

S1 Text

Documentation ImageDP

QUANTITATIVE LASER BIOSPECKLE METHOD FOR THE

EVALUATION OF THE ACTIVITY OF Trypanosoma cruzi USING

VDRL PLATES AND DIGITAL ANALYSIS

 Hilda Cristina Grassi, Lisbette C. García, María Lorena Lobo-Sulbarán, Ana Velásquez,

Francisco A. Andrades-Grassi, Humberto Cabrera, Jesús E. Andrades-Grassi, Efrén D.J.

Andrades

Image Delta Processor (ImageDP)

/*

* Processes one folder and outputs one result. The folder must contain only image

files.

* One grand total is output at the end. Please see the inline comments for more

information on

* the used algorithm.

*

* Generally, if 3 images are present in the folder with the following grayscale pixel

values:

*

* Image 1 (i1):

*

* | 1 3 1 |

* | 0 1 2 |

* | 2 2 1 |

*

* Image 2 (i2):

*

* | 2 3 1 |

* | 1 1 3 |

* | 2 4 1 |

*

* Image 3 (i3):

*

* | 2 2 0 |

* | 1 1 3 |

* | 1 4 0 |

*

* The images will first be converted to one dimensional arrays:

*

* i1: [1, 2, 1, 0, 1, 2, 2, 2, 1]

* i2: [2, 3, 1, 1, 1, 3, 2, 4, 1]

* i3: [2, 2, 0, 1, 1, 3, 1, 4, 0]

*

* The averages will be calculated by doing a pixel by pixel difference calculation

using:

*

* (abs(i1[0] - i2[0]) + abs(i1[1] - i2[1]) + ... + abs(i1[n] - i2[n])) / n

*

* where n is the image width*height. So the averages in this example will be:

*

* avg(i1, i2): (1 + 1 + 0 + 1 + 0 + 1 + 0 + 2 + 0) / 9 = 0.667

* avg(i2, i3): (0 + 1 + 1 + 0 + 0 + 0 + 1 + 0 + 1) / 9 = 0.444

*

* The average of the two averages is:

*

* avg(avg(i1, i2), avg(i2, i3)): (0.667 + 0.444) / 2 = 0.5556

*

* So 0.5556 is the result for the folder being processed.

*/

The algorithm is:

1.- List all files in the folder

2.- Sort the files using the number in their name.

3.- Global counters:

3.1.- tot will store the sum of all the averages

3.2.- count will store the number of averages

4.- Iterate through the sorted list of files

4.1.- file1 is the image file at the current iterator position

4.2.- file2 is the next image file

4.3.- Load both images into memory. This step loads the actual image file.

4.4.- Extract the pixel array of image values from both images. This is a one

dimensional array

with length w*h, where w is the image width and h is the image height. We will now

process the

array linearly, as the process is a per pixel comparison, not a two dimensional

operation.

Please note that the images are assumed to be in grayscale, as we cannot extract a

single numeric

value for comparison and average. Only the R channel is stored. Please see the

getImagePixels

documentation for more information.

4.5.- sum will store the sum of all the pixel differences between image1 and image2

4.6.- Iterate through all the pixels in image1

4.6.1.- Calculate the absolute value of the difference between the pixel in image1 and

image2

at the same index (j)

4.6.2.- Add the difference to the sum

4.7.- Calculate the average, which is the sum of differences divided by the length of

the one dimensional

array containing the image pixels

4.8.- Increase the total sum of averages

4.9.- Increase the counter of number of averages

5.- Calculate the final average, which is the total averages divided by the number of

comparisons made.

6.- Display the result

The documentation of the function that extracts the pixels from the images is:

/*

* Extracts the pixel values from the image that was read from disk. Please note that

RGB images will not

* be correctly processed, as we cannot extract one single value per pixel (each pixel

contains three values:

* R, G and B). Since images are assumed grayscale before processing, we will only

store the R channel in the

* final array.

*

* The final array is stored in only one dimension, as we will process the images

linearly (we will do a pixel

* by pixel comparison of two images calculating the difference).

*/

