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1. Brief Review of Existing BSS Methods and Their 

Relationship to CAM 

Over the past fifteen years, a variety of BSS techniques have been continuously reported and 

tested on synthetic and real data, including Independent Component Analysis (ICA) and its 

variants, which assume sources are mutually statistically independent or uncorrelated
1-3

, and 

Non-negative Matrix Factorization (NMF) and its variants, which assume mixing proportions 

and sources are non-negative
4-6

. NMF is known to have non-unique solutions and can be trapped 

in a local optimum of its objective function
6
. Efforts, such as the incorporation of sparsity 

constraint
5-6

, have been made to obtain more well-posed problems under the NMF framework
6-9

. 

Some other extensions of NMF include relaxation on the signs of the matrix factorization. Semi-

NMF allows the mixing matrix to have mixed signs and convex-NMF further requires column 

vectors in A to be convex combinations of data points in X
10

. While these algorithms can 

usefully extract interesting patterns from mixture observations, they may prove inaccurate or 

even incorrect in the face of real-world BSS problems, where their pre-imposed assumptions 

may not be valid. In particular, many source signals are statistically dependent and may not be 

globally sparse
11-12

.  

 Alternative BSS techniques exploit Well-Grounded Points (WGPs) in non-negative 

source patterns, i.e. points with very high values in one source relative to all other sources
7,12-13

. 

Under the assumption of WGPs, column vectors of the mixing matrix can be estimated by 

identifying WGPs located at the corners of the mixture observation scatter simplex and, 

subsequently, the hidden source signals can be recovered. N-FINDR is one of the earliest 

methods based on WGPs and identifies WGPs by searching for the maximum-volume simplex 

formed by the data points
14

. Vertex Component Analysis (VCA) implements a fast WGP 
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detection scheme by iteratively projecting data onto a direction orthogonal to the subspace 

spanned by the WGPs already determined and selecting the data point corresponding to the most 

extreme projection as the next WGP
15

. The maximum-volume strategy has also been applied in 

the signal space by nonnegative least-correlated component analysis for recovering well-

grounded sources
7
. A linear programming method has been used to identify WGPs by examining 

each observed data point to see whether it is confined within the cone formed by other data 

points
16

. For cases where WGPs are absent but nearly pure-source data points exist, a constrained 

NMF method considering both the reconstruction error and the minimization of the simplex 

volume determined by the estimated mixing matrix column vectors has been proposed
17

. A post-

processing framework on the results obtained by a WGP-based solution has been developed 

using either extra mixture data or reliable peak structures of source signals, also for the situations 

where WGPs are absent
18

.  

 However, there are several potential limitations associated with existing techniques and 

our CAM work addresses all these limitations. First, existing methods usually lack a theoretical 

proof of model identifiability and solution optimality
12

. Many methods adopt the strategy of 

identifying WGPs without a stringent mathematical framework showing its validity. Second, 

many existing methods can be used only in the exact-determined and over-determined cases, 

where the number of mixtures is no less than the number of sources, but not in the under-

determined case, where there are more sources than mixtures. Third, their solutions (including 

model selection) may be sensitive to noise and outliers in the data. Fourth, some methods do not 

allow negative elements in the mixing matrix, which limits their applicability. Fifth, many 

methods lack the ability to detect the number of sources and thus require this number to be 

known a priori.  
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 Let us further discuss the difference between CAM and some recent works on separating 

non-negative well-grounded sources. There is significant prior literature studying the separation 

of non-negative well-grounded sources within the NMF framework
19-23

. Kumar et al. proposed a 

method that identifies WGPs one-by-one by detecting the extreme ray farthest away from the 

cone formed by the WGPs that have already been detected
20

. Esser et al.  developed a convex 

model for NMF that also uses a clustering method to reduce data points and noise
19

. Benson et al. 

proposed a scalable and efficient method for solving problems where      
21

. Gillis and Luce 

proposed a linear programming model to robustly identify well-grounded sources from noisy 

data
22

. Compared to these methods, which are based on a non-negative mixing matrix, CAM has 

greater applicability by allowing the mixing matrix to have both positive and negative elements. 

Gillis et al. presented a fast recursive algorithm for identifying well-grounded sources which 

requires the mixing matrix to have full column rank but allows it to have mixed signs
23

. 

Compared to this work, CAM can identify not only a fully ranked mixing matrix, but also a 

simplicial mixing matrix with linearly dependent column vectors. Kim and Smaragdis modeled 

data with multiple small convex cones to accommodate manifold structure in the source signals
24

, 

whereas CAM fits one convex cone to the data. 

 Compared to our previous works for separating non-negative well-grounded sources, 

such as nonnegative Least-correlated Component Analysis (nLCA)
7
 and Convex Analysis of 

Mixtures of Non-negative Sources (CAMNS)
13

, our current work CAM has several significant 

differences and advantages. First, CAM operates in the M-dimensional scatter space. It first 

identifies the mixing matrix through edge detection in the scatter plot, and then recovers the 

sources using the estimated mixing matrix. CAM requires only a limited number of WGPs or 

near-WGPs and its power for estimating the model parameters mainly depends on the diversity 
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of mixing proportions. Methods like nLCA and CAMNS are different. They operate in the N-

dimensional signal space, in which they identify a     dimensional subspace where the source 

signal vectors reside. They then estimate the source signal vectors by either identifying the 

convex hull extreme points or maximizing the volume of the solid region formed by the 

estimated sources. Second, as a theoretical contribution of our current work, we prove for the 

first time a sufficient and necessary condition for identifying the mixing matrix through edge 

detection, which is the assumption (A3), i.e. simplicial mixing matrix. Methods like nLCA and 

CAMNS depend on the assumption that the mixing matrix has full column rank, which is the 

assumption (A4), a sufficient but not necessary condition for (A3) to hold. (A4) can only be valid 

in the exact-determined and over-determined scenarios, which limits the applicability of these 

methods to these two scenarios. But CAM, based on (A3), can identify the mixing matrix and 

source number in all cases --  exact-, over-, and under-determined scenarios. Third, the CAM 

algorithm includes a model order selection component to identify the source number, while 

methods like nLCA and CAMNS do not. They require the true source number to be known a 

priori as an input parameter. Fourth, methods like nLCA and CAMNS use front-end Principal 

Component Analysis (PCA) to reduce the rank (dimensionality) of the data and assume the 

number of sources is one greater than the reduced data rank. The CAM algorithm does not 

require rank or dimensionality reduction. Without prior knowledge or an accurate estimation of 

the number of sources, rank or dimensionality reduction may over-reduce the data rank or 

dimensionality, with the grave consequence of transforming an exact-determined or over-

determined problem into an under-determined one, for which the sources are usually 

unidentifiable.  

 There is also literature discussing NMF identifiability conditions
25-26

. Donoho and 
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Stodden proposed conditions under which there is a unique NMF solution for separating well-

grounded sources
25

. However, the conditions are restrictive as they only apply to sources 

consisting of a finite set of "parts" and a finite set of articulations of these parts. Uniqueness of 

the solution is only ensured when the mixtures contain all different combinations of the parts and 

their articulations, which may be unrealistic in practice. Comparatively, CAM exploits 

constraints on the mixing matrix to ensure its identifiability, and thus can be applied when there 

are a limited number of mixtures. Arora et al. proved the existence of an NMF algorithm that 

runs in polynomial time and outputs well-grounded sources and a non-negative simplicial mixing 

matrix that considers only          ,             26
. Our CAM work can be viewed as an 

extension of their work by proposing in assumption (A3) a simplicial mixing matrix that allows 

mixed signs to ensure its identifiability. 

 Both probabilistic methods and deterministic methods have been used to solve BSS 

problems, and there is usually a connection between the two kinds of methods
27

. The proposed 

CAM method is largely a deterministic approach. It is an interesting topic to build a probabilistic 

model for separating non-negative well-grounded sources. We are currently investigating a 

probabilistic CAM model that combines geometric convex analysis with probabilistic modeling. 

Within a probabilistic modelling framework, information-theoretic criteria, such as minimum 

description length
12

, can be used for model selection to determine the source number. 
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2. Definitions of Recovery Accuracies on Mixing Matrix 

and Sources 

We evaluate the algorithm performance by comparing the estimates of the mixing matrix and 

sources to the ground truth, together with the accuracy of source number estimation measured 

over a number of data set replications. We apply the minimum average angle to assess the 

accuracy in estimating the true mixing matrix A, defined as 

     
 

 
                                                                       

where    is the estimate of A.    takes a value between 0 and 1, with      indicating perfect 

estimation. The calculation of minimum average angle produces an association between the 

column vectors in    and the column vectors in A, which also indicates the association between 

estimated sources and ground truth sources. To assess the accuracy of source recovery, we use 

the average correlation coefficient between true sources and their estimates, i.e. 

   
 

 
          

 

   

                                                                

where     is the estimate of the kth source    that is the kth row of source matrix S, and        

denotes the correlation coefficient between two input vectors.  
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3. Performance Comparison With Benchmark BSS 

Methods on Numerically Mixed Gene Expression Data 

We compared the performance of CAM with eight most relevant methods, including non-

negative Independent Component Analysis (nICA)
2
, Statistical Non-negative Independent 

Component Analysis (SNICA)
3
, Non-negative Matrix Factorization (NMF)

4
, Sparse Non-

negative Matrix Factorization (SNMF)
5
, N-finder algorithm (N-FINDR)

14
, Vertex Component 

Analysis (VCA)
15

, Convex Analysis of Mixtures of Non-negative Sources (CAMNS)
13

, and 

Nonnegative Least-Correlated Component Analysis (nLCA)
7
.  

 As a more complex problem, we considered numerical mixtures of four real microarray 

gene expression profiles (   ), which are from four distinct ovarian cancer subtypes, i.e. 

serous, mucinous, endometrioid, and clear cell
28

. The sample labels of the gene expression 

profiles serving as sources are CHTN-OS-115, UM-OM-001, CHTN-OE-047, and CHTN-OC-

033
28

. The sources contain expression levels of        genes, some of which are 

approximately WGPs. The source profiles are highly correlated, with an average pair-wise 

correlation coefficient of 0.83; also, the source vectors of many genes have very small vector 

norms. To enable applicability of the NMF methods, we limited mixing matrices to be non-

negative. We consider exact-determined (     ), over-determined (       ), and 

under-determined (       ) scenarios, 100 randomly constructed mixing matrices for 

each scenario, and 6 different SNR levels based on zero-mean white Gaussian additive noise. 

The mixing matrices are required to have unit row-sums. In the exact-determined and over-

determined scenarios, they have a condition number   4, so that (A4) holds well. In the under-

determined scenario, they satisfy that                ,               
       to ensure that (A3) 
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holds well, where          
  is the projection of    on       . To enable the applicability of NMF 

and SNMF, all observed negative values in data were truncated to 0. In total, there are 1,800 

simulation data sets. 

 For CAM, we set the sector numbers      and     , with the results indexed by 

CAM-20S and CAM-30S, respectively. Data preprocessing removed half of the data points with 

small vector norms. The sector-based clustering always chose the best outcome from 20 

independent runs. Stability analysis used 30 cross-validations. We calculated the performance 

measures for recovering the mixing matrix and the whole gene expression source profiles. More 

importantly, we also calculated source recovery accuracy over the top source-specific genes -- 

800 genes for each ovarian cancer subtype, selected to maximize          
 
    ,         . The 

distinct source patterns over these genes that are highly expressed in a specific ovarian cancer 

subtype are of great interest in biological study
29

. 

 When evaluating the accuracies of recovering the mixing matrix, sources, and distinct 

patterns of sources, the number of sources (   ) was assumed known and used as an input 

parameter for all the algorithms. All mixture gene expression profiles were normalized by 

scaling to have a unit sum before applying CAM and other methods. Principal Component 

Analysis (PCA) was used to convert an over-determined case to an exact-determined case when 

applying nICA, SNICA, and N-FINDR in the over-determined experimental scenario
1,7

, because 

these methods can only work in the exact-determined case. Random initialization was used for 

setting the initial algorithm parameters needed to run the methods. NMF used the multiplicative 

update rule proposed in
30

. SNMF used the multiplicative update rule proposed in
5
, with the 

source sparseness and model fitting error equally weighted in its objective function. NMF and 

SNMF terminated when the absolute changes of their objective function values were no larger 
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than 0.0001% or when their numbers of interactions exceeded 5000. The iterative gradient search 

algorithm of nICA terminated when the mean squared error or its absolute change is smaller than 

1×10
   9

 or when the number of interactions exceeded 5000
2
. SNICA used a simulated annealing 

algorithm based on constrained Metropolis-type Monte Carlo search to minimize the mutual 

information between recovered sources
3
. In the initial stage, the Metropolis temperature 

parameter was set at 0.01, and in the refine stage it was set at 1×10
   6

. The algorithm terminated 

when the minimum mutual information obtained during the entire run did not decrease in 200 

successive Monte Carlo steps. The VCA algorithm requires the SNR to either be estimated or to 

be input to the algorithm. We found that VCA performance was very poor when the algorithm 

used its own internal estimation of the SNR. Thus, in our experiments we input the SNR as 100 

dB, which basically indicates the data is almost noise-free. This gave more reasonable VCA 

performance. Random initialization was used for CAMNS as suggested in the original paper
13

. 

 Fig. S1 shows the performance results in the exact-determined and over-determined 

scenarios, when the correct number of sources is given. The estimation accuracies on the mixing 

matrix, whole hidden sources, and distinct source patterns, are averages over 100 simulation 

datasets. It can be seen that both CAM-20S and CAM-30S outperform all eight peer methods in 

all cases, and most importantly, they consistently achieve higher accuracy in recovering the 

distinct source patterns. It should be noted that the use of an overall correlation coefficient in 

assessing the estimation accuracy of sources may be misleading when the underlying sources are 

already highly correlated, and the correlation coefficient calculated over the distinct source 

patterns should be a more meaningful accuracy measure
12

. It is not surprising to see that the 

source recovery accuracies of nICA were usually lower than those of other methods, because the 

sources in this comparison are correlated and violate the basic assumption of nICA that the 
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sources must be uncorrelated. In all circumstances NMF and SNMF consistently produced 

similar results, indicating when the sources are not globally and sufficiently sparse, the 

difference between the performances of SNMF and NMF is insignificant. Though VCA, N-

FINDR, nLCA, and CAMNS also exploit the idea of well-grounded sources, they are very 

sensitive to noise or outliers and thus produce unsatisfactory performance compared to CAM. 

 

 
        (a)          (b)        (c) 

 
        (d)          (e)        (f) 

 

Figure S1    Performance comparison of CAM and peer methods. (a) and (d) are comparisons on accuracy of 

recovering the mixing matrix in the exact-determined scenario and over-determined scenario, respectively. (b) and 

(e) are comparisons on accuracy of recovering sources in the exact-determined scenario and over-determined 
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scenario, respectively. (c) and (f) are comparisons on the accuracy of recovering distinct patterns of sources in the 

exact-determined scenario and over-determined scenario, respectively. 

 

 To assess the performance of stability based model selection (a unique feature of CAM) 

at each SNR level, we measured the frequency with which CAM correctly detected the number 

of sources, over the 100 simulation datasets. Fig. S2 shows this accuracy at different SNR levels 

in exact-determined and over-determined scenarios. For both CAM-30S and CAM-20S, the 

number of sources (   ) was always accurately detected for SNR equal to or higher than 25dB 

in exact-determined and over-determined scenarios. At lower SNR levels, CAM-20S shows a 

more robust performance against noise than CAM-30S. 

 

 
    (a)     (b) 

Figure S2      Model order selection accuracy of CAM. (a) and (b) are the model order selection accuracies obtained 

in the exact-determined and over-determined scenarios, respectively. The model order selection accuracy of CAM-

30S at 19dB is 97% and not drawn in (a), because it is misleading. At 19dB, some of the estimates of mixing matrix 

obtained by CAM-30S tend to be a permutation and scaling matrix, which indicates poor unmixing. Without 

effective unmixing, the mixture data dimension is mistaken as the estimated source number that equals the true 

source number in the exact-determined case, which gives rise to the misleading high model order selection accuracy. 
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 Fig. S3a shows that CAM can recover the mixing matrix reasonably well over the entire 

tested SNR range in the under-determined scenario, when the number of sources is given. Fig. 

S3b shows the accuracy of model order selection in the under-determined scenario, indicating 

that when the SNR level is higher than 25dB both CAM-20S and CAM-30S detect the correct 

source number (i.e. 4) on more than 80% of the datasets. In both Fig. S3a and Fig. S3b, some 

slight performance drop is observed in the under-determined scenario when the SNR is increased 

toward its high end, possibly due to over-compensation for the noise by the clustering scheme 

when the noise level is low. 
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     (a)            (b) 

Figure S3    The performance of CAM on recovering (a) the mixing matrix and (b) the source number in the under-

determined scenario. 

 

 To compare computational complexity of the methods, we recorded the execution times 

of all methods, analyzing the 100 datasets of 22dB SNR in the exact-determined scenario on a 

computer with a 1.60GHz CPU. The analyses were run with the true number of sources known 

and with the parameter setting as described above. All methods were implemented in Matlab for 
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a fair comparison, expect for SNICA, which was implemented in C. The mean and standard 

deviation of execution times in seconds are presented in Table S1. VCA is the fastest among all 

methods, followed by nLCA, and then nICA, CAMNS, SNMF, N-FINDR and NMF. CAM is 

slower than these methods, but faster than SNICA, which is the slowest among all competing 

methods, even with its implementation in C. CAM-30S is slower than CAM-20S as expected, 

because sector-based clustering takes more time when there are more sectors and the estimation 

of mixing matrix column vectors through minimization of model fitting error may also take more 

time due to possibly a larger number of detected edges. 

 

Table S1    Comparison of execution times (in seconds) for different methods 

Method Mean Standard Deviation 

CAM-20S 24.45 2.51 

CAM-30S 33.00 4.03 

NMF 7.87 4.31 

nICA 1.59 0.33 

N-FINDR 5.66 0.04 

SNMF 5.15 1.97 

SNICA 62.11 2.31 

VCA 0.02 0.01 

CAMNS 3.84 2.08 

nLCA 1.11 0.04 
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4. Sensitivity Study of Removing Small-norm Data Points 

in Data Preprocessing 

In the data preprocessing step, a portion of the data points whose norms are small are excluded 

for the estimation of the mixing matrix, because they potentially have low local SNR. A different 

percentage of data points, varied from 30% to 50%, were removed in each of the analyses 

conducted. Here, we study how sensitive the analysis results are to the choice of the percentage 

of data points removed.  

The analysis of breast cancer DCE-MRI data was already performed removing 30% of 

the pixels whose vector norms were small (see the section of Analysis of Breast Cancer DCE-

MRI Data in the main text). We added two more experiments performing the same analysis, but 

removing 40% and 50% of the pixels whose vector norms are small, while keeping all other 

algorithm parameters unchanged. Table S2 shows the NMI indices associated with different 

potential source numbers for model order selection. The optimal source number with the 

minimum NMI index (indicated by bold font in Table S2) is 3 for both experiments and is the 

same as the source number detected in the original analysis with 30% of the pixels removed (see 

Table 1). Fig. S4 shows the tracer concentration changes of the identified compartments over 

time, which are the mixing matrix column vectors after scaling to have a unit sum. Comparing 

Fig. S4 with Fig. 4b, we see that both new experiments give time-course tracer concentration 

changes almost identical to those obtained in the original analysis with 30% of the pixels 

removed. Also, we use numeric measurements    and    (defined in Supplementary Information 

Section 2) to evaluate the similarity between results obtained with different percentages of data 

points excluded. Both    and    are between 0 and 1, with 1 indicating A and    or S and    

perfectly match. Taking the mixing matrix and sources estimated with 30% of the pixels 
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removed as A and S and the mixing matrix and sources estimated with 40% of the pixels 

removed as    and   , we calculate           and          . Keeping A and S unchanged 

and taking the mixing matrix and sources estimated with 50% of the pixels removed as    and   , 

we have           and          . We can see when the percentage of pixels removed is 

varied between 30% and 50%, CAM outputs highly similar (stable) results, including the 

estimated mixing matrix and sources. 

 

 

Table S2    NMI indices associated with different source numbers obtained on the  DCE-MRI data. 

Source Number 2 3 4 5 6 7 8 9 

DCE-MRI data (removing 40% of data points) 0.33 0.29 0.56 0.65 0.74 0.67 0.66 0.73 

DCE-MRI data (removing 50% of data points) 0.34 0.32 0.67 0.54 0.70 0.75 0.74 0.76 

 

 

 

Figure S4    Tracer concentration changes of the identified compartments over time. (a) Analysis results with 40% 

of the pixels removed. (b) Analysis results with 50% of the pixels removed. 

 

 

The original analysis of skeletal muscle regeneration gene expression data was performed 

removing 40% of the genes whose vector norms were small (see the section of Analysis of 
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Muscle Regeneration Time-Course Gene Expressions in the main text). We added two more 

experiments performing the same analysis but while removing 30% and 50% of the genes whose 

vector norms are small, and keeping all other algorithm parameters unchanged. Table S3 shows 

the NMI indices associated with different potential source numbers for model order selection, 

The optimal source number with the minimum NMI index (indicated by bold font in Table S3) is 

4 for both experiments and is identical to the source number detected in the original analysis with 

40% of the genes removed (see Table 1). Fig. S5 shows the time activity curves of the identified 

sources that are the mixing matrix column vectors. Comparing Fig. S5 with Fig. 5, we can see 

both new experiments give time activity curves highly similar to those obtained in the original 

analysis with 40% of the genes removed. Taking the mixing matrix and sources estimated with 

40% of the genes removed as A and S and the mixing matrix and sources estimated with 30% of 

the genes removed as    and   , we calculate           and          . Keeping A and S 

unchanged and taking the mixing matrix and sources estimated with 50% of the genes removed 

as    and   , we have            and            We can see that when the percentage of 

removed genes is varied between 30% and 50%, CAM outputs highly similar (stable) results. 

The sensitivity study shows that the analysis results of CAM, including the estimated 

mixing matrix and sources, are quite stable when the percentage of removed small-norm data 

points changes over a relatively large range, i.e. 30%~50%. A reason for such stable results is 

that the mixing matrix column vectors are estimated based on sector central rays obtained 

through sector-based clustering, which relies more on large-norm data points than small-norm 

data points, because the large-norm data points contribute more to the clustering distortion that 

the sector-based clustering algorithm locally minimizes.   
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Table S3    NMI indices associated with different source numbers obtained on skeletal muscle regeneration gene 

expression data. 
Source Number 2 3 4 5 6 7 8 9 

Skeletal muscle regeneration gene expression 

data (removing 30% of data points) 
0.54 0.71 0.43 0.57 0.64 0.72 0.76 0.77 

Skeletal muscle regeneration gene expression 

data (removing 50% of data points) 
0.46 0.68 0.45 0.59 0.67 0.67 0.70 0.74 

 

 

Figure S5    Time activity curves of the identified sources detected on the skeletal muscle regeneration gene 

expression data. (a) Analysis results with 30% of the genes removed. (b) Analysis results with 50% of the genes 

removed. 
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4. Proof of Lemma 1 

 First, we prove that (A3) is a sufficient condition. Suppose that (A3) holds.     

           , because        ,    can be represented by         
 
   ,     ,             . 

Then we have               
 
       , which indicates     , because otherwise           

or           , and (A3) is violated. Thus,      
 
         . Because (A3) holds,     , 

                           , where         is the matrix resulting from removing the 

kth and jth columns from A. This indicates that    must be a trivial non-negative combination of 

    and thus    is an edge. 

 Second, we prove that (A3) is a necessary condition. Suppose that (A3) is not satisfied. 

Then,           ,           or           . Also,       ,           ,    , and 

    , because otherwise the model is degenerate.                   
 
       ,     , 

           and    . Because     ,       and    . We can represent    by    

              
 
       . Thus    is a non-trivial combination of     and is not an edge. In a 

similar way, we can show that            also makes    a non-trivial combination of     and 

thus is not an edge. This indicates that (A3) must be satisfied for             to be the edges. 
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5. Proof of Lemma 2 

 Any vector v      can be represented by v      
 
          

 
          

 
   , 

where     ,           . Moreover,      
 
    is a K dimensional non-negative vector. 

Therefore, v     , and we have proved          . 

 Let                     be the indices of a WGP set, where         
 is a WGP of source 

k. Any vector v      can be represented by  

       

 

   

  
  

          

        

 

   

  

where     ,           . Obviously,             
   , so v     , and we have proved 

         . 

 Therefore,          . 

  

 

  



22 

 

6. Proof of Theorem 2 

 First, we assume that               
    , which means          . Because    

    , we can write         
 
                  

 
       , where     ,           . 

Because          ,     . We can further write 0       
 
                 

       
 
                 , where      

 
                 is a non-negative vector. Actually, 

it must be a zero vector, because otherwise (A3) is violated. Because (A1) is satisfied,    is a non-

negative, non-zero vector,           . Then we must have     ,     , and     . So    

can only be a trivial non-negative combination of          , which means that    is a lateral edge 

of     . 

 Second, suppose that               
    , which means          . Also, for 

simplicity of discussion, assume that           have different vector directions, i.e. no vector is a 

positive scaling of another vector.    can be represented by         
 
       , where     , 

    , and      for at least two data points other than   . Thus we can write    as a non-

trivial non-negative combination of          , for example,                  
 
       , which 

means that    is not a lateral edge of     . Therefore,    can be a lateral edge of      only if 

              
    . 
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7. Proof of Theorem 3 

 We define maximum source dominance with respect to a normalized version of the data 

points. Because A
 
has full column rank, there exist K linearly independent rows in A forming a 

basis, i.e. any real-valued K-dimensional vector can be formed by linear combination of the K 

row vectors in A, including any non-negative vectors. Thus, there must exist a vector   satisfying 

      ,           . The mixture data vectors are scaled to have unit inner products with  , i.e.  

    
  

    
 

   

    
  

  

    
   

  

    
 

 
 
 
 
 
 
        

    
 

        

     
 
 
 
 
 

        

where                                  
 
 and                         Obviously, 

                     ,             , and       
 
     .       defines the level/abundance of 

source k in the nth data point after normalization. Because the normalization only performs a 

positive scaling of the data vectors, the lateral edges of       remain the same as those of      

and thus can be identified by the edge detection strategy implied by Theorem 2. 

 Consider   
  
 , whose kth source abundance is the largest, i.e. such that 

  
                      

  
  
  

 
  
 

     
 

 
     
 
   

       
 
   

  
   

   

    
   

 
   

 

   

  

    
        

 

   

  

where     ,             , and        
       

   
 
    . Obviously,       and        

   . 

Because   
  
         

 
   , we can write 
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Because           are linearly independent,   
    

           
 
           

    
            

    Define 

              
    

   and               
    

  . We have      ,      , and thus         
 

 . So,   
  
  lies within a convex hull formed by            . Consider a vertex of this convex hull, 

denoted by   
  
  , which also achieves the maximum dominance of source k. Because   

  
         

and based on the above derivation, we must have   
  
      

 
   

 
   ,   

 
  ,    

     
  , and 

  
 

  ,      . Because   
  
   is a vertex of the convex hull, it can only be a trivial combination 

of             (i.e. if   
 

   for any     , then   
  
      ), which indicates that   

  
   can only 

be a trivial combination of     . Thus   
  
   is a lateral edge of       and     , and can be 

identified by the CAM solution. Note that       
   is a special case, wherein the convex hull 

reduces to a single point vertex, and in such a case   
  
  is a lateral edge identified by the CAM 

solution.  
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