
Supplementary Note 1: General requirements of non-reciprocity in a two-
mode optical system

In general, the temporal-evolution equations of a two-mode system can be described via [1]:

d

dt

(
δa1

δa2

)
= iM

(
δa1

δa2

)
+DT

(
δs+

1

δs+
2

)
, (1)

(
δs−1
δs−2

)
= C

(
δs+

1

δs+
2

)
+D

(
δa1

δa2

)
, (2)

whereM is the linear evolution operator for the two optical modes, the matrix D describes the cou-
pling between the two ports and optical modes and C describes the direct scattering path between
the two ports. Note that δs+

j and δs−j are normalized such that |δs+
j |2 is the input photon flux

in channel j. In writing these equations, we have enforced the optical modes to each satisfy reci-
procity, in the sense that the in-and out-coupling rates of a particular mode and port are equal, thus
the coupling is described through the same matrix D (and its transpose) in Supplementary Equa-
tions 1 and 2 [1]. In the frequency domain

(
(a[ω], s[ω]) =

∫
(a(t), s(t)) exp(iωt) dt

)
, Supplementary

Equation 1 can be written as

−i(M + ωI)

(
δa1

δa2

)
= DT

(
δs+

1

δs+
2

)
, (3)

where I represents the 2×2 identity matrix. The scattering matrix, defined as(
δs−1
δs−2

)
= S

(
δs+

1

δs+
2

)
, (4)

is now directly obtained to be
S = C + iD(M + ωI)−1DT. (5)

A direct calculation of the off-diagonal scattering elements (forward and backward transmission
coefficients) reveals that

S12 = c12 + i
(m11 + ω)d12d22 −m12d11d22 −m21d12d21 + (m22 + ω)d11d21

det(M + ωI)
, (6)

S21 = c21 + i
(m11 + ω)d12d22 −m12d12d21 −m21d11d22 + (m22 + ω)d11d21

det(M + ωI)
. (7)

For a symmetric (reciprocal) scattering matrix C, the contrast between forward and backward
transmission coefficients now reads

S21 − S12 =
i det(D)(m12 −m21)

det(M + ωI)
. (8)

From this formula, it becomes immediately clear that the necessary condition for breaking reci-
procity is to ensure det(D)× (m12−m21) 6= 0, which requires: (a) det(D) 6= 0, and (b) m12 6= m21.
As discussed in the main text, the first condition simply requires D to be a full rank matrix, which
is expected as in the case of a non-full-rank D both optical modes are symmetrically coupled to the
two ports, thus preserving reciprocity.
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Supplementary Note 2: Connection between Coupled-Mode Theory and
cavity QED

In this section we investigate the connection between Coupled Mode Theory (CMT) — well-
established in the optics and engineering literature [1] — and the quantum optics input/output
formalism that is widely used in CQED [2, 3, 4]. This regards principally equations (3) and (4) of
our manuscript. In the following, we show how both formalisms are mathematically related, and
how it is possible to transform fields and matrices to move from one picture to the other. This
transformation involves a redefinition of the input (or output) fields.

In a CQED approach, the input/output relation is conventionally written as

s− = s̃+ +D a, (9)

where for a two mode system

s− =

(
s−1
s−2

)
, s̃+ =

(
s̃+

1

s̃+
2

)
and a =

(
a1

a2

)
(10)

denote the output, input and intracavity field operators, respectively. This is for example detailed
in [3], section 5.3. Note that in Supplementary Equation (9) an explicit choice for the phase relation
between input and output fields is made (sometimes taken with an extra minus sign [4], with similar
result), as in absence of the cavity they are related by the identity operator. Instead, in CMT a
specific choice of this phase is avoided by introducing the C matrix operator such that

s− = C s+ +D a, (11)

which is Eq. (4) in our manuscript. Note that the relation s̃+ = Cs+ thus allows to transform
outputs between the two formalisms. Applying this transformation to Eq. (3) from our manuscript,

da

dt
= iMa +DT s+, (12)

using the relation CD∗ = −D (obtained from time-reversal symmetry in [1]), we obtain

da

dt
=iMa− (CD∗)

T
s+ (13)

=iMa−D†C s+ (14)

=iMa−D† s̃+. (15)

This is precisely equivalent to the expression often used in CQED. We thus conclude that both for-
malisms differ only in the sense that CQED explicitly chooses a convention for the port description,
fixing the phase of the incoming waves, while CMT does not.

The CMT formalism has the benefit that it allows to associate s+
j and s−j with incoming and

outgoing waves in the same physical port. Considering the CQED approach (Supplementary Equa-
tion 9) and a simple waveguide, s+

1 and s−1 necessarily describe waves in different physical ports. To
study nonreciprocity, it is more insightful to have these waves in the same port, as nonreciprocity is
then always related to a difference of the off-diagonal elements of the scattering matrix, regardless
of system choice.
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Supplementary Note 3: Breaking the symmetry of the evolution matrix
through optomechanical coupling

Here we consider the optical modes to have generally different resonant frequencies ω1,2 and energy
decay rates κ1 and κ2. In addition, we describe the mechanical mode by its resonance frequency
Ωm and loss rate Γm. Starting from the linearized Hamiltonian in equation (2) of the main text,
the equations of motion for the photon and phonon annihilation operators can be written as:

d

dt

(
δa1

δa2

)
= iΘ

(
δa1

δa2

)
+ i

(
g1(b+ b†)
g2(b+ b†)

)
+DT

(
δs+

1

δs+
2

)
, (16)

d

dt
b = (−iΩm − Γm/2) b+ i(g∗1δa1 + g1δa

†
1 + g∗2δa2 + g2δa

†
2) + +

√
Γmbin, (17)

where in this relation g1,2 represent the enhanced optomechanical coupling rates defined as g1 =
G1xzpfα1 and g2 = G2xzpfα2, while Θ is a 2×2 matrix which describes the evolution of the optical
modes in the absence of the optomechanical interactions and in the absence of port excitations. For
completeness Supplementary Equation 17 contains the coupling between the mechanical resonator
and the mechanical heat bath (rightmost term). As shown in the methods section, this term can be
set to zero for the experimental parameters studied here. Likewise, quantum fluctuations of optical
inputs are neglected in Supplementary Equation 16. In general Θ can be written as Θ = Ω + iK
where the matrix Ω contains the resonance frequencies and the mutual coupling of the two modes
on diagonal and off-diagonal elements respectively. The matrix K = K0 +Ke, on the other hand,
represents the total losses of the two modes κ1,2 = κ01,2

+ κe1,2 which includes the intrinsic losses
(κ01,2

) due to absorption and scattering as well as the out-coupling losses (κe1,2) due to the leakage
of the optical modes into the two ports. Even though in general Θ is not diagonal, it is always
possible to choose a proper eigenmode basis such that Θ becomes diagonal (see Supplementary
Note 4). In that case, it can be written as

Θ =

(
∆̄1 + iκ1

2 0
0 ∆̄2 + iκ2

2

)
, (18)

where ∆̄1 = ωcontrol − ω̄1 + G1x̄, ∆̄2 = ωcontrol − ω̄2 + G2x̄ represent the modified frequency
detunings of the two optical modes from the driving lasers. In the frequency domain, Supplementary
Equations 16 and 17 become

i

(
Σo1 0
0 Σo2

)(
δa1

δa2

)
+ i

(
g1(b+ b†)
g2(b+ b†)

)
+DT

(
δs+

1

δs+
2

)
= 0, (19)

iΣ+
m b+ i(g∗1δa1 + g1δa

†
1 + g∗2δa2 + g2δa

†
2) = 0, (20)

where we introduce a shorthand notation for the Fourier transformed creation operators δa† =
(δa†)[ω] = (δa[−ω])†, and defined the inverse susceptibilities

Σ±m ≡ ω ∓ Ωm + i
Γm

2
; Σo1,2

≡ ω + ∆̄1,2 + i
κ1,2

2
(21)
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Using Supplementary Equations 19 and 20 along with their Hermitian conjugate, it is straightfor-
ward to show that

i

(
Σo1

0
0 Σo2

)(
δa1

δa2

)
+i

(
1

Σ−m
− 1

Σ+
m

)(
|g1|2 g1g

∗
2

g∗1g2 |g2|2
)(

δa1

δa2

)
+i

(
1

Σ−m
− 1

Σ+
m

)(
g2

1 g1g2

g1g2 g2
2

)(
δa†1
δa†2

)
+DT

(
δs+

1

δs+
2

)
= 0. (22)

For the remainder we will consider operation in the resolved side-band regime, which allows ignoring
the non-resonant terms involving a†1,2 in Supplementary Equation 22, such that it simplifies to

i

[(
Σo1

0
0 Σo2

)
+ i

(
1

Σ−m
− 1

Σ+
m

)(
|g1|2 g1g

∗
2

g∗1g2 |g2|2
)](

δa1

δa2

)
+DT

(
δs+

1

δs+
2

)
= 0. (23)

Given that we are particularly interested in probe signals that are detuned from the control by
approximately the mechanical resonance frequency (|ω∓Ωm| � Ωm), one can always neglect one of
the two terms involving mechanical susceptibilities 1/Σ±m . For ∆̄j ≈ ∓Ωm, the frequency-domain
evolution matrix M can now be found from Supplementary Equation 23 to be

M =

(
∆̄1 + iκ1

2 0
0 ∆̄2 + iκ2

2

)
∓ 1

Σ±m

(
|g1|2 g1g

∗
2

g∗1g2 |g2|2
)
. (24)

Clearly, in order to break the symmetry of M , which is a necessary condition for breaking the
reciprocity of the system, one needs to enforce g1g

∗
2 6= g∗1g2, thus requiring ∆φ = arg (g2)−arg (g1) 6=

nπ where n ∈ N. The resulting scattering matrix reads

S = C + iD(M + ωI)−1DT = C + iD

Σo1
∓ |g1|

2

Σ±m
∓ g1g

∗
2

Σ±m

∓ g
∗
1g2

Σ±m
Σo2 ∓

|g2|2

Σ±m

−1

DT. (25)

Using Supplementary Equation 8, the difference in transmission S21 − S12 is directly given as

S21 − S12 = 2 sin ∆φ
detD
√
κ1κ2

∓2
√
C1C2

(δ± + i)(δ1 + i)(δ2 + i)∓ (C2(δ1 + i) + C1(δ2 + i))
, (26)

where again the upper and lower signs relate to red (∆̄1,2 ≈ −Ωm) and blue (∆̄1,2 ≈ +Ωm) detuned
regimes respectively, and we have defined

Cj ≡
4|gj |2

κjΓm
, δ± ≡

ω ∓ Ωm

Γm/2
, δj ≡

ω + ∆̄j

κj/2
. (27)

Alternatively, one can obtain S12 and S21 separately, which are given by:

S12 = c12 + i
2A± 2

√
C1C2(d12d21e

i∆φ + d11d22e
−i∆φ

√
κ1κ2[(δ± + i)(δ1 + i)(δ2 + i)∓ (C2(δ1 + i) + C1(δ2 + i))]

, (28)

S21 = c21 + i
2A± 2

√
C1C2(d11d22e

i∆φ + d12d21e
−i∆φ

√
κ1κ2[(δ± + i)(δ1 + i)(δ2 + i)∓ (C2(δ1 + i) + C1(δ2 + i))]

, (29)

where

A = d11d21

√
κ2

κ1
[(δ± + i)(δ2 + i)∓ C2] + d12d22

√
κ1

κ2
[(δ± + i)(δ1 + i)∓ C1], (30)

Note that these expressions are general in the sense that they are valid regardless of the way the
modes are coupled to the ports. In Supplementary Note 6 we will consider a specific implementation.
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Supplementary Note 4: Diagonalization of the optical evolution matrix

Here we show that in general it is always possible to find a proper eigenbasis that diagonalizes the
evolution matrix of an optical system. To show this, consider an optical system described through
the coupled mode equations:

d

dt
a = iΘa +DTs+, (31)

s− = Cs+ +Da, (32)

where a = (a1 a2)T represents the modal amplitude of the two modes and s± = (s±1 s±2 )T represents
the vector of inputs/outputs at two ports. The evolution matrix Θ can in general be written in
form of:

Θ =

(
∆1 µ
µ ∆2

)
+ i/2

(
κ1 κr
κr κ2

)
(33)

where in this relation ∆1,2 represent the frequency detunings of the two modes with respect to a
central resonance frequency, µ represents the mutual coupling and κ1, κ2 and κr are the optical
losses due to intrinsic losses and leakage to ports as well as mutual coupling. Defining XR and XL

as two matrices with the right and left eigenvectors of Θ as their columns and rows respectively,
one can write [5]:

ΘXR = XRΛ, (34)

XLΘ = ΛXL, (35)

where Λ is the diagonal matrix of eigenvalues. Given that Θ is symmetric, the left and right
eigenvectors are related via XL = XT

R . On the other hand, one can show that XLXR = XRXL

is diagonal. Therefore through a proper normalization of the eigenvectors one can write XT
RXR =

XRX
T
R = I, thus XR is an orthogonal matrix. Supplementary Equations 31 and 32 can now be

written as:

d

dt
XR a = iXRΘXT

RXR a +XRD
Ts+, (36)

s− = Cs+ +DXT
RXR a, (37)

which can be written in form of Supplementary Equations 31 and 32 as

d

dt
a′ = iΘ ′ a′ +D

′Ts+, (38)

s− = Cs+ +D′ a′, (39)

Here, a′ = XR a is the new basis and D′ = DXT
R represents the transformed mode-port coupling

matrix. In the new eigenmode basis, the evolution matrix Θ ′ is defined as:

Θ ′ = XRΘXT
R . (40)

Given the fact that Θ is symmetric, Supplementary Equations 34 and 35 directly imply that Θ ′

is diagonal. Therefore, without loss of generality one can consider the optical evolution matrix as
follows:

Θ =

(
∆1 0
0 ∆2

)
+ i/2

(
κ1 0
0 κ2

)
. (41)
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Supplementary Note 5: Derivation of the determinant of the coupling
matrix D

As shown in Supplementary Equation 26, the contrast between forward and backward transmission
coefficients is directly proportional with the determinant of the mode-port coupling matrix D thus
breaking the reciprocity demands det(D) 6= 0. Here, we show that this determinant can in general
be obtained in terms of the out-coupling losses of the optical modes. In fact, the energy conservation
relation D†D = Ke implies that:

|det(D)|2 = det(Ke) = η1κ1η2κ2, (42)

where η1 =
κe1

κ1
and η2 =

κe2

κ2
represent the ratio of out-coupling to total losses for each mode. On the

other hand, the time reversal symmetry requirement of the optical system, i.e., CD∗ = −D imposes
a condition on the phase of this determinant according to det(C) det(D)∗ = det(D). Multiplying
left and right with det(D) yields det(C)|det(D)|2 = (det(D))2. Supplementary Equation 42 now
directly gives

det(D) =
√
η1η2κ1κ2 detC. (43)

Note that in general, C is a unitary matrix with |det(C)| = 1. In addition, by adjusting the
evaluation point at the two ports one can properly choose the phase of det(C). For the system
we consider in Supplementary Note 6, we have chosen det(C) = −1, which results in det(D) =
i
√
η1η2κ1κ2.
According to this relation a necessary condition for breaking the reciprocity is that η1 6= 0 and

η2 6= 0. This latter means that both optical modes should be coupled to the ports, or equivalently,
the number of independent decay ports (l=rank(D)) should be equal to the number of the actual
ports. A possible scenario that violates this condition is the presence of a dark state which is
decoupled from the two ports of the system [6]. This is in fact a scenario that would arise when
diagonalizing a system that consists of two modes that have equal symmetry with respect to the
output channels, through which they would couple at finite rate κr.

Supplementary Note 6: Microring resonator system

Here we explore the microring resonator as a specific case of the general formalism derived in
previous sections. In such structure, the direct scattering matrix C can be written as:

C =

(
0 1
1 0

)
, (44)

Here, instead of using the clockwise acw and counterclockwise accw traveling modes, we consider
the even and odd standing modes, a1 = (acw + accw)/

√
2 and a2 = (acw − accw)/i

√
2, as our base

modes. We consider a potentially non-zero frequency splitting δω2 − δω1 between the two even
and odd modes. Therefore, the Θ matrix involving resonance frequencies can be written as in
Supplementary Equation 18. On the other hand, the symmetry/anti-symmetry of the even/odd
mode directly implies [1] d11 = d21 and d12 = −d22. The time reversal symmetry requirement,
CD∗ = −D, therefore leads to d∗11 = −d11 and d∗22 = d22. While the power conservation relation,
D†D = Ke leads to κe1 = 2|d11|2, κe2 = 2|d22|2, thus D is obtained as

D =
1√
2

(
i
√
κe1 −√κe2

i
√
κe1

√
κe2

)
. (45)
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Based on Supplementary Equations 5 and 45, the scattering matrix is written as

S =

(
0 1
1 0

)
+

i

2

(
i
√
κe1 −√κe2

i
√
κe1

√
κe2

)Σo1
∓ |g1|

2

Σ±m
∓ g1g

∗
2

Σ±m

∓ g
∗
1g2

Σ±m
Σo2
∓ |g2|

2

Σ±m

−1(
i
√
κe1 i

√
κe1

−√κe2
√
κe2

)
. (46)

From here, the forward and backward transmission coefficients are obtained as follows:

S12 = 1− i

2

κe2(Σo1
Σ±m ∓ |g1|2) + κe1(Σo2

Σ±m ∓ |g2|2)∓ i
√
κe1κe2(g1g

∗
2 − g∗1g2)

Σ±m Σo1
Σo2
∓ Σo2

|g1|2 ∓ Σo1
|g2|2

, (47)

S21 = 1− i

2

κe2(Σo1
Σ±m ∓ |g1|2) + κe1(Σo2

Σ±m ∓ |g2|2)± i
√
κe1κe2(g1g

∗
2 − g∗1g2)

Σ±m Σo1
Σo2
∓ Σo2

|g1|2 ∓ Σo1
|g2|2

. (48)

These latter relations can be rewritten in terms of multi-photon cooperativities of both modes as
follows:

S12 = 1− i
η2 ((δ1 + i)(δ± + i)∓ C1) + η1 ((δ2 + i)(δ± + i)∓ C2)∓ 2

√
η1η2

√
C1C2 sin(∆φ)

(δ1 + i)(δ2 + i)(δ± + i)∓ (δ2 + i)C1 ∓ (δ1 + i)C2
, (49)

S21 = 1− i
η2 ((δ1 + i)(δ± + i)∓ C1) + η1 ((δ2 + i)(δ± + i)∓ C2)± 2

√
η1η2

√
C1C2 sin(∆φ)

(δ1 + i)(δ2 + i)(δ± + i)∓ (δ2 + i)C1 ∓ (δ1 + i)C2
. (50)

Derivation of D matrix in a quantum optics approach

Supplementary Note 2 showed the transformation between the formalisms of coupled mode theory
and a standard quantum optics input-output theory. Here we briefly demonstrate that the matrix D
can alternatively be obtained from input-output theory. We will start by considering the mode basis
of propagating (clockwise and counterclockwise) modes, captured in the vector arot = (acw, accw)T,
coupled to input fields s− and output fields s̃+. Note that in this case the jth component of s̃+

corresponds to a wave in a different physical waveguide than the jth component of s−, as s̃+ = Cs+.
In this basis, the equations of motion read

ȧrot = iMrotarot −D†rots̃
+, (51)

where Drot =
√
κeI and

M =

(
−ωc + iκ2 γ

γ −ωc + iκ2

)
, (52)

where γ is a (potentially complex) coupling rate that accounts for possible mode splitting.
We can transform to a basis of even and odd modes, captured in the vector a = (a1, a2)T via

the unitary transformation a = Uarot, where

U =
1√
2

(
1 1
−i i

)
. (53)

The equation of motion for a can then be written in the familiar form

ȧ = iMa−D†s̃+ (54)
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by defining

M = UMrotU
−1 =

(
−ωc + iκ2 + γ 0

0 −ωc + iκ2 − γ

)
(55)

and D† = UD†rot such that

D =
−i√

2

(
i
√
κe −√κe

i
√
κe

√
κe

)
. (56)

As expected from the discussion in Supplementary Note 2, the derived matrix D is identical to
that obtained above (Supplementary Equation 45) up to an overall phase factor −i that can be
absorbed in the definition of the intracavity fields. Note that in Supplementary Equation 45 we
have explicitly included the possibility of a difference in the coupling of the two orthogonal modes
to the waveguide.

Propagation direction of the intracavity field

The D matrix derived in this section can also be used to determine the relative phase with which an
incident probe beam drives the modes a1 and a2, which determines the handedness of the intracavity
field. Consider the following expression that is used to determine the field in the modes a1 and a2a1

a2

 =

Σ−1
o1

(ω) 0

0 Σ−1
o2

(ω)

DT

s̄in

0

 = − s̄in√
2

 2
κ1

√
η1κ1

δ1+i

i 2
κ2

√
η2κ2

δ2+i

 , (57)

where we used the D matrix given by Supplementary Equation 45. If the modes are degenerate
(such that δ1 = −δ2 = 0) and have equal loss rates, it follows from Supplementary Equation 57
that a2 is driven with an additional phase shift of π/2 with respect to a1. In such a situation, the
intracavity field will propagate in the same direction as the incident probe field. On the other hand,
when the modes are split (δ1 � 1), the phase relation between a1 and a2 is reversed. Importantly,
this means that the intracavity probe field is then no longer a wave propagating in the same direction
as the incident probe field. In the presence of strong mode splitting, a probe beam that propagates
opposite of the control beam in the waveguide thus induces an intracavity field that propagates
along with the control beam. In regime of modest mode splitting, as experimentally shown in the
manuscript, both probe beams couple to the mechanical mode. Crucially, the fact the control fields
of even and odd modes are always ∼ π/2 out of phase in this setup guarantees maximum isolation
for any splitting, in line with Eq. (10) in the manuscript.

Optical modes with identical loss and coupling

In order to explore the maximum contrast between the forward and backward transmission coeffi-
cients, we consider a resonant probe excitation corresponding to ω = ±Ωm. Furthermore, the two
optical modes exhibit the same amount of losses (κe1,2 = κe, κ01,2

= κ0), and for simplicity we also
assume that both modes are pumped with the same internal cavity photon numbers (|g1,2| = |g|)
while they can in general exhibit different phases. In this case the scattering parameters can be
greatly simplified to:

S12 =1− η 2± C(1 + sin(∆φ))

1± C + β2
, (58)

S21 =1− η 2± C(1− sin(∆φ))

1± C + β2
, (59)

8



where C = 2C1 = 2C2 and β = (ω + ∆̄1)/(κ/2) = −(ω + ∆̄2)/(κ/2). Note that both transmissions
are real quantities and their contrast is obtained as

S21 − S12 = 2η
±C sin(∆φ)

1± C + β2
, (60)

This relation clearly shows that maximum contrast can be obtained for ∆φ = π/2, i.e., g2 = ig1.
Under the condition of critical coupling (η = κe/κ = 1/2) the difference between the transmittivities
of the forward and backward probes is obtained from

∆T = |S21|2 − |S12|2 =
C(C ± 2β2)

(1± C + β2)2
, (61)

which is similar to equation (11) in the main text and can be further simplified to ∆T = C2/(C±1)2

for the case of degenerate modes. This latter relation shows that the contrast between forward and
backward transmission coefficients is monotonically increasing with cooperativity and asymptoti-
cally approaches unity for C → ∞. In addition, it is possible to properly adjust a finite C so that
the backward probe can be completely blocked, i.e., S12 = 0. From Supplementary Equation 59,
for the red detuned regime, such relation is obtained to be:

(2η − 1)(1 + C) = β2 (62)

Note that this relation can only be satisfied for a strongly coupled system, i.e., when η > 1/2. For
zero mode splitting (β = 0) Supplementary Equation 62 reduces to the condition of critical coupling
η = 1/2. In such a scenario, independent from the cooperativity, the backward probe can always
be fully blocked, while larger cooperativities can increase the forward transmission.
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