produced curves at fixed y and α, while varying γ. However, we
only have 1RSB results for the y =∞ case. Figure S5 shows the results for α = 0.6 and y = 21, demonstrating that
the fBP curve deviates from the RS prediction and is very close to the 1RSB case. Our tests show that the fBP curve
get closer to the 1RSB curve as y grows. This analysis confirms a scenario in which the fBP algorithm spontaneously
choses a high density state, breaking the symmetry in a way which seems to approximate well the 1RSB description.
Numerical precision issues limited the range of parameters that we could explore in a reasonable time.

D. Focusing BP on random K-SAT

In this section, we show how to apply the Focusing BP (fBP) scheme on a prototypical constraint statisfaction
problem, the random K-satisfiability (K-SAT) problem [10], and present the results of some preliminary experiments
in which it is used as a solver algorithm.

An instance of K-SAT is defined by N variables and M clauses, each clause µ involving K variables indexed in
∂µ ⊆ {1, . . . , N}, |∂µ| = K. We call α = M/N the clause density. In the notation of this section, variables are
denoted by σi, i = 1, . . . , N , and take values in {−1,+1}. To each clause µ is associated a set of couplings, one for
each variable in ∂µ. The coupling Jµi takes the value −1 if the variable i is negated in clause µ, and +1 otherwise.
A configuration {σi}Ni=1 satisfies the clause µ if ∃i ∈ ∂µ such that Jµi = σi. An instance of the problem is said to be
satisfiable if there exists a configuration which satisfies all clauses. The Hamiltonian for this problem, which counts
the number of violated clauses, is then given by:

S17

0

0.2

0.4

0.6

0.8

1

9.6 9.65 9.7 9.75 9.8 9.85 9.9

su
cc

es
s

pr
ob

ab
ili

ty

clause density 𝛼

Number of variables 𝑁

5000

10000

Figure S6: Probability of finding a solution in random instances of 4-SAT as a function of clause density α using the
fBP algorithm described in the text. The results are shown for two values of N , slightly shifted relative to each

other to improve readability. The points and error bars represent averages and standard deviations over 10 samples.

H (σ) =

M∑
µ=1

∏
i∈∂µ

1− Jµiσi
2

. (S58)

Random instances of the problem are generated by sampling uniformly and independently at random the subsets
∂µ and choosing the couplings Jµi independently in {−1,+1} with equal probability. Random instances of K-SAT are
locally tree-like in the large N limit, therefore the problem is suitable to investigation through the tools of statistical
physics of disordered systems, namely the cavity method [10]. Such investigation in fact led in the past decades to
outstanding theoretical advances in understanding the structure of the problem [10, 14] and to devise state-of-the-art
solvers [15].

In order to apply the cavity method to K-SAT one identifies each clause with a factor node and each variable with a
variable node; it is then convenient to parametrize clauses-to-variables cavity messages with Pµ→i (σi = Jµi) ≡ ηµ→i,
and variables-to-clauses ones with Pi→µ (σi 6= Jµi) ≡ ζi→µ. We also define the variables’ subsets ∂+i and ∂−i as
∂±i = {µ ∈ ∂i : Jµi = ±1}. With these definitions, the zero temperature BP update rules take the form:

πt±,i→µ =π̃t±,i
∏

ν∈∂±i\µ

ηtν→i, (S59)

ζti→µ =
πtJµi,i→µ

πt+,i→µ + πt−,i→µ
, (S60)

ηt+1
µ→i =1−

∏
j∈∂µ\i

ζtj→µ. (S61)

Magnetizations at time t are given by:

mt
i =

π̃t+,i
∏
ν∈∂+i η

t
ν→i − π̃t−,i

∏
ν∈∂+i η

t
ν→i

π̃t+,i
∏
ν∈∂+i η

t
ν→i + π̃t−,i

∏
ν∈∂+i η

t
ν→i

. (S62)

S18

The update rules of the coefficients π̃t±,i depend on the algorithm under consideration. In standard BP, the coefficients
π̃t±,i are set to:

π̃t±,i ≡ 1. (S63)

A common procedure for finding solutions for the K-SAT problem, called BP guided decimation (BPGD), consists
in iterating Eqs. (S59-S61) until convergence; computing marginals according to Eq. (S62); fixing a certain fraction of
variables, the ones with most polarized marginals, to σi = sgn (mi); repeating the procedure on the reduced problem,
until a satisfying configuration is found or a contradiction is produced. (A contradiction occurs when all variables
involved in a clause are fixed to values that violate the clause.)

We can avoid to irrevocably fix the variables at intermediate steps of the algorithm, as in BPGD, using instead the
reinforced BP (rBP) heuristic, which acts as a “soft” decimation. For rBP the new update rule reads:

π̃t+1
±,i =

(
πt±,i

)ρ
. (S64)

In rBP, Eqs. (S59-S61) and (S64) are iterated, while the coefficient ρ is increased up to one. The algorithm stops
when clamping the magnetizations gives a solution, or a contradiction is produced.

For fBP, instead, the update rules are derived from the robust ensemble and are similar to the ones for neural
networks:

mt
i→? =

∏
ν∈∂+i η

t
ν→i −

∏
ν∈∂+i η

t
ν→i∏

ν∈∂+i η
t
ν→i +

∏
ν∈∂+i η

t
ν→i

, (S65)

mt+1
?→i = tanh

(
(y − 1) tanh−1

(
mt
i→? tanh γ

))
tanh γ, (S66)

π̃t+1
±,i = 1±mt+1

?→i. (S67)

We performed some preliminary tests of the effectiveness of fBP as a solver in K-SAT (see Fig. S6), to be expanded
in future investigations. We used the following protocol: we iterated Eqs. (S59-S61,S65-S67) at fixed y = 6 and
increasing γ in steps of 0.01 every 2000 iterations, starting from γ = 0.01. The algorithm is stopped when a solution
is found (by clamping to ±1 the cavity marginals) or when γ = 0.6 is reached without finding any solution. The BP
update equations often converged to a fixed point before reaching 2000 iterations, in which case we skipped to the
next value of γ; in order to aid convergence, we added some damping to the iterative procedure.

We didn’t test extensively the possible heuristic schemes to turn fBP into an efficient solver, therefore there is surely
room for improvement over the one adopted here. Nonetheless, our procedure—when successful—found solutions quite
rapidly, even though it is not as fast as rBP. More importantly, it finds solutions up to high values of α. Defining
αd = 9.38, αc = 9.547 and αs = 9.93 the dynamic, static and SAT/UNSAT transitions respectively in 4-SAT [14], from
Fig. S6 it appears that the algorithmic threshold for fBP is αc < αfBP < αs. In comparison, BPGD starts to fail much
earlier, αBPGD ≈ αd [10]. The fBP performance seems in fact to be rather close to that of the “Survey Propagation
with Backtracking” algorithm of [16] (in particular, the curves in Fig. 1 in that paper can be directly compared and
appear to be similar to those in Fig. S6 in the present paper), although a much more extensive and detailed analysis
(like the one performed in [16]) would be required in order to obtain a good estimate of the algorithmic threshold of
fBP in the large N limit.

[1] Carlo Baldassi. A method to reduce the rejection rate in Monte Carlo Markov Chains on Ising spin models.
http://arxiv.org/abs/1608.05899, 2016.

[2] Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina. Efficient supervised learning in networks with
binary synapses. Proceedings of the National Academy of Sciences, 104:11079–11084, 2007.

[3] Carlo Baldassi. Generalization learning in a perceptron with binary synapses. J. Stat. Phys., 136:902–916, 2009.
[4] Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Subdominant Dense Clusters

Allow for Simple Learning and High Computational Performance in Neural Networks with Discrete Synapses. Physical
Review Letters, 115(12):128101, September 2015.

[5] GJ Mitchison and RM Durbin. Bounds on the learning capacity of some multi-layer networks. Biological Cybernetics,
60(5):345–365, 1989.

[6] Implementation of the Replicated Stochastic Gradient Descent algorithm for binary committee machines. https://github.
com/carlobaldassi/BinaryCommitteeMachineRSGD.jl.

https://github.com/carlobaldassi/BinaryCommitteeMachineRSGD.jl
https://github.com/carlobaldassi/BinaryCommitteeMachineRSGD.jl

S19

[7] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages
685–693. Curran Associates, Inc., 2015.

[8] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university press, 2003.
[9] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy approximations and generalized belief

propagation algorithms. Information Theory, IEEE Transactions on, 51(7):2282–2312, 2005.
[10] Marc Mézard and Andrea Montanari. Information, Physics, and Computation. Oxford University Press, January 2009.
[11] Alfredo Braunstein and Riccardo Zecchina. Learning by message-passing in neural networks with material synapses. Phys.

Rev. Lett., 96:030201, 2006.
[12] Implementation of the Focusing Belief Propagation algorithm for binary committee machines. https://github.com/

carlobaldassi/BinaryCommitteeMachineFBP.jl.
[13] Carlo Baldassi, Federica Gerace, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Learning may need only a few

bits of synaptic precision. Physical Review E, 93(5):052313, May 2016.
[14] Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and Lenka Zdeborova. Gibbs states

and the set of solutions of random constraint satisfaction problems. Proceedings of the National Academy of Sciences,
104(25):10318–10323, 2007.

[15] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation: An algorithm for satisfiability. Random
Structures & Algorithms, 27(2):201–226, 2005.

[16] Raffaele Marino, Giorgio Parisi, and Federico Ricci-Tersenghi. The backtracking survey propagation algorithm for solving
random K-SAT problems. http://arxiv.org/abs/1508.05117, 2015.

https://github.com/carlobaldassi/BinaryCommitteeMachineFBP.jl
https://github.com/carlobaldassi/BinaryCommitteeMachineFBP.jl

	Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes – Supporting Information
	Contents
	Introduction and notation
	The network model
	Patterns
	Energy definition

	Replicated Simulated Annealing
	Computing the energy shifts efficiently
	Efficient Monte Carlo sampling
	Numerical simulations details

	Replicated Gradient Descent
	Gradient computation
	Numerical simulations details

	Replicated Belief Propagation
	Belief Propagation implementation notes
	Focusing BP vs Reinforced BP
	Focusing BP vs analytical results
	Focusing BP on random K-SAT

	References

