A TGFβ-PRMT5-MEP50 Axis Regulates Cancer Cell Invasion through Histone H3 and H4 Arginine Methylation Coupled Transcriptional Activation and Repression

Hongshan Chen*°, Benjamin Lorton°, Varun Gupta†, and David Shechter°*

°Department of Biochemistry, †Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461

*For correspondence: david.shechter@einstein.yu.edu; hongshan.chen@einstein.yu.edu

Supplementary Figure S1, Related to Figure 1. PRMTs expression profile in lung cancer cell line and PRMT5 and MEP50 shRNA knockdown.

A. Heatmap of gene expression of PRMT 1-9 from TCGA lung cancer RNA-Seq data in normal and patients with lung adenocarcinoma (LUAD) or squamous cell carcinoma (LUSC), ranked by sample type (tumor or normal tissue).

B. Whole cell lysate immunoblots for PRMTs and MEP50 in the lung fibroblast cell line (IMR90) and corresponding lung cancer cell lines. GAPDH is a loading control.

C. Whole cell lysate immunoblots for PRMT5 and MEP50 in A549 cells (Lung adenocarcinoma). GAPDH is a loading control. Different shRNAs against PRMT5 or MEP50 are indicated. shRNAs against GFP or empty vector (PLKO.1) were used as control.

Figure S2, **Related to Figure 2**. Transcriptome is dramatically altered upon PRMT5-MEP50 knockdown.

A. The replicates of the PRMT5 and MEP50 knockdown RNA-Seq are highly correlated as illustrated by DESeq2 clustering.

B. Volcano plot of Spearman's correlation coefficient for the differentially regulated genes altered in both PRMT5 and MEP50 knockdowns versus the corresponding significance score ($-\log_2(p_{adj})$).

C. Functional annotation by gene set enrichment analysis of genes changes upon PRMT5 and MEP50 knockdown in A549 cells. Enriched groups are ranked by the significance *p*-value.

D. Dotplot of gene ontology terms enriched on PRMT5 and MEP50 knockdown upregulated genes are shown in dots scaled by -log(p).

E. Dotplot of Ingenuity Pathway Analysis (IPA) diseases and functions enriched in both knockdowns are shown in dots scaled by –log(p).

Figure S3, Related to Figure 3. PRMT5-MEP50 knockdown can prevent lung cancer cell mobility.

A. Representative crystal violet staining for colonies after 14d cell culture of A549 cells expressing shRNA targeted against GFP as a control (GFP*kd*), against PRMT5 (PRMT5*kd*) or against MEP50 (MEP50*kd*). 1st and 2nd represent 2 independently biological experiments.

B. Normal lung fibroblast cell line (IMR90) was treated with various indicated dosages of GS591 for 4 days and lysates or extracted histones were blotted for PRMT5, SYM10 (methylated SmD3), GAPDH (control), H4R3me2s, and H3 as indicated. DB71 stain of extracted histones is also shown.

Figure S4, Related to Figure 4. PRMT5 inhibitor GSK591 blocked both lung and breast cancer cell lines TGF β -stimulated cell mobility.

A. Cell migration assay for A549 and (**B**) HS578T cell lines. Migration of indicated cells treated with (+) or without (-) 500 nM GSK591 for 4 days and (+) or without (-) 10 nM TGF β 1 for 2 days.

C. Cell invasion assay for H460 and (**D**) NCI H1334 cell lines treated treated with (+) or without (-) 500 nM GSK591 for 4 days and (+) or without (-) 10 nM TGF β 1 for 2 days. Top: Representative crystal violet staining of invaded cells on the underside of the porous polycarbonate membrane through a phase-contrast microscope (20X) is shown. Bottom: Quantification of the invaded cells shown in. Values are mean ± S.E.M. of three independent experiments. **p* < 0.05 from one-way ANOVA test.

Figure S5, Related to Figure 6. Controls for qRT-PCR and ChIP experiments

A. Relative mRNA levels of indicated cancer suppressor genes in A549 cells treated with 10 nM of TGF β 1 for 2 days were determined by qRT-PCR. β -Actin was used as an internal control. Values are means ± S.E.M. of three independent experiments. To normal cells, there has no significant gene expression changes for the ones treated with 10 nM of TGF β 1 for 2 days for the genes listed. *p* value are measured with one-way ANOVA test.

B. Heatmap generated by ChIP-qPCR values for histone H3 values at -1kb, the promoter, or +1kb of the indicated genes demonstrate the H3 was pulled down evenly as the ChIP control for the various histone PTMs in Figure 6. ChIP-qPCR of TGF β 1-downregulated genes are arrayed on the top and TGF β 1-upregulated genes are on the bottom. The heatmap is arrayed from blue (no enrichment) to yellow (maximal enrichment). Between different groups there is no significant H3 enrichment changes. *p* value are measured with one-way ANOVA test.

Figure S6, Related to Figure 7. Confirmation of depletion of WDR5 in A549 cell line.

Immunoblots for WDR5 and GAPDH as control, from A549 cells infected with siRNA targeted against negative control (NC) or against 2 independent WDR5 siRNA (ID s21862 and s21863) for 3 days.

Table S1. Antibodies used in this study.

Factor or PTM	Vendor	Cat Number	Dilution For blotting	Vol.for ChIP (μl)
PRMT1	Millipore	07-404	1:5,000	
PRMT3	Gene Tex	GTX116478	1:5,000	
CARM1	Cell Signaling	4438	1:5,000	
PRMT5	Millipore	07-405	1:5,000	
MEP50	LPBio	AR-0145-S	1:5,000	
PRMT6	Cell Signaling	14641	1:5,000	
PRMT7	Pierce	PA5-30748	1:10,000	
PRMT9	Homemade	N/A	1:5,000	
E-cadherin	Cell signaling	3195	1:3,000	
Vimentin	Cell signaling	5741	1:3,000	
Snail	Cell signaling	3879	1:2,000	
SYM10	Millipore	07-412	1:5,000	
SNRPD3	Abcam	ab157118	1:10,000	
WDR5	Millipore	07-706	1:5,000	
GAPDH	Abcam	ab9484	1:10,000	
H3R2me1	Abcam	ab15584	1:5,000	8
H3R2me2s	Abcam	Ab194684	1:5,000	6
H3R8me2s	Novus Biologicals	NB21-1063	1:5,000	10
H4R3me1	Novus Biologicals	NB21-2011	1:10,000	10
H4R3me2a	Active Motif	39705	1:10,000	8
H4R3me2s	Abcam	ab5823	1:10,000	3
H3K4me3	abcam	Ab8580	1:10,000	5
H3	Abcam	ab1791	1:100,000	4
HRP-conjugated anti-rabbit second- ary antibody	GE	NA834V	1:30,000	
HRP-conjugated anti-mouse sec- ondary antibody	GE	NA931V	1:30,000	

Table S2. ChIP primers used in this study.

Primer set name	Location in the genome	Forward sequence	Reverse sequence
AKAP12 -1kb	chr6:151238642+151238737	TCAAAATGGGGGAAATGTGT	CACGAAGGCCAATTTCTCTG
AKAP12 P	chr6:151239706+151239799	TCCGGTAACAGCCTCATTTC	ATCCTCCGGAACAAGTGATG
AKAP12 +1kb	chr6:151240812+151240886	AGAGAACTTCCCAGCCCATC	ACCCTGAAAAGCCTCCAAAG
CD44-1kb	chr11:35138161+35138345	ATGGTGGATGGTTGTGGTTT	CATCCTCCTGTCCATCCACT
CD44 P	chr11:35138742+35138891	AACCCAGAGATCTTGCTCCA	GAGACGCACTGGCTTTCTTC
CD44 +1kb	chr11:35139817+35140003	TGGTCACAGAAGGGATCACA	TCATGGAGACCCAAGACCTC
MED23-1kb	chr6:131585753+131585847	TTTTTCCCCTCTGCTGTATTCT	AATTTCCCTGGATAGGCTTTT
MED23 P	chr6:131586621+131586745	TAGGCCAATGTCAGTCACCA	TGATTGTTTCCCGACTCCAT
MED23 +1kb	chr6:131587945+131588058	GGAGTGTCGTGGGGTAGATG	GGGTGTGTGTGAGGGAGAAC
GPR68-1kb	chr14:91231464+91231541	CAGATGAATTCCAGGGATGG	TCTTGGCTCGTTGCTTTTCT
GPR68 P	chr14:91232216+91232332	CTGGGCTCTGTCCTCAAAAG	AGAGCCTTCTCTCCCTCCAC
GPR68 +1kb	chr14:91233661+91233767	CACAAACTCTGCAGGAAGCA	GAATAAGCCGTGTCCTCTGC
SCARA5-1kb	chr8:27869187+27869300	GCTCTTCTCCATGGAACCTG	GGAAATCCACAAAGGAAGCA
SCARA5 P	chr8:27869627+27869703	TCTTGTAAGATGGGCCTTGG	TGGCTCAAGCCTTATTTGGT
SCARA5 +1kb	chr8:27870841+27870986	AGAGGCTTGGAAGATGCAAA	GGAGGAGAGCTGATGTGGAG
SPDEF-1kb	chr6:34536714+34536828	CAAGGGAGTGAGACACAGCA	TGGCAGTGAGCAAATAGCAC
SPDEF P	chr6:34537854+34537970	AACTCAGGGGTGCAGATGTC	AGGGCAGTGACTCGACAAAG
SPDEF +1kb	chr6:34538618+34538715	GGTGTAGTTGCGGTGAGGTT	TACCGGGAGGTTTGTGACTC
MIA2-1kb	chr14:39233121+39233300	CCAACGGAAATCACACTGTA	TCTGCCATTGAAAGAGGTCA
MIA2 P	chr14:39234123+39234200	ATTTGGCGTTCACAGAATCC	AGGTCTGCCAGCAGTTTTGT
MIA2 +1kb	chr14:39234900+39235017	TGCAAAATAAATTACATCCCAAT	AAGCAATTTTTGATTCTGCTGAG
CDH1 -1kb	chr16:68735940+68736048	TGCCTGGCCCTATTGTTACT	CCCTATGCTGTTGTGGGACT
CDH1 P	chr16:68737215+68737321	GTGAACCCTCAGCCAATCAG	TCACAGGTGCTTTGCAGTTC
CDH1 +1kb	chr16:68738469+68738561	AGAAATTGCACTCCCACACC	GATCCCCAAATCTGCGTAAA
CDH2 -1kb	chr18:27950018+27950116	CAGCATGGAGGCACAGTCTA	GAGCTTGCCTCTGGGAATTT
CDH2 P	chr18:27951910+27952010	GGCACATAAAATCCCAGTGC	TGGGCTCAGAGGGAATATCA
CDH2 +1kb	chr18:27951682+27951787	TGGTCTCATCCCCCAAGATA	TGCTTCAACACGCTTTTGTT
VIM -1kb	chr10:17226963+17227105	ATGCCTTGTCCTCCTTTTCC	GTGTGCCTGGAACCCTTAGA
VIM P	chr10:17228395+17228494	GGCCCAGCTGTAAGTTGGTA	CCTAGCGGTTTAGGGGAAAC
VIM +1kb	chr10:17229220+17229290	GAGGGGACCCTCTTTCCTAA	GAGAGTGGCAGAGGACTGGA
SNAI1 -1kb	chr20:49981560+49981683	CGGCACCAAGTGACTAAACA	CACAGGTCTCACCGTTCTTG
SNAI1 P	chr20:49983118+49983246	GCGAGCTGCAGGACTCTAAT	GTGACTCGATCCTGGCTCA
SNAI1 +1kb	chr20:49983626+49983698	GGGGTCCTACGTGTGAGAGA	TCCACAGGACAGACCAGGTT

The ChIP primers with red bold are the ones used for genes indicated in Figure 6.

Gene name	Forward sequence	Reverse sequence
ACTB	AGCTACGAGCTGCCTGAC	AAGGTAGTTTCGTGGATGC
PRMT5	TTGCCGGCTACTTTGAGACT	ACAGATGGTTTGGCCTTCAC
MEP50	AGCACTGCCTCTCTCACC	ACACGGCCAATTCCTCATAG
BRMS1	GAAGGCACCTCTGGTTTCTG	CTGCCCTAGCCTTTTTGATG
CASP8	TCCCCAAACTTGCTTTATGC	GACCCCAGAGCATTGTTAGC
AKAP12	TGGCAGGAAGACATTCTGTG	GCGGGTGGAATTTAAACAAA
CDH1	CAAGTGCCTGCTTTTGATGA	GTTTTCTGTGCACACCTGGA
CDH2	TGCTTCAACACGCTTTTGTT	TGGTCTCATCCCCCAAGATA
CDH11	CACGGCTCCTCCTTATGACT	CGAGGTCCCCAGTTCTGTAG
CD44	AAGGAACCTGCAGAATGTGG	TCCAACGGTTGTTTCTTTCC
MED23	AGCCATGAACAGTGGGTCTC	AATTTGGAACCCTTGCTGTG
DCC	GGGACCACTTTGGAAATGAA	AGAAGTGGCGATGATGGAAC
DLC1	ATCATTCCAAGGCCAAACTG	GAGAATCTCCGTGCTTCCTG
DRG1	GCTGGATGCTGAAACTGTGA	TGTTTCCTTCCACCACATCA
GAS1	AGATTGTGGCCAGTGAGGAT	GGCGCAGATACAAACAGTGA
GSN	ACGGCTGAAGGACAAGAAGA	TGAGCTCACCAGGAACCTCT
CD82	GATGGTCCTGTCCATCTGCT	TCAGTACTTGGGGACCTTGC
KISS1	GACCTGCCTCTTCTCACCAA	TGGGTCTAGAATTCCCCACA
KISS1R	TTGGTCTCTTGTGACGTTCG	TGATCCAGAAAGTCCTGTGTTG
KLF17	GGGAGAGGAAGGGACATAGC	TCAGGAACCTGGAAGTCACC
KDM1A	TCTTCTTTGCGGGAGAACAT	CCCAAAAACTGGTCTGCAAT
MAPK14	TGTATTTGGGCCAAGGTGTT	CACCCTGTCCCTCTGGAGTA
MAP2K4	CCCCCACGGTATCCTAAACT	CAGATGGGAAGTTGACAGCA
MAP2K7	GGGCTGCCTGGTTTTATTTT	AGGGCTCCCCACTTAACACT
NME1	AGAAAGGATTCCGCCTTGTT	GGCCCTGAGTGCATGTATTT
PEBP1	TGTTGGGACATGGCAATCTA	CATTCAGCAACTCCAGACCA
ARHGDIB	CTCGGCCTGAGGAGTATGAG	TGGTCTTGCTTGTCATCGTC
RRM1	CATCCACATTGCTGAGCCTA	GATTAGCCGCTGGTCTTGTC
TXNIP	CTTGCCCACTGTGACTTCAA	TCCTAACACAGGGCAGGAAG
GPR68	CTGGGTCAGTGACATTGGTG	TGGGAAGCCAGTGTTTAAGG
TIMP1	TGACATCCGGTTCGTCTACA	TGCAGTTTTCCAGCAATGAG
TIMP2	CTCTCCATTTGGCATCGTTT	TTTGAGTTGCTTGCAGGATG
TIMP3	GGAGAGCTGCAGAGTGTCCT	AGCTAGGGAAAGGGAACCAA
TIMP4	GCCAGGACTATTCCCTTTCC	ATGACATTCGCCATTTCTCC
MMP2	AGCGTGAAGTTTGGAAGCAT	CCTCCGGGTCCTTCTCTAGT
MMP9	AAGCTGGACTCGGTCTTTGA	CCTGTGTACACCCACACCTG
SCARA5	GGAGGAGAGCTGATGTGGAG	AGAGGCTTGGAAGATGCAAA
SPDEF	GACCAGTGAGGAGAGCTGGA	CATAGCTGTGGGGCTTGAGT
MIA2	CAGAGCACATTCCCAAACCT	GCCCTGTATCCTCATCTCCA
EMP1	GGCTCCTAGGCTCAGTGGTA	GCCTGTTGTTTGGTTTTGGT
ARHGAP29	TAAACCACATGCTCCCATCA	CTTTGTCTGGGTCTGGCATT
SNAI1	GCTCCACAAGCACCAAGAGT	ATTCCATGGCAGTGAGAAGG

Table S3	. RT-qPCR	primers used	in this study.
----------	-----------	--------------	----------------