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/* 

* Processes one folder and outputs one result. The folder must contain only image 

files. 

* One grand total is output at the end. Please see the inline comments for more 

information on 

* the used algorithm. 

*  

* Generally, if 3 images are present in the folder with the following grayscale pixel 

values: 

*  

* Image 1 (i1): 

*  

* | 1 3 1 | 

* | 0 1 2 | 

* | 2 2 1 | 

*  

* Image 2 (i2): 

*  

* | 2 3 1 | 

* | 1 1 3 | 

* | 2 4 1 | 

*  

* Image 3 (i3): 

*  

* | 2 2 0 | 

* | 1 1 3 | 

* | 1 4 0 | 

*  

* The images will first be converted to one dimensional arrays: 

*  

* i1: [1, 2, 1, 0, 1, 2, 2, 2, 1] 

* i2: [2, 3, 1, 1, 1, 3, 2, 4, 1] 

* i3: [2, 2, 0, 1, 1, 3, 1, 4, 0] 

*  

* The averages will be calculated by doing a pixel by pixel difference calculation 

using: 

*  

* (abs(i1[0] - i2[0]) + abs(i1[1] - i2[1]) + ... + abs(i1[n] - i2[n])) / n 

*  

* where n is the image width*height. So the averages in this example will be: 

*  

* avg(i1, i2): (1 + 1 + 0 + 1 + 0 + 1 + 0 + 2 + 0) / 9 = 0.667 

* avg(i2, i3): (0 + 1 + 1 + 0 + 0 + 0 + 1 + 0 + 1) / 9 = 0.444 

*  

* The average of the two averages is: 

*  

* avg(avg(i1, i2), avg(i2, i3)): (0.667 + 0.444) / 2 = 0.5556 

*  



* So 0.5556 is the result for the folder being processed.  

*/ 

The algorithm is: 

1.- List all files in the folder 

2.- Sort the files using the number in their name. 

3.- Global counters: 

3.1.- tot will store the sum of all the averages 

3.2.- count will store the number of averages 

4.- Iterate through the sorted list of files 

4.1.- file1 is the image file at the current iterator position 

4.2.- file2 is the next image file  

4.3.- Load both images into memory. This step loads the actual image file. 

4.4.- Extract the pixel array of image values from both images. This is a one 

dimensional array 

with length w*h, where w is the image width and h is the image height. We will now 

process the 

array linearly, as the process is a per pixel comparison, not a two dimensional 

operation. 

Please note that the images are assumed to be in grayscale, as we cannot extract a 

single numeric 

value for comparison and average. Only the R channel is stored. Please see the 

getImagePixels 

documentation for more information. 

4.5.- sum will store the sum of all the pixel differences between image1 and image2 

4.6.- Iterate through all the pixels in image1 

4.6.1.- Calculate the absolute value of the difference between the pixel in image1 and 

image2 

at the same index (j) 

4.6.2.- Add the difference to the sum 

4.7.- Calculate the average, which is the sum of differences divided by the length of 

the one dimensional 

array containing the image pixels 

4.8.- Increase the total sum of averages 

4.9.- Increase the counter of number of averages 

5.- Calculate the final average, which is the total averages divided by the number of 

comparisons made. 

6.- Display the result 

 

The documentation of the function that extracts the pixels from the images is:  
 

/* 

* Extracts the pixel values from the image that was read from disk. Please note that 

RGB images will not 

* be correctly processed, as we cannot extract one single value per pixel (each pixel 

contains three values: 

* R, G and B). Since images are assumed grayscale before processing, we will only 

store the R channel in the 

* final array. 

*  

* The final array is stored in only one dimension, as we will process the images 

linearly (we will do a pixel 

* by pixel comparison of two images calculating the difference). 

*/ 

 

 


