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Mutations in CPAMD8 Cause a Unique Form of
Autosomal-Recessive Anterior Segment Dysgenesis

Sek-Shir Cheong,1 Lisa Hentschel,2 Alice E. Davidson,1 Dianne Gerrelli,2 Rebecca Davie,3 Roberta Rizzo,4

Nikolas Pontikos,5 Vincent Plagnol,5 Anthony T. Moore,1,4,6 Jane C. Sowden,2 Michel Michaelides,1,5

Martin Snead,3 Stephen J. Tuft,1,4 and Alison J. Hardcastle1,*

Anterior segment dysgeneses (ASDs) comprise a spectrum of developmental disorders affecting the anterior segment of the eye. Here, we

describe three unrelated families affected by a previously unclassified form of ASD. Shared ocular manifestations include bilateral iris

hypoplasia, ectopia lentis, corectopia, ectropion uveae, and cataracts. Whole-exome sequencing and targeted Sanger sequencing iden-

tified mutations in CPAMD8 (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 8) as the cause of recessive ASD in all

three families. A homozygous missense mutation in the evolutionarily conserved alpha-2-macroglobulin (A2M) domain of CPAMD8,

c.4351T>C (p. Ser1451Pro), was identified in family 1. In family 2, compound heterozygous frameshift, c.2352_2353insC

(p.Arg785Glnfs*23), and splice-site, c.4549-1G>A, mutations were identified. Two affected siblings in the third family were compound

heterozygous for splice-site mutations c.700þ1G>T and c.4002þ1G>A. CPAMD8 splice-site mutations caused aberrant pre-mRNA

splicing in vivo or in vitro. Intriguingly, our phylogenetic analysis revealed rodent lineage-specific CPAMD8 deletion, precluding a devel-

opmental expression study in mice. We therefore investigated the spatiotemporal expression of CPAMD8 in the developing human eye.

RT-PCR and in situ hybridization revealedCPAMD8 expression in the lens, iris, cornea, and retina early in development, including strong

expression in the distal tips of the retinal neuroepithelium that form the iris and ciliary body, thus correlating CPAMD8 expression with

the affected tissues. Our study delineates a unique form of recessive ASD and defines a role for CPAMD8, a protein of unknown function,

in anterior segment development, implying another pathway for the pathogenicity of ASD.
Anterior segment dysgeneses (ASDs) are a heterogeneous

group of developmental conditions affecting the anterior

segment of the eye, including the cornea, iris, lens, trabec-

ular meshwork, and Schlemm’s canal. The trabecular

meshwork and Schlemm’s canal regulate aqueous humor

(AH) flow from the anterior chamber, which, when dysre-

gulated, can lead to an increase in intraocular pressure

(IOP).1–3 Elevated IOP is a major risk factor for the develop-

ment of glaucoma, and approximately 50% of individuals

with ASD experience visual loss from glaucoma.1–3 The

clinical features of ASD include iris hypoplasia, an enlarged

or reduced corneal diameter, corneal vascularization and

opacity, posterior embryotoxon, corectopia, polycoria, an

abnormal iridocorneal angle, ectopia lentis, and anterior

synechiae between the iris and posterior corneal surface.

The combinations of these features permit ASD classifica-

tion; however, ASD displays extensive phenotypic and

genotypic heterogeneity with overlapping clinical presen-

tations.1–3 For example, individuals with Axenfeld-Rieger

syndrome (ARS) typically have iris hypoplasia, posterior

embryotoxon, anterior synechiae, corectopia, and polyco-

ria with a high risk of secondary glaucoma, as well as

dental, cardiac, and neurological anomalies. Although

ARS is most commonly caused by heterozygous mutations

in FOXC1 (forkhead box C1) (MIM: 601090) and PITX2

(pituitary homeobox 2) (MIM: 601542),4–7 FOXC1 and

PITX2 have also been associated with Peters anomaly
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(MIM: 604229)5,8 and some cases of aniridia (MIM:

106210).9 However, most cases of aniridia are caused by

heterozygous loss-of-function (LOF) mutations in PAX6

(paired box protein 6) (MIM: 607108),10,11 resulting in par-

tial or complete iris hypoplasia, foveal hypoplasia, cata-

racts, and corneal opacification. Other genes that have

been associated with ASD include PITX3 (MIM: 602669),

FOXE3 (MIM: 601094), BMP4 (MIM: 112262), CHRDL1

(MIM: 300350), LTBP2 (MIM: 602091), and CYP1B1

(MIM: 601771).1–3,12–14 The majority of ASD-associated

genes encode transcription factors, and others encode

extracellular matrix proteins, BMP signaling pathway pro-

teins, or glycosylating proteins, all of which play a crucial

role in ocular development.1–3

In this study, we describe four affected individuals from

three unrelated families who had an unusual phenotype

that did not fit with any of the previously described ASD

criteria. All affected individuals shared predominant iris

and lens abnormalities, including iris hypoplasia, iris

transillumination defects, ectropion uveae, corectopia, iri-

dodonesis with ectopia lentis, and cataracts. No retinal ab-

normalities or extra-ocular phenotypes were observed in

our cohort (Figure 1 and Table 1). The anterior chamber

angle was abnormal in one of the three families, but other

phenotypes associated with ARS, such as posterior embry-

otoxon and extra-ocular phenotypes, were absent. Corneal

opacity was absent and the fovea was not affected,
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Figure 1. Clinical Images of the CPAMD8-Associated Anterior Segment Dysgenesis Phenotype
(A and B) Proband from family 1, after pupil dilation. The pupils are displaced nasally, and the irides are hypoplastic with focal areas of
iris pigment loss. There is ectropion uveae (arrow).
(C and D) Proband from family 2. The pupils are displaced nasally, and the irides are thin and atrophic. The outline of the lens can be
seen through the iris on retroillumination (white arrow). There are ectropion uveae and finger-like remnants arising from the collarette,
suggestive of persistent pupillary membrane (red arrows).
(E and F) Individual II:2 of family 3, showing temporally displaced pupils and mild ectropion uveae (white arrow). In the right eye there
is an inferior surgical iridotomy (black arrow).
(G) Individual II:3 of family 3. The pupils have been dilated and are displaced temporally. The irides are atrophic. The right eye has had
cataract surgery and there is nuclear sclerosis of the left lens.
(H) Images showing marked iris transillumination with loss of the iris pigment epithelium in individual II:3 of family 3 (left) and the
proband from family 2 (right). RE, right eye; LE, left eye.
distinguishing the condition of these four individuals from

PAX6-associated disorders, which are characterized by

reduced vision from foveal hypoplasia and corneal epithe-

lial stem cell failure. One of the affected individuals with

an abnormal anterior chamber angle developed increased

IOP at the age of 49 years, which was likely exacerbated

by lens dislocation and retinal detachment surgery. Other

individuals (ranging from 17–50 years of age) had normal

IOP (12–18 mmHg), thus distinguishing our cohort from

individuals with mutations in FOXC1, PITX2, LTBP2, or

CYP1B1, who frequently present with congenital or juve-

nile-onset increased IOP and glaucoma. The bilateral

ocular manifestation of affected individuals also differs

from ocular coloboma, which is caused by an aberrant
The American Jou
closure of the optic fissure, resulting in a gap in ocular tis-

sues, either unilaterally or bilaterally.15 The clinical fea-

tures of affected individuals in this study are summarized

in Table 1. All investigations were conducted in accordance

with the principles of the Declaration of Helsinki and the

study was approved by the local research ethics committee.

Informed consent, including permission to publish photo-

graphs, was obtained from all participating individuals.

Affected individuals and their relatives were clinically as-

sessed by experienced ophthalmologists. Standard evalua-

tion consisted of detailed ophthalmic examination and the

additional measurement of the axial length of the eye and

imaging of the anterior segment of the eye performed with

ocular coherence tomography ([OCT] Visante, Carl Zeiss
rnal of Human Genetics 99, 1338–1352, December 1, 2016 1339



Table 1. Clinical Details of the Four Individuals Identified with CPAMD8 Mutations

Family 1 Family 2 Family 3

II:1 II:1 II:2 II:3

Gender female male male female

Ethnicity south Asian white white white

Age (age at last follow up) 24 years (NA) 17 years (NA) 53 years (53) 50 years (44)

R Eye L Eye R Eye L Eye R Eye L Eye R Eye L Eye

HWTW (mm) 12 12 NA NA 13 13.5 13.5 13.5

Visual acuity 6/12 6/24 6/6 6/9.5 6/24 6/6 6/6 6/9

Refraction before surgery �2.00/�2.00 3 155 �4.00/�3.50 3 15 NA NA �5.25/�2.00 3 117 �3.75/�1.75 3 78 �0.50/�1.25 3 35 �0.5/�1.50 3 150

Cataract (type) yes (posterior cortical) yes (posterior
cortical)

yes (posterior cortical) yes (posterior cortical) yes (NA) yes (NA) yes (posterior
subcapsular)

yes (nuclear
sclerotic)

Cataract surgery (month/
date/year)

no no no no yes (5/24/2002) no yes (10/3/2002) yes (7/21/2008)

Ectopia lentis NA NA nasal nasal yes yes yes yes

Microphakia NA NA yes yes no no no no

Corectopia nasal nasal nasal nasal inferotemporal inferotemporal inferotemporal inferotemporal

Ectropion uveae yes yes yes yes yes yes no no

Iris hypoplasia yes yes yes yes no no yes yes

Iris transillumination no no yes yes yes yes yes yes

Iridodonesis yes yes yes yes yes yes no no

Iridocorneal angle normal normal normal normal adhesionsa adhesionsa adhesionsa adhesionsa

Foveal hypoplasia NA NA NA NA no no no no

Optic nerve dysplasia yes yes NA NA no no no no

Disc (cup:disc) 0.6 0.6 NA NA 0.3 0.4 0.4 0.4

IOP (mmHg) 18 18 12 12 30 26 17 17

Descemet’s membrane
split

no no no no no no no no

Corneal opacity no no no no no no no no

Corneal edema no no no no no no NA NA

(Continued on next page)
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Meditec), b-scan ultrasonography, and optical interferom-

etry (IOLMaster, Carl Zeiss Meditec).

Family 1 consisted of an affected South Asian female

(II:1), now 24 years old, and her unaffected parents, who

are first-cousins (Figure 2A). The proband was initially

referred at the age of 8 years with reduced vision and an

abnormal eye appearance. There was iris hypoplasia,

mild ectropion uveae, nasally displaced pupils with irido-

donesis, and posterior cortical cataract (Figures 1A and 1B

and Table 1). Ocular examination of the parents was

normal.

The unrelated parents in family 2 had no ocular anoma-

lies but had an affected son (white male, II:1), who was first

examined at the age of 8 years and is now 17 years of age.

The proband was initially referred with mildly reduced

vision and abnormal ocular appearances. The irides were

displaced nasally and were markedly hypoplastic with

ectropion uveae and finger-like extensions from the collar-

ette, suggestive of remnants of the vascularized fetal pupil-

lary membrane. The lens could be visualized through

the iris by retroillumination (Figures 1C, 1D, and 1H and

Table 1).

Family 3 consisted of two affected white siblings, one

male (II:2) and one female (II:3). Their parents are unre-

lated and had normal ocular examinations. The older

brother, II:2, now 53 years old, was first examined at the

age of 4 years and found to have normal IOP, iridodonesis,

anterior synechiae to Schwalbe’s line, and increased

corneal diameters, but without Haab’s striae. The initial

diagnosis was arrested congenital glaucoma with buph-

thalmos, which was revised to megalocornea at the age

of 27 years. In spite of a myopic spherical equivalent, he

required a reading aid at the age of 32 years. His right crys-

talline lens became subluxed at the age of 38 years. A right

pars planar vitreolensectomy was performed, but he subse-

quently developed a retinal detachment, which was surgi-

cally re-attached. His left lens dislocated into the posterior

segment at the age of 41 years and remains in the vitreous

cavity, so he is optically aphakic. Both of his pupils are dis-

placed temporally (Figures 1E and 1F and Table 1). His

affected sister, II:3, now 50 years old, was first examined

at the age of 2 years and found to have normal IOP,

increased corneal diameters, thin atrophic irides, and a

deeply pigmented angle on the right eye. There were pe-

ripheral anterior synechiae involving 90% of the anterior

chamber angle bilaterally with a single focal synechial

membrane crossing to the angle. She was also diagnosed

with arrested congenital glaucoma, which was revised to

megalocornea at the age of 25 years. She required reading

glasses at the age of 34 years. She developed a right

posterior subcapsular lens opacity with superior lens

subluxation at the age of 38 years, which was treated by

vitreolensectomy and sutured scleral fixation of an intraoc-

ular lens (IOL). The IOL dislocated 5 years later and was

removed. She then had a left vitreolensectomy at the age

of 42 years for nuclear sclerotic cataract and superior

lens subluxation. She had a similar iris appearance as her
rnal of Human Genetics 99, 1338–1352, December 1, 2016 1341



Figure 2. Identification of CPAMD8 Mutations in Families Affected by Autosomal-Recessive ASD
(A) Pedigrees of families 1, 2, and 3. An arrowhead indicates the proband in each family. A question mark indicates that DNA samples
were not available for testing.
(B) Flow chart showing the WES variant filtering strategies used in this study. Numbers in step 1 and 2 denote the number of variants.
Step 1 selected for rare variants with a MAF % 0.005 in 6500 NHLBI EVS, 1000 Genomes, the ExAC database, and our internal UCL-ex
database. Variants were segregated according to zygosity status. Step 2 (applied to the proband from family 2 only) analyzed X-linked
variants from the WES data. Step 3 selected for potential autosomal compound heterozygous and homozygous variants. Step 4
detected rare autosomal compound heterozygous or homozygous variants in gene(s) shared by the three probands. This step revealed
a homozygous variant, c.4351T>C (p.Ser1451Pro), in family 1 and compound heterozygous variants, c.2352_2353insC
(p.Arg785Glnfs*23) and c.4549-1G>A, in CPAMD8 in family 2. In family 3, re-analysis of rare heterozygous variants (step 1) led to
identification of a heterozygous splice-site variant, c.4002þ1G>A.

(legend continued on next page)
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affected brother (II:2), including iris transillumination

(Figures 1G and 1H and Table 1). Individual II:2 from

family 3 developed ocular hypertension, 26 mmHg (left

eye) and 30 mmHg (right eye), at the age of 49 years,

and he is on topical treatment. The IOPs of the other

individuals are normal (12–18 mmHg), and there was no

evidence that any of the other ocular changes have

progressed.

To identify the genetic cause(s) of ASD in these families,

whole-exome sequencing (WES) was performed on DNA

samples from each proband (Figure 2A) with an Agilent

SureSelect V5 library preparation kit and HiSeq2000

sequencer (Illumina). Reads were aligned to the human

reference sequence (Ensembl Genome browser hg19)

with Novoalign version 2.05, and the ANNOVAR

tool (OpenBioinformatics) was used to call and anno-

tate sequence variants. WES data were analyzed by

ExomeDepth16 to identify any potentially causative

exonic CNVs. Overall, 25,363, 24,203, and 24,240 exonic

sequence alterations were identified in probands from fam-

ily 1, 2, and 3, respectively (Figure 2B). The average exon

sequencing depth was 403, and 90% of the targeted region

was covered with a minimum read depth of 13.

WES variant filtering was performed in four steps, as

summarized in Figure 2B. First, on the basis of the hypoth-

esis that ASD-associated mutations are rare, variants with a

minor allele frequency (MAF) > 0.005 in the 1000 Ge-

nomes database, the National Heart, Lung, and Blood

Institute (NHLBI) Exome Sequencing Project Exome

Variant Server (EVS), the Exome Aggregation Consortium

(ExAC) database, and our internal University College

London (UCL) exomes consortium (UCL-ex) database,

comprising 1,980 exomes, were filtered (step 1). Rare vari-

ants (MAF % 0.005) were then segregated according to

their zygosity status (e.g., homozygous, hemizygous, or

heterozygous) and cross-referenced with genes previously

known to be associated with ASD; no rare variants were

identified in any known ASD-associated genes.

Due to the plausible X-linked inheritance of ASD in fam-

ily 2, an additional step was subsequently performed to

analyze X-linked variants (step 2). Only one hemizygous

missense variant in ARMCX4, c.979A>G (p.Lys327Glu),

was identified. However, the lack of potential pathoge-

nicity of this variant, as predicted by the bioinformatic

tools (Table S2), suggests that this variant is unlikely to

be causative of the condition. In addition, WES data for

the proband in family 2 was analyzed by ExomeDepth16

to identify any potentially causative exonic CNVs on the

X chromosome; no likely deleterious CNVs were identified
(C) Direct sequence verification and segregation analysis of CPAMD8
dashed box. In individual II:3 of family 3, direct sequencing of CPAM
zygous splice-site variant, c.700þ1G>T, in intron 7. The numbering o
CPAMD8 transcript GenBank: NM_015692.2.
Abbreviations are as follows: MAF, minor-allele frequency; NHLBI
Sequencing Project Exome Variant Server (EVS); UCL-ex, Univers
Aggregation Consortium; WES, whole-exome sequencing; hemi., h
compound heterozygous.

The American Jou
in any known ASD-associated X-linked genes. CNV anal-

ysis of autosomes performed for all three families did not

identify any potential exonic CNVs in any autosomal

genes associated with ASD.

ASD in family 3 was likely autosomal recessive, whereas

in families 1 and 2, either recessive inheritance or a

de novo mutation was considered because there were no

likely disease-associated X-linked variants for individual

II:1 in family 2. Therefore, step 3 selected for plausible

candidate autosomal compound heterozygous and homo-

zygous variants in each of the respective families. All

variants that remained after filtering step 3 are listed in

Table S1. Given the similarity of the ocular features ex-

hibited in all three families, we hypothesized that their

condition could be caused by mutations in the same

gene. Therefore, in the next filtering step, variants in

gene(s) shared by the probands in all three families were

selected for further interrogation. This filtering strategy

revealed variants in the candidate gene CPAMD8 (comple-

ment 3 and pregnancy zone protein-like, a2-macroglob-

ulin domain-containing protein 8) in probands from

families 1 and 2 (Figure 2B). A unique homozygous

missense variant, c.4351T>C (p.Ser1451Pro), in CPAMD8

(GenBank: NM_015692.2) was identified in the proband

of family 1, whereas the proband of family 2 carried poten-

tial compound heterozygous frameshift, c.2352_2353insC

(p.Arg785Glnfs*23), and splice-site, c.4549-1G>A, variants

(Figure 2B). However, the stringent filtering only identified

compound heterozygous variants in a single gene, CKAP2,

in the proband of family 3. CKAP2 was not considered a

likely causative gene due to the lack of potential pathoge-

nicity of these variants as predicted by bioinformatic tools

(Table S1). This prompted re-analysis of the WES data for

the proband of family 3. Upon re-examination of the 116

rare heterozygous variants (MAF % 0.005) after filtering

step 1, a unique heterozygous splice-site variant in

CPAMD8, c.4002þ1G>A, was found (Figure 2B). For this

sample, WES data lacked exome coverage for six coding

exons of CPAMD8. The sequencing gaps were then covered

by PCR amplification and Sanger sequencing according to

standard methodology (primer sequences are available on

request). This led to the discovery of a second CPAMD8

variant in this individual, a unique heterozygous splice-

site variant in intron 7, c.700þ1G>T (Figure 2C).

Verification of the disease-associated variants inCPAMD8

was performed by direct sequencing of the specific exons

or introns carrying the variants and segregation analyses

in additional family members, when available (primer

sequences are available on request). In family 1, eachparent
variants. Variants identified in the probands are indicated by a red
D8 coding exons that were not covered by WES revealed a hetero-
f the cDNA and amino acid residues is in accordance with human

EVS, National Heart, Lung, and Blood Institute (NHLBI) Exome
ity College London (UCL) Exomes Consortium; ExAC, Exome
emizygous; het., heterozygous; homo., homozygous; comp. het.,

rnal of Human Genetics 99, 1338–1352, December 1, 2016 1343



T
a
b
le

2
.

S
u
m
m
a
ry

o
f
A
u
to

so
m
a
l-
R
e
c
e
ss
iv
e
A
S
D

C
P
A
M
D
8
M
u
ta

ti
o
n
s

F
a
m
il
y

E
x
o
n
o
r
In
tr
o
n

N
u
c
le
o
ti
d
e
C
h
a
n
g
e

P
ro

te
in

C
h
a
n
g
e

P
o
ly
P
h
e
n
-2

(H
u
m
a
n

V
a
ri
a
ti
o
n
S
c
o
re

0
–1

)
S
IF
T
(T

o
le
ra

n
c
e

In
d
e
x
0
–1

)
P
h
y
lo
P

U
C
L
-e
x

(E
x
o
m
e
s)

1
0
0
0
G
e
n
o
m
e
s

N
H
L
B
I
E
V
S

T
o
ta

l
A
ll
e
le
s

E
x
A
C
T
o
ta

l
A
ll
e
le
s

H
e
t.

H
o
m
o
.

1
ex

o
n
3
2

c.
4
3
5
1
T
>
C

p
.S
er
1
4
5
1
P
ro

P
R
D

(0
.9
4
8
)

d
am

ag
in
g
(0
.0
1
)

co
n
se
rv
e
d
(0
.9
8
)

0
/1
,9
8
0

0
0
/1
2
,3
7
8

0
/1
1
6
,1
7
8

0
/1
1
6
,1
7
8

2
ex

o
n
1
8

c.
2
3
5
2
_2

3
5
3
in
sC

p
.A
rg
7
8
5
G
ln
fs
*2
3

N
A

N
A

N
A

0
/1
,9
8
0

0
2
1
/1
1
,5
2
0

4
7
/1
1
5
,6
7
0

0
/1
1
5
,6
7
0

in
tr
o
n
3
3

c.
4
5
4
9
–1

G
>
A

p
.?

N
A

N
A

N
A

0
/1
,9
8
0

0
1
/1
2
,3
5
6

1
/1
2
0
,6
8
8

0
/1
2
0
,6
8
8

3
in
tr
o
n
7

c.
7
0
0
þ1

G
>
T

p
.?

N
A

N
A

N
A

0
/1
,9
8
0

0
0
/1
2
,1
4
0

0
/1
2
0
,2
1
2

0
/1
2
0
,2
1
2

in
tr
o
n
2
9

c.
4
0
0
2
þ1

G
>
A

p
.?

N
A

N
A

N
A

0
/1
,9
8
0

0
0
/1
2
,3
5
0

0
/1
2
0
,3
5
0

0
/1
2
0
,3
5
0

In
si
lic
o
a
n
a
ly
si
s
o
f
ra
re

C
P
A
M
D
8
va
ri
a
n
ts
id
e
n
ti
fi
e
d
.
P
o
ly
P
h
e
n
-2

a
p
p
ra
is
e
s
m
u
ta
ti
o
n
s
q
u
a
n
ti
ta
ti
ve
ly

a
s
b
e
n
ig
n
,
p
o
ss
ib
ly

d
a
m
a
g
in
g
,
o
r
p
ro
b
a
b
ly

d
a
m
a
g
in
g
(P
R
D
)
o
n
th
e
b
a
si
s
o
f
th
e
m
o
d
e
l’
s
fa
ls
e
-p
o
si
ti
ve

ra
ti
o
.
S
IF
T
re
su
lt
s
a
re

re
p
o
rt
e
d
to

b
e
to
le
ra
n
t
if
to
le
ra
n
ce

in
d
e
x
is
R
0
.0
5
o
r
in
to
le
ra
n
t
if
to
le
ra
n
ce

in
d
e
x
is
<
0
.0
5
.
P
h
y
lo
P
p
re
d
ic
ti
o
n
is
co

n
se
rv
e
d
if
sc
o
re

is
>
0
.9
5
,
o
th
e
rw

is
e
n
o
n
-c
o
n
se
rv
e
d
.
T
h
e
cD

N
A
is
n
u
m
b
e
re
d
a
cc
o
rd
in
g
to

G
e
n
B
a
n
k:

N
M
_
0
1
5
6
9
2
.2
.
A
b
b
re
vi
a
ti
o
n
s
a
re

a
s
fo
llo

w
s:
N
A
,
n
o
t
a
va
ila
b
le
;
U
C
L-
e
x
,
U
n
iv
e
rs
it
y
C
o
lle
g
e
Lo

n
d
o
n
(U

C
L)

e
x
o
m
e
s
co

n
so
rt
iu
m
;
N
H
LB

IE
V
S
,
N
a
ti
o
n
a
lH

e
a
rt
,
Lu

n
g
,
a
n
d
B
lo
o
d
In
st
it
u
te

(N
H
LB

I)
E
x
o
m
e
S
e
q
u
e
n
ci
n
g
P
ro
je
ct

E
x
o
m
e

V
a
ri
a
n
t
S
e
rv
e
r
(E
V
S
);
E
x
A
C
,
E
x
o
m
e
A
g
g
re
g
a
ti
o
n
C
o
n
so
rt
iu
m
;
H
e
t.
,
h
e
te
ro
zy
g
o
te
;
H
o
m
o
.,
h
o
m
o
zy
g
o
te
.

1344 The American Journal of Human Genetics 99, 1338–1352, Dece
was a heterozygous carrier of the missense change,

c.4351T>C (p.Ser1451Pro), detected in the proband (II:1)

in the homozygous state (Figure 2C). Variant c.4351T>C

is absent from 1000 Genomes, NHLBI EVS, our internal

UCL-ex database, and the ExAC database (Table 2). This

variant is positioned within a highly conserved alpha-2-

macroglobulin (A2M) complement component domain

of CPAMD8 (Figure 3A), and multiple sequence alignment

of CPAMD8 orthologs confirmed that the serine residue

is evolutionarily conserved across different species (Fig-

ure 3B). Bioinformatic tools SIFT, PolyPhen-2, and PhyloP

support the likely pathogenicity of this CPAMD8 missense

variant (Table 2).

In family 2, Sanger sequencing confirmed that the pro-

band (II:1) is compound heterozygous for the c.2352_

2353insC (p.Arg785Glnfs*23) and c.4549-1G>A variants,

whereas his father (I:1) is heterozygous for the frameshift

variant and wild-type for the splice-site variant (Figure 2C).

Both c.2352_2353insC and c.4549-1G>A are absent in

1000 Genomes and our internal UCL-ex database and are

found at a heterozygous frequency of 21/11,520 alleles

and 1/12,356 alleles, respectively, in the NHLBI EVS. In

ExAC, the heterozygous frequencies are 47/115,670 alleles

for c.2352_2353insC and 1/120,688 alleles for c.4549-

1G>A, which is consistent with predicted allele fre-

quencies for a rare recessive disease. No homozygotes for

these variants are present in any of the databases (Table 2).

Variant c.2352_2353insC is predicted to cause a premature

termination, p.Arg785Glnfs*23, whereas variant c.4549-

1G>A alters the invariant AG dinucleotide at the splice-

acceptor site of intron 33 and is predicted to disrupt

normal splicing (Figure 3A).

Given that a fresh blood sample from the family 2 pro-

band was not available, we performed an in vitro splice

assay by using a minigene system to test the effect on

pre-mRNA splicing, as previously described.17,18 Primers

were designed to amplify a 1,605 bp CPAMD8 genomic

fragment encompassing exons 33 to 35 and the surround-

ing intronic regions from the proband’s DNA sample

(primer sequences are available on request). PCR products

generated were initially cloned into pGEM-T Easy

(Promega) and sequenced, then the wild-type and mutant

fragments were subcloned into the EDB vector.17,18 All

constructs generated were directly sequenced to ensure

fidelity and orientation (Figure 3C). Wild-type, mutant

(c.4549-1G>A), and EDBminigenes were transiently trans-

fected into HEK293 cells with TransIT-LT1 Transfection

Reagent (Cambridge BioScience for Mirus Bio). 24 hr

after transfection, cells were lysed and homogenized

(QIAshredder kit, QIAGEN). Total RNA was extracted via

an RNeasy Mini Kit (QIAGEN) with an on-column DNase

treatment, according to the manufacturer’s instructions.

Approximately 3 mg of total RNA was reverse transcribed

to cDNA via the Tetro cDNA Synthesis Kit (Bioline).

Reverse transcription (RT)-PCR using EDB vector-specific

primers was performed on 100 ng of cDNA with GoTaq

Green Master Mix (Promega) (primer sequences are
mber 1, 2016



Figure 3. Schematic of CPAMD8 Gene and Protein Structure and Consequence of CPAMD8 Mutations Identified in this Study
(A) Schematic of the genomic and protein structure of CPAMD8-1a. Positions of CPAMD8 mutations identified in this study are illus-
trated. The homozygous missense variant, p.Ser1404Pro, identified in family 1 is located in exon 32 (orange box). Compound hetero-
zygous frameshift and splice-site variants, p.Arg785Glnfs*23 and c.4549-1G>A, were identified in family 2 (green boxes). In family 3,
compound heterozygous splice-site mutations, c.700þ1G>T and c.4002þ1G>A, were identified (blue boxes). Mutations are annotated
in accordance with transcript CPAMD8-1a (GenBank: NM_015692.2). A2M, a2-macroglobulin.
(B) Multiple sequence alignment of CPAMD8 orthologs shows that the serine residue altered in family 1, p.Ser1451Pro, is highly
conserved in different species.
(C) In vitro splice assay of CPAMD8 via a minigene system. Wild-type and mutant c.4549-1G>A fragments of CPAMD8 exons 33 to 35
with flanking intronic sequence were cloned into the EDB splice assay vector. The position of the mutation is highlighted with a red star.
Primer binding sites to EDB exons are indicated by red arrows, whereas the control primers targeting the vector backbone sequences are
depicted by black arrows. Transcripts generated by RT–PCR were separated by agarose gel electrophoresis and were directly sequenced.
The wild-type construct generated a correctly spliced CPAMD8 exon 33-34-35 to the vector exons, whereas the mutant construct gener-
ated four aberrantly spliced products. The most efficiently spliced product (2) represents an aberrant splicing event that caused skipping
of exon 34. Other aberrantly spliced products detected correspond to the inclusion of intron 33 (1) and the deletion of both exons 33 and
34 (3). The spliced product corresponding to the vector exons alone (4) was also produced by the mutant constructs at a very low level.
Amplification with control primers (black arrows) demonstrates equal loading of the cDNA template. NTC, no template control.

(legend continued on next page)
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available on request). PCR amplified products were then

resolved on an agarose gel (Figure 3C), gel extracted with

the QIAquick Gel Extraction Kit (QIAGEN), and directly

sequenced with EDB vector-specific primers. Analysis of

the resulting transcripts demonstrated that wild-type and

mutant constructs produced differently spliced products

(Figure 3C). The wild-type construct generated correctly

spliced CPAMD8 exons 33, 34, and 35 to vector exons

(Figure 3C), resulting in a transcript of approximately

600 bp. In contrast, four transcripts were produced

by the mutant construct. The most abundant product

(approximately 550 bp) represents an aberrant splicing

event involving exon 34 skipping, resulting in an in-frame

deletion of 21 amino acids (aa), p.Ile1517_Gln1537del

(Figure 3C). In addition, two aberrantly spliced products

corresponding to the inclusion of intron 33, and

deletion of exons 33 and 34 were detected and are pre-

dicted to produce an in-frame insertion of 26 aa,

(p.Ala1516_Ile1517ins26), and an in-frame deletion of

73 aa, (p.Asp1465_Gln1537del), respectively. It is notable

that the spliced product corresponding to the vector exons

alone (approximately 200 bp) was also produced by the

mutant construct at a very low level, suggesting that the

splice-site variant reduced the native splicing efficiency

within the CPAMD8 minigene. Thus, our findings demon-

strate that the splice-acceptor site variant, c.4549-1G>A

caused aberrant pre-mRNA splicing.

In family 3, segregation analysis of two heterozygous

splice-site variants, c.4002þ1G>A and c.700þ1G>T,

confirmed that both of the affected siblings (II:2 and II:3)

are compound heterozygous for the variants, whereas the

unaffected mother (I:2) and unaffected granddaughter

(III:1) carry the c.700þ1G>T variant only (Figure 2C).

Paternal DNA (I:1) was not available for testing. Both

c.4002þ1G>A and c.700þ1G>T variants alter the

invariant GT dinucleotide at the splice-donor sites of

intron 29 and intron 7, respectively (Figure 3A), and are

predicted to abolish the splice-donor sites. To investigate

the effects of these variants on pre-mRNA splicing, RT-

PCR (primer sequences are available on request) was per-

formed on RNA extracted from lymphocytes from both

affected siblings, which is predicted to produce wild-type

and aberrant transcripts given that the affected individuals

are compound heterozygous for the splice-site variants.

Amplification spanning exons 27–31, encompassing the

c.4002þ1G>A variant, resulted in two transcripts in both
(D and E) Agarose gel images showing RT-PCR products from whole
comparison to a control. Electropherograms and schematic show t
mutations. Exons are indicated by filled bars and introns are dep
transcripts in the agarose gel images.
(D) Amplification of exons 27–31 encompassing the splice-donor
affected siblings. Direct sequencing revealedwild-type product (blue a
corresponding to exon 29 skipping, which resulted in an in-frame d
(E) Wild-type transcript is indicated by a blue arrow. Splice-donor mu
electropherogram (green arrow) shows activation of a cryptic splice-do
which is predicted to result in a prematurely truncated product, p.Gly
two additional abnormal splicing events, the skipping of exon 7 a
p.Asp216Alafs*5 and p.Leu210Alafs*5, respectively.
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affected siblings. Direct sequencing revealed an abundant

aberrant transcript (approximately 470 bp) with exon

29 deleted and a low level of wild-type transcript (Fig-

ure 3D). The mutation therefore rendered the splice donor

site inefficient, with only a residual amount of normal

splicing. Deletion of exon 29 in the aberrant transcript is

predicted to result in an in-frame deletion of 25 aa,

(p. Gly1310_Glu1334del), within the highly conserved

A2M complement component domain (Figures 3A and

3D). Amplification of exons 4–10, encompassing the

c.700þ1G>T variant, revealed several aberrant transcripts

and wild-type transcript in both affected siblings.

Sequencing revealed a cryptic splice donor site located

in intron 7, c.700þ142, which is predicted to introduce a

premature termination codon 87 bp downstream of exon

7, resulting in a truncated product, p.Gly234Valfs*30.

In addition, two smaller transcripts, corresponding to the

skipping of exon 7 alone and both exons 6 and 7, were

detected that are predicted to produce truncated products,

p.Asp216Alafs*5 and p.Leu210Alafs*5, respectively (Fig-

ure 3E). In summary, all splice-site mutations identified

in families 2 and 3 caused aberrant pre-mRNA splicing,

supporting their likely pathogenicity. Notably, the posi-

tion of mutations identified in this study implies that

only isoforms CPAMD8-1a and/or CPAMD8-1b are impor-

tant in the pathogenesis of ASD (Figures 3A and S1).

CPAMD8 is a large gene spanning 134 kb located on

chr19p13.11. Investigation of RNA sequencing (RNA-seq)

data from the Human BodyMap 2.0 project, human fetal

and adult cornea endothelial cells,19 basal limbal crypts,

superficial limbal crypts,20 and whole cornea tissue (un-

published data) using the Integrative Genomics Viewer

(IGV) indicated that CPAMD8 consists of 42 exons that

are alternatively spliced into at least two isoforms,

CPAMD8-1a and CPAMD8-1b (Figure S1). CPAMD8-1a con-

sists of 42 coding exons, encoding 1,932 aa, and was previ-

ously identified in human tissues, including brain, kidney,

heart, liver, testis, and small intestine.21 Isoform CPAMD8-

1b uses an alternative acceptor site in intron 41, which

gives rise to a different terminal exon 42 (denoted here

as exon 42b), resulting in a shorter protein (1,863 aa)

(Figure S1). In addition, isoform CPAMD8-2 was previously

identified in human placenta tissue,22 although it was

absent from the RNA-seq data of other human tissues

(Human BodyMap 2.0 project), including ocular tis-

sues.19,20 This isoform consists of 14 coding exons,
-blood RNA of affected individuals II:2 and II:3 from family 3, in
he transcripts generated by the c.4002þ1G>A and c.700þ1G>T
icted by lines. Splicing events are color coded according to the

site mutation c.4002þ1G>A resulted in two transcripts in both
rrow) and a smaller transcript of approximately 470 bp (red arrow),
eletion, p.Gly1310_Glu1334del.
tation c.700þ1G>T resulted in three aberrant transcripts. The top
nor site (black asterisk) in intron 7 (142 bp downstream of exon 7),
234Valfs*30. Two smaller transcripts (orange and red arrows) depict
lone and skipping of exons 6 and 7, which result in frameshifts
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encoding 503 aa. Exon 12 of this isoform is alternatively

spliced to exon 17b, which differs from exon 17a by use

of an alternative acceptor site in intron 17. This isoform

encodes the N-terminal signal peptide and an A2M

domain of CPAMD8 (Figure S1).

CPAMD8 has not previously been implicated in any hu-

man disease, but represents an intriguing candidate for

recessive ASD because of its potential role in regulating

aqueous humor (AH)23 and ocular development in semi-

aquatic amphibians.24,25 By comparing the transcriptomes

of the choroid plexus epithelium (CPE) in the human brain

and the non-pigmented epithelium (NPE) of the ciliary

body, CPAMD8 was found to have significantly higher

expression in the NPE than in the CPE.23 The NPE pro-

duces AH in the eye, which provides nutrients to the

eye structures and removes the metabolic waste from the

anterior chamber through the trabecular meshwork and

Schlemm’s canal.26 Interestingly, other genes that are

important for the development of the anterior segment,

such as RAX (MIM: 601881), mutations in which are

known to cause microphthalmia (MIM: 611038), also

showed higher expression in the NPE. These data suggest

an as yet undefined role for CPAMD8 in the anterior

segment of the eye.23 Further support for a role for

CPAMD8 in the development of the anterior segment

comes from studies in the newt, which is capable of

lens regeneration from the dorsal iris pigmented epithelial

cells via trans-differentiation. In a study that used RNA-

seq to compare differentially expressed genes in regenera-

tion-competent dorsal iris and regeneration-incompetent

ventral iris in the newt, CPAMD8 was found to be upregu-

lated in the regeneration-incompetent ventral iris.24 Simi-

larly, microarray analysis performed in another study

to identify differentially expressed genes in the iris of

young and aged axolotls demonstrated that CPAMD8

was upregulated in the regeneration-incompetent iris.25

Interestingly, CHRDL1, which is associated with X-linked

megalocornea (MGC1) and adult-onset iris anomalies,12,27

was also found to be upregulated in the regeneration-

incompetent iris in both amphibians.24,25 Together, these

findings support an as yet undefined role for CPAMD8

in the developing anterior segment which, when

mutated, might perturb the normal developmental

pathway for the anterior segment structures, thereby lead-

ing to ASD.

To explore this hypothesis, we examined the expression

pattern of CPAMD8 in the developing human fetal eye

to delineate spatiotemporal expression in the ocular struc-

tures implicated in this unique form of ASD. RNA was

extracted from microdissected human fetal lens, iris,

retina, and cornea with mirVana isolation kits (Thermo

Fisher Scientific). First-strand cDNA synthesis was per-

formed with 1 mg total RNA via M-MLV Reverse Transcrip-

tase (Promega) and random hexamer oligonucleotide

primers (Invitrogen). Second-strand synthesis was per-

formed with gene-specific primers. Mutations in the C-ter-

minal exons are predicted to affect isoforms CPAMD8-1a
The American Jou
and CPAMD8-1b, implying that only these isoforms

are important in the pathogenesis of ASD (Figures 3A

and S1). Therefore, we investigated the expression of

CPAMD8-1a and CPAMD8-1b by using RT-PCR with iso-

form-specific primers (primer sequences are available on

request). CPAMD8-1a-specific primers amplified exon 41

to exon 42 (primer pair 1), whereas CPAMD8-1b-specific

primers targeted exon 42b (primer pair 2) (Figure S1).

PAX6 and GAPDH were included as controls as previously

described.28 CPAMD8-1a expression was detected in the

developing human lens and retina as early as week 9 of

gestation, and expression was retained into the second

trimester (Figure 4A). Expression of CPAMD8-1a was also

detected in the iris and cornea at week 22 of gestation.

Our data demonstrated differential temporal expression

ofCPAMD8-1a in the lens and retina, with increasing levels

of expression in the lens from early (week 9 of gestation)

to later (week 22 of gestation) developmental stages and

decreasing levels of expression in the retina (Figure 4A).

CPAMD8-1b showed an identical expression pattern to

CPAMD8-1a in this RT-PCR assay (data not shown).

To further explore the expression of CPAMD8, we per-

formed in situ hybridization (ISH) in the developing hu-

man embryonic eye. Two riboprobes were synthesized

with Digoxigenin-UTP RNA labeling kits (Roche) from

a fragment of 356 bp amplified from the CPAMD8 30 UTR

in genomic DNA (probe A) or a 392 bp fragment of

CPAMD8 exon 4 to 10 amplified from lymphoblast-derived

cDNA (probe B; Figure S1) (primer sequences are available

on request). These riboprobes were designed to target both

isoformsCPAMD8-1a and CPAMD8-1b (Figure S1) and were

cloned into pGEM-T Easy (Promega). Human embryonic

eyes were fixed in 4% (w/v) phosphate-buffered parafor-

maldehyde solution and embedded in paraffin wax

before sectioning. ISH was performed in 300 mM NaCl,

5 mM EDTA, 20 mM Tris-HCl, 5 mM sodium phosphate,

0.1 mg/mL yeast tRNA, 10% dextran sulfate, 13 Den-

hardt’s reagent, 0.5 mg/mL tRNA, and 50% formamide

with digoxigenin-incorporated riboprobes at 65�C. Post-
hybridization slides were incubated with anti-digoxigenin

conjugated with alkaline phosphatase (Roche) diluted

1:1,000 in 2% fetal calf serum. Expression patterns

were visualized with a Nitro-Blue Tetrazolium Chloride/

5-Bromo-4-Chloro-3-Indolyphosphate p-Toluidine Salt

(NBT/BCIP) system (Roche). Sections were mounted with

Vectamount (Vector laboratories) and analyzed with a

Zeiss Axioplan 2 imaging system. Embryonic eyes at Car-

negie stages (CS) 18 (day 44), 19 (day 47–48), 21 (day 52)

and 23 (day 56–57) were analyzed. Both antisense ribop-

robes produced the same results, and data from probe A

is shown.

Consistent with the RT-PCR findings, ISH results re-

vealed robust CPAMD8 expression in the developing em-

bryonic neural retina from the seventh to the eighth

week, whereas lower expression was detected in the embry-

onic lens (Figures 4A and 4B). Notably, ISH revealed strong

expression of CPAMD8 in the distal tips of the retinal
rnal of Human Genetics 99, 1338–1352, December 1, 2016 1347



Figure 4. CPAMD8 Is Expressed in the
Developing Human Anterior Segment
(A) RT-PCR of human eye tissues showing
CPAMD8-1a expression in the developing
human lens, retina, iris, and cornea with
differential temporal expression detected
in lens and retina. In the lens, expression
of CPAMD8-1a increased from the early
developmental stage (week 9 of gestation)
to the second trimester (week 22 of gesta-
tion), whereas in the retina, CPAMD8-1a
expression gradually declined from early
(week 9 of gestation) to later (week 22 of
gestation) fetal stages. PAX6 and GAPDH
were used as controls. The size of each
amplified product is shown.
(B–E) In situ hybridization (ISH) of
CPAMD8 in the human eye at Carnegie
stage 19 (CS19) (head-sagittal sections)
(B and C) and CS23 (face-sagittal sections)
(D and E).
(B) ISH image shows that CPAMD8 is
strongly expressed in the neural retina
(NR) and weakly expressed in the lens (L)
at CS19.
(C) Sense probe control.
(D and E) At CS23, strong CPAMD8 expres-
sion was detected in the distal tips of
the retinal neuroepithelium (red boxes).
CPAMD8 expression was weak in the peri-
ocular mesenchyme anterior to the lens
(L) (arrowheads) at this stage.
Abbreviations are as follows: PM, pupil-
lary membrane; RPE, retinal pigmented
epithelium.
neuroepithelium that contributes to the development of

the iris and ciliary body by the eighth week (Figure 4D

and 4E). Interestingly, ISH did not detect significant em-

bryonic expression of CPAMD8 in the periocular mesen-

chyme, or in the mesenchyme anterior to the lens, corre-

sponding to the pupillary membrane and developing

cornea at CS 23 (Figure 4E), whereas CPAMD8 expression

was readily detected by RT-PCR at later stages in the fetal

lens, iris, and cornea. The pupillary membrane contributes

to the development of iris stroma and will degenerate dur-

ing the eighth month of gestation. Thus, the CPAMD8

expression profile in the developing anterior segment of

the embryonic and fetal eye correlates with the affected tis-

sues and ocular phenotype, characterized by predominant

iris and lens anomalies with the appearance of possible

persistent pupillary membrane remnants in one affected
1348 The American Journal of Human Genetics 99, 1338–1352, December 1, 2016
individual. Our data imply that

impaired CPAMD8 function disrupts

the normal development of the lens

and iris structures. Signaling from

the lens during development has

been shown to have an important

role in forming the structures of

the anterior segment,29,30 suggesting

that the perturbed CPAMD8 function

in the developing lens could be
another contributory factor in the maldevelopment of

the iris in these individuals.

CPAMD8 is a member of the A2M/C3 (alpha-2-macro-

globulin/complement 3) protein family,21 which is

comprised of six other members, including A2M,31 PZP

(pregnancy zone protein),32 CD109,33 and complement

proteins C3,34 C4,35 and C5.36 The proteins in the

A2M/C3 family play different roles in the innate and

acquired immune system. A2M is a soluble versatile pro-

teinase inhibitor, and interaction with growth factors,

such as TGF-b (transforming growth factor-b), has been

described.37,38 A2M inhibits protease activity through a

unique mechanism. Upon binding to the protease, it trig-

gers the proteolytic cleavage of A2M in its bait region,

which causes A2M to entrap the protease, followed by

the removal of the complex by the LDL (low density



Figure 5. Schematic Representation of
CPAMD8 Orthologs Showing Highly
Conserved Functional Motifs from Human
to Lamprey
All CPAMD8 orthologs contain the hall-
mark motifs of the A2M/C3 family,
including an N-terminal signal peptide,
bait regionwith cleavage site, and thioester
site. CPAMD8 has the alpla-2-macroglob-
ulin specificity-determining domains, also
found in A2M. CPAMD8 also has a
conserved RRRR processing site that is
found in complement proteins, and a
unique C-terminal domain, which in
CPAMD8 is a Kazal-like domain. The pair-
wise full-length protein sequence identi-
ties between human and other species
are indicated, ranging from 62%–93%
sequence identity. Dotted lines indicate
incomplete sequences.
lipoprotein) receptor family.37–40 Similar to A2M, PZP is a

soluble protease inhibitor, although a different protease in-

hibition mechanism has been reported.41 A high amount

of PZP is present in the serum during pregnancy.32 Com-

plement proteins, which are also soluble, play an impor-

tant role in defending against pathogens.42 In contrast to

other A2M/C3 family members, CD109 is a membrane-

bound glycosylphosphatidylinositol (GPI)-anchored pro-

tein33 and has been shown to negatively modulate

TGF-b1 in human keratocytes.43 All A2M/C3 members,

except C5, have a characteristic thioester (TE) bond, which

enables the protein to bind covalently to the target prote-

ase. Consistent with other members of the A2M/C3 family,

CPAMD8 has an N-terminal signal peptide, a TE motif,

A2M-associated domains, and a C-terminal Kazal-like

domain. Interestingly, Kazal-domain proteins, such as

FSTL3 (follistatin-related protein 3), have been shown to

act as antagonists for TGF-b family members, which nega-

tively regulates the BMP signaling pathway.44,45 A similar

function has been described for CHRDL1, which is associ-

ated with MGC1.12 In addition to a Kazal-like domain in

the C terminus, CPAMD8 has an RRRR conserved site at

residues 715–718, which are features of complement pro-

teins21 (Figure S2). The function of CPAMD8 is unknown,

but membrane association and proteolytic processing into

two chains of approximately 70 and 130 kDa has been

demonstrated.21

The emergence of the A2M/C3 gene family took place

early in evolution. It is believed that the A2M/C3 family

of genes are the result of duplication from a common

ancestral gene that then distributed to different chromo-

somes.46 This is supported by the clustered distribution

of A2M/C3 family of genes in different species. For

example, in humans, CPAMD8 and C3 are clustered on

chromosomal region 19p13.1–13.3, 12p13.3 carries A2M

and PZP, and C4 and CD109 are found on 6p21.3 and

6q13, respectively. However, the A2M/C3 gene family

has undergone divergence in different species.46 For

example, A2M and C4 are duplicated in zebrafish46 and
The American Jou
mice.47 Given that A2M/C3 family members play an

important role in innate and acquired immunity, differen-

tial evolution of the A2M/C3 family proteins could repre-

sent the requirement for distinctive defense mechanisms

in different species. Interestingly, although CPAMD8 is

highly conserved in different species, from humans to jaw-

less fish, with protein sequence identity ranging from

62%–93% (Figure 5), we show that CPAMD8 was lost in

the rodent lineage (Figure 6A). Instead, rodents have a

different clustered family member, murinoglobulins,

including Mug1 and Mug2, which are absent in humans

(Figure 6B). Mug1 and Mug2 are highly homologous,

sharing approximately 90% sequence identity. Compari-

son of the protein sequence of mouse Mug1 and Mug2 to

human A2M/C3 members revealed that Mug1 and Mug2

share higher sequence identities with A2M (59%) and

PZP (57%) than with the other family proteins, CD109

(33%), C4 (27%), C3 (25%), and C5 (23%). The conserved

motifs in mouse Mug1 and Mug2 and other human A2M/

C3 family members are shown in Figure S2. Furthermore,

their clustered location with A2m and Pzp on mouse chro-

mosome 6 and rat chromosome 4 suggests that Mug1 and

Mug2 are products of tandem duplication of the A2m/Pzp

protogene (Figure 6B). Moreover, mouse Mug1 and Mug2

have<33% homology to human CPAMD8, demonstrating

thatMug1 andMug2 are notmouse orthologs of CPAMD8,

but most likely represent paralogs in the protein family.

This lineage-specific deletion ofCPAMD8 and the exclusive

introduction of murinoglobulins in rodents reflect genetic

buffering or functional divergence (existence of alternative

pathways) between humans and rodents. Given the

conserved functional motifs shared among all A2M/C3

family members, it is likely that the lack of requirement

of CPAMD8 in rodents results from the presence of redun-

dant or backup genes within the family, which provide

functional complementation. In addition, it is possible

that the absence of CPAMD8 in rodents re-routes the task

to an alternative pathway, which would render CPAMD8

redundant in rodents. Both hypotheses suggest a more
rnal of Human Genetics 99, 1338–1352, December 1, 2016 1349



Figure 6. Synteny of Gene Clusters for
CPAMD8, A2M, PZP, Mug1, and Mug2 in
Different Species
(A) Schematic depicting CPAMD8 flanked
by HAUS8 and SIN3B in different species.
X indicates deletion of CPAMD8 from the
syntenic region in rat andmouse genomes.
Flanking genes are shown as arrows.
(B) Schematic showing the clustered loca-
tion of A2M and PZP in different species
and Mug1 and Mug2 on the same chromo-
some in rodents. The chromosomal posi-
tion of Mug1 and Mug2 adjacent to A2m
and Pzp suggests that they are a result of
tandem duplication. The distance of the
genes depicted is not to scale.
Gene orientation is indicated by the
arrowhead.
complicated underlying functional complementation or

divergence between the human and rodent lineage. Future

studies will be required to fully elucidate this lineage-spe-

cific redundancy.

Our study has several important implications for under-

standing the etiology of ASD and the development of

the anterior segment. First, we define a unique form of

autosomal-recessive ASD, characterized by predominant

iris and lens anomalies that don’t affect the cornea or

posterior segment. Second, we identify mutations in

CPAMD8, encoding a protein of unknown function, as

the cause of autosomal-recessive ASD. Third, our data

demonstrate the spatiotemporal expression of CPAMD8

in the developing human lens, iris, retinal neuroepithe-

lium, and presumptive cornea, suggesting that CPAMD8

might have a potential role in crosstalk between the optic

cup peripheral neuroepithelium and the anterior periocu-

lar mesenchyme during eye morphogenesis. Finally,

phylogenetic analyses show the rodent lineage-specific

deletion of CPAMD8, implying functional divergence or

complementation of gene function between humans and

rodents. In conclusion, our study delineates a clinical en-

tity, and our findings suggest that mutations in CPAMD8

might cause ASD in genetically unresolved individuals.
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Figure S1. Schematic of genomic and protein structure of CPAMD8 isoforms and 

position of RT-PCR primers and riboprobes for in situ hybridization. Isoforms 

CPAMD8-1a and CPAMD8-1b both consist of 42 coding exons, with an alternative terminal 

exon 42. CPAMD8-1a encodes 1,932 amino acids, whereas isoform CPAMD8-1b encodes 

1,863 amino acids.  Isoform CPAMD8-2 consists of 14 coding exons, which encode 503 

amino acids. The protein encoded by CPAMD8-2 lacks C-terminal domains. Products of RT-

PCR primer pairs are indicated by green bars (not to scale). Primer pair 1, CPAMD8-1a-

specific; Primer pair 2, CPAMD8-1b-specific. Blue bars (not to scale) labeled with A and B 

indicate the riboprobes for in situ hybridization. Probe A targets the 3’ untranslated region of 

CPAMD8, whereas probe B binds to the CPAMD8 exons 4 to10.  

 



 

 

 

Figure S2. Schematic representation of conserved motifs in A2M/C3 family members 

compared to human CPAMD8. All A2M/C3 family proteins consist of an N-terminal signal 

peptide, bait region or furin cleavage motif, and a thioester (TE) site, except C5, which is 

lacking a TE binding site. All complement proteins and CPAMD8 have a conserved RRRR 

processing site, and a unique C-terminal domain, which is a netrin in complement proteins, 

and a Kazal-like domain, in CPAMD8. A2M and PZP have a bait region, which is absent in 

complement proteins. The furin cleavage motif located after the TE site is only found in 

CD109. Comparison of mouse Mug1 and Mug2 to the human A2M/C3 family proteins shows 

that Mug1 and Mug2 share more conserved functional domains with A2M and PZP than to 

any other family members.  



  

 Table S1: Summary of WES variants 

Family 

(Individu

al) 

HUGO gene 
Het./Ho

mo. 

Nucleotide 

change 
Protein change 

Polyphen 2 

(human 

variation 

score 0-1) 

SIFT 

(tolerance 

index 0-1) 

Blosum62 

(-4 to 11) 

UCL-ex 

(individu

als) 

1000 

Genomes 

NHLBI 

EVS total 

alleles 

ExAC total alleles 

Het. Homo. 

1 (II:1) POM121L2 Het. c.829G>A p.(Val277Ile) BNG (0.132) T (0.15) 3 0/1980 0 0/4,566 0/21,244 0/21,244 

Het. c.245A>G p.(Lys82Arg) BNG (0.078) T (0.42) 2 0/1980 0 0/4,566 0/21,096 0/21,096 

OTOG Het. c.2104C>T p.(His702Tyr) PRD (0.934) T (0.4) 2 0/1980 0 NA 1/14,602 0/14,602 

Het. c.8011G>A p.(Val2671Met) BNG (0.005) T (0.14) 1 0/1980 0 NA 1/15,334 0/15,334 

DNASE1L2 Het. c.437T>C p.(Leu146Pro) BNG (0.002) T (0.23) -3 0/1980 0 0/11,348 0/43,290 0/43,290 

Het. c.442T>C p.(Ser148Pro) BNG (0.001) T (0.21) -1 0/1980 0 0/11,348 0/37,574 0/37,574 

GOLGB1 Homo. c.7906C>T p.(His2636Tyr) BNG (0.187) D (0.03) 2 0/1980 0 0/13,006 11/121,180 0/121,180 

GOLGB1 Homo. c.6244T>A p.(Leu2082Ile) POS (0.904) T (0.17) 2 0/1980 0 0/13,006 11/120,880 0/120,880 

IQCB1 Homo. c.1000A>C p.(Lys334Gln) PRD (0.977) T (0.56) 1 0/1980 0 0/13,006 12/121,400 0/121,400 

CASC1 Homo. c.1936G>A p.(Val646Ile) PRD (0.991) T (0.49) 3 0/1980 0.0009 11/12,994 24/120,408 0/120,408 

CASC1 Homo. c.1388C>A p.(Pro463Gln) BNG (0.190) T (0.36) -1 0/1980 0 0/12,994 0/121,378 0/121,378 

ITPR2 Homo. c.2976G>T p.(Met992Ile) BNG (0.006) T (0.36) 1 0/1980 0 0/11,954 0/120,370 0/120,370 

SLC15A4 Homo. c.775G>A p.(Asp259Asn) BNG (0.028) T (0.21) 1 0/1980 0 0/13,006 1/121,402 0/121,402 

FARSA Homo. c.1072G>A p.(Glu358Lys) BNG (0.426) D (0) 1 0/1980 0 0/13,006 0/121,306 0/121,306 

CPAMD8 Homo. c.4351T>C p.(Ser1451Pro) PRD (0.948) D (0.01) -1 0/1980 0 0/12,378 0/116,178 0/116,178 



 

 
  

2 (II:1) EVX2 Het. c.128C>A p.(Ser43*) NA NA NA 0/1980 0 0/13,006 0/121,190 0/121,190 

Het. c.127T>G: p.(Ser43Ala) BNG (0.001) T (0.61) 1 0/1980 0 0/13,006 0/121,190 0/121,190 

UTRN Het. c.925A>G p.(Met309Val) BNG (0.008) T (0.45) 1 0/1980 0 0/13,006 0/121,386 0/121,386 

Het. c.2921T>C p.(Leu974Pro) PRD (0.987) D (0) -3 0/1980 0 3/13,004 3/120,180 0/120,180 

CPAMD8 Het. c.4549-

1G>A 

p.? NA NA NA 0/1980 0 1/12,356 1/120,688 0/120,688 

Het. c.2352_2353

insC 

p.(Arg785Glnf

s*23) 

NA NA NA 0/1980 0 21/11,520 47/115,670 0/115,670 

3 (II:3) CKAP2 Het. c.91A>G p.(Lys31Glu) BNG (0.009) T (1) 1 0/1980 0 0/13,004 2/121,264 0/121,264 

Het. c.1748C>T p.(Thr583Met) BNG (0.128) D (0.01) -1 0/1980 0 0/13,004 2/121,006 0/121,006 

 
Abbreviations are as follow: UCL-ex, University College London (UCL) exomes consortium; NHLBI EVS, National Heart, Lung, and Blood Institute (NHLBI) Exome 
Sequencing Project Exome Variant Server (EVS); ExAC, Exome Aggregation Consortium; Het., heterozygous; Homo., homozygous. In silico analysis of rare variants 
identified is presented. Polyphen 2 appraises mutations quantitatively as benign (BNG), possibly damaging (POS) or probably damaging (PRD) based on the model’s false 
positive ratio. SIFT results are reported to be tolerant (T) if tolerance index is ≥0.05 or damaging (D) if tolerance index is <0.05. Blosum62 substitution matrix score positive 
numbers indicate a substitution more likely to be tolerated evolutionarily and negative numbers suggest the opposite. CPAMD8 mutations identified in this study are 
highlighted in bold. The cDNA is numbered according to the following RefSeq transcript ID, POM121L2 (NM_033482.3), OTOG (NM_001277269.1), DNASE1L2 
(NM_001374.2), GOLGB1 (NM_001256486.1), IQCB1 (NM_001023570.3), CASC1 (NM_001082972.2), ITPR2 (NM_002223.3), SLC15A4 (NM_145648.3), FARSA 
(NM_004461.2), EVX2 (NM_001080458.1), UTRN (NM_007124.2), CKAP2  (NM_001098525.2), and CPAMD8 (NM_015692.2). 

 



Table S2: X-linked variant identified in the proband from family 2 

 

 

 

 

 

HUGO 

gene 

Het./H

omo./

Hemi. 

Nucleotide 

change 

Protein 

change 

Polyphen 2 

(human 

variation 

score 0-1) 

SIFT 

(tolerance 

index 0-1) 

Blosum6

2 (-4 to 

11) 

UCL-ex 

(individ

uals) 

1000 

Genomes 

NHLBI 

EVS total 

alleles 

ExAC total alleles 

Het. Homo. 

ARMCX4 Hemi. c.979A>G p.(Lys327Glu) POS (0.807) T (1.00) 1 0/1980 0 NA 1/3,000 0/3,000 

 
Abbreviations are as follow: UCL-ex, University College London (UCL) exomes consortium; NHLBI EVS, National Heart, Lung, and Blood Institute (NHLBI) 
Exome Sequencing Project Exome Variant Server (EVS); ExAC, Exome Aggregation Consortium; Hemi., hemizygous. In silico analysis of ARMCX4 variant 
identified is presented. Polyphen 2 appraises mutations quantitatively as benign, possibly damaging (POS) or probably damaging based on the model’s false 
positive ratio. SIFT results are reported to be tolerant (T) if tolerance index is ≥0.05 or damaging if tolerance index is <0.05. Blosum62 substitution matrix score 
positive numbers indicate a substitution more likely to be tolerated evolutionarily and negative numbers suggest the opposite. The cDNA is numbered according 
to the RefSeq transcript ID NM_001256155.2. 
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