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Mutations in Three Genes Encoding Proteins
Involved in Hair Shaft Formation
Cause Uncombable Hair Syndrome
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Uncombable hair syndrome (UHS), also known as “spun glass hair syndrome,” “pili trianguli et canaliculi,” or “cheveux incoiffables” is a
rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair
hair that is resistant to being combed flat. Until now, both simplex and familial UHS-affected case subjects with autosomal-dominant as
well as -recessive inheritance have been reported. However, none of these case subjects were linked to a molecular genetic cause. Here, we
report the identification of UHS-causative mutations located in the three genes PADI3 (peptidylarginine deiminase 3), TGM3 (transglu-
taminase 3), and TCHH (trichohyalin) in a total of 11 children. All of these individuals carry homozygous or compound heterozygous
mutations in one of these three genes, indicating an autosomal-recessive inheritance pattern in the majority of UHS case subjects. The
two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all
involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments
and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-
type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All
together, these findings elucidate the molecular genetic causes of UHS and shed light on its pathophysiology and hair physiology in
general.

Introduction observed. In majority of the cases, UHS is an isolated con-

dition of the hair, but it has occasionally been observed

UHS (MIM: 191480), was first described as a distinctive hair
shaft defect in 1973."> However, the phenotype had been
recognized far earlier and had obtained notoriety as the
famous literary character “Struwwelpeter” (“Shockheaded
Peter”) from the children’s story published by the German
physician Heinrich Hoffmann in 1845. This was later
translated by Mark Twain to English as “Slovenly Peter.”
Up to now about 100 UHS cases have been reported.>~
Most of the cases are simplex occurrences but autosomal-
dominant or -recessive inheritance patterns were also

with additional symptoms, such as ectodermal dysplasias,
retinopathia pigmentosa, juvenile cataract, and polydac-
tyly. Isolated UHS is characterized by silvery, blond, or
straw-colored scalp hair that is dry, frizzy, and wiry, has a
characteristic sheen, stands away from the scalp in multi-
ple directions, and is impossible to comb. This hair shaft
disorder occurs in children and improves with age. The
hair growth rate can range from slow to normal. The clin-
ical diagnosis of UHS can be confirmed by scanning elec-
tron microscopy (SEM) analysis of hair shafts.®® In at least
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50% of the hair examined, this reveals a triangular or heart-
shaped cross-section, in comparison to the normal circular
cross section, as well as longitudinal grooves along the
entire length of the hair shaft.” The hair is not more fragile
or brittle than normal hair. No effective therapy is yet
available although biotin supplementation was reported
to be successful in some cases."’

Until now, no genetic alteration had been linked to UHS
although familial occurrence has been well observed. In
this study, we report UHS causative mutations in PADI3
(MIM: 606755), TGM3 (MIM: 600238), and TCHH (MIM:
190370), encoding for hair shaft proteins that display
sequential interactions with each other. Transfection of
cells with constructs encoding for wild-type (WT) and
mutant proteins showed that the identified PADI3 and
TGM3 mutations have profound effects on enzymatic ac-
tivity of the respective proteins. The observation of alter-
ations in whiskers and hair coat of Padi3 knockout mice
confirms the essential role of this enzyme in hair shaft
morphology. Altogether, our findings indicate that UHS
occurs when interactions of a structural protein that gives
shape and mechanical strength to the hair shaft are
impaired by defects either in this protein itself or in others
that mediate its interactions.

Material and Methods

Study Participants

Detailed information regarding the clinical descriptions of the in-
dividuals included in this study is given in the Supplemental Case
Reports. This study was performed according to the principles of
the Declaration of Helsinki. Ethical approval was obtained from
the ethics committee of the Medical Faculty of the University of
Bonn and the participants provided written informed consent
prior to blood sampling. Written informed consents of the affected
individuals or their legal guardians were obtained for the publica-
tion of the case photos included in this manuscript.

Scanning Electron Microscopy

Hair shafts from various individuals with UHS and control subjects
were mounted on stubs and sputter coated with either gold or
platinum prior to examination in either a FEI Quanta FEG250 or
a Philips 505 scanning electron microscope.

Exome Sequencing

Exome sequencing was performed in two different centers.
The two affected siblings of the discovery family from UK were
exome sequenced by Oxford Gene Technology’s Genefficiency
Sequencing Service. Genomic DNA (2 pg) was fragmented and en-
riched for human exonic sequences using the Human All Exon V5
Agilent Sure Select kit (Agilent Technologies) using the manufac-
turer’s protocol and sequenced on the Illumina HiSeq 2000 plat-
form using Truseq (v3 Chemistry) (Illumina) to generate 100
base paired-end reads. Fastq files were mapped to the reference hu-
man genome (hg19/GRCh37) using the Burrows-Wheeler Aligner
(BWA) package (v.0.6.2)."" Local realignment of the mapped reads
around potential insertion/deletion (indel) sites was carried out
with the Genome Analysis Tool Kit (GATK) v.1.6.' Duplicate reads

were marked using Picard v.1.8 and BAM files were sorted and in-
dexed with SAM tools v.0.1.18."* Approximately 12 and 14 GB of
sequence data was generated for these samples and a minimum of
90.83% and 80.54% of the targeted exome was covered to a depth
of at least 20x and 30X coverage, respectively. We filtered the
variants for high-quality homozygous or potentially compound
heterozygous, novel variants (defined against dbSNP 132 inclu-
sion) that are shared by both siblings and are deleterious based
on either of the SIFT, PolyPhen, and Condel predictions.

The affected individuals from Germany and Turkey were exome
sequenced at the Cologne Center for Genomics. For whole-exome
sequencing, 1 ug of genomic DNA was fragmented with sonication
technology (Bioruptor, Diagenode). The fragments were end-re-
paired and adaptor ligated, including incorporation of sample in-
dex barcodes. After size selection, a pool of all five libraries was
subjected to an enrichment process with the SeqCap EZ Human
Exome Library v.2.0 kit (Roche NimbleGen). The final libraries
were sequenced on an Illumina HiSeq 2000 sequencing instru-
ment (Illumina) with a paired-end 2 x 100 bp protocol. Primary
data were filtered according to signal purity by the Illumina Real-
time Analysis (RTA) software v.1.8. Subsequently, the reads were
mapped to the human genome reference build hgl9 using the
BWA-aln alignment algorithm."' GATK v.1.6 was used to mark
duplicated reads, to do a local realignment around short insertions
and deletions, to recalibrate the base quality scores, and to call
SNPs and short indels.'? For the Turkish individual, this resulted
in 7.5 Gb of unique mapped sequences, a mean coverage of
94x, and 30x coverage of 91% of the target sequences. For the
German individual, this resulted in 8.1 Gb of unique mapped se-
quences, a mean coverage of 106x, and 30x coverage of 92% of
the target sequences. The Varbank pipeline v.2.10 and interface
developed in-house at the Cologne Center for Genomics were
used for data analysis and filtering (unpublished data, H.T., J.A.,
and P.N.). The GATK UnifiedGenotyper variation calls were filtered
for high-quality (DP > 15; AF > 0.25 + VQSLOD > -8 if possible,
otherwise: QD > 2; MQ > 40; FS < 60; MQRankSum > —12.5;
ReadPosRankSum > —8; HaplotypeScore < 13) rare (MAF <
0.005 based on 1000 Genomes build 20110521 and EVS build
ESP6500) variants, predicted to modify a protein sequence or to
impair splicing, in homozygous or compound heterozygous state.

Sanger Sequencing

Amplicons were generated under standard polymerase chain
reaction conditions by using primers presented in Tables S1-S3.
Sanger sequencing was performed using the BigDye Terminator
v.1.1 Cycle Sequencing kit (Applied Biosystems) and an ABI
3100 genetic analyzer (Applied Biosystems). The data were
analyzed using SeqMan II software (DNASTAR).

Molecular Cloning and Mammalian Cell Cultures

To construct the expression vectors for PADI3 and TGM3, the
coding sequences (cDNA) of PADI3 (1,995 bp) and TGM3
(2,082 bp) were amplified from hair follicle cDNA and cloned
into the TOPO cloning site of pcDNA 3.1/V5-His-TOPO vector (In-
vitrogen) according to manufacturer’s protocol. The mutant con-
structs (PADI3: ¢.335T>A [p.Leul12His], c.881C>T [p.Ala294Val],
c.1813C>A [p.Pro605Thr]; and TGM3: ¢.1351C>T [p.GIn451*])
were generated by targeted mutagenesis using QuickChange II
Site-Directed Mutagenesis kit (Agilent Technologies) according to
manufacturer’s instructions. The constructs were verified by
Sanger sequencing. The primers used for cloning and mutagenesis
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are listed in Table S4. The HaCaT human keratinocyte cell line was
established by Boukamp et al.'* The HEK293T cell line was a kind
gift from Thomas Zillinger (Institute of Clinical Chemistry and
Clinical Pharmacology, University of Bonn). Both HaCaT and
HEK293T cell lines were tested for mycoplasma contamination
and confirmed to be mycoplasma free. Cells were maintained at
37°C (5% CO;) in DMEM (Lonza) supplemented with 10% FCS
(Life Technologies), 1% penicillin-streptomycin (10,000 U mL™?,
Life Technologies), and 1% Amphotericin B (250 pg mL™!, Life
Technologies). Cells were cultured in 10 cm Petri dishes and on
coverslips in 24-well plates for western blotting and immuno-
fluorescence analysis, respectively. Transfections were carried on
using the Lipofectamine3000 Transfection Kit (Life Technologies)
according to manufacturer’s instructions. For each 10 cm plate,
the following amounts of reagents were used: 15 ng plasmid,
1,500 pL Opti-MEM (Life Technologies), 22.5 uL Lipofect-
amine3000, and 30 pL P3000 reagent. For each well in a 24-well
plate, 0.5 pg of plasmid, 50 pL Opti-MEM, 1.5 pL Lipofect-
amine3000, and 1 pL P3000 reagent were used. Cells were har-
vested 48 hr after transfection.

Topological Tridimensional Models of PADI3

We constructed, as we had previously published,"” a topological
tridimensional model of WT PADI3 using the crystal atomic coor-
dinates of calcium-bound human PADI4 (MIM: 605347; PDB:
1WDA).'® On this basis, topological models of the tridimensional
structure of the three mutated enzymes were produced after
in silico substitutions of the respective amino acids. All the models
were refined by energy minimization (3 x 3,000 iterations) using
the MSI insight Il modules Biopolymer, CHARMM, and Viewer on
an O2 SGI station. Energetic potentials after minimization were all
improved and validated. The three models were then validated by
analyses of “Anolea data” and Ramachandran plots produced us-
ing the Swiss model expasy structure assessment tools and the
Swiss-Pdb viewer software v.4.04, respectively. Finally, topological
models of mutated PADI3 were individually compared to that of
WT PADI3 after a magic fit on Swiss-Pdb viewer. Solid ribbon rep-
resentations were displayed to show overviews of the tridimen-
sional structures or enlargements focused on either the catalytic
sites or the five calcium binding sites.

Immunoblotting of HaCaT and HEK293T Cell Extracts

Cells were collected in ice-cold PBS and centrifuged at 150 x g at
4°C for 10 min. The cell pellets were re-suspended in 40 pL of
10x RIPA buffer (Cell Signaling Technology) and 360 pL Protease
Inhibitor Cocktail (Roche), incubated on ice for 15 min, and son-
icated 10 times for 10 s, with 10 s breaks on ice. After centrifuga-
tion at 10,500 x ¢ for 10 min at 4°C, the supernatants were trans-
ferred to clean tubes and purified with Micro Bio-Spin Columns
(Bio-Rad Laboratories) according to manufacturer’s instructions.
Purified lysates were mixed with 4x Laemmli sample buffer (Bio-
Rad Laboratories) diluted in B-mercaptoethanol. After protein sep-
aration on TGX stain-free gels 4%-15% (Bio-Rad Laboratories), the
proteins were transferred on PVDF membrane (Amersham Biosci-
ences). Western blotting was carried out using the WesternBreeze
chemiluminescent kit (Invitrogen) according to manufacturer’s
instructions. The following primary antibodies were used with
an incubation duration of 1 hr: mouse monoclonal anti-V5
(1:5,000, Sigma Aldrich cat# V8012; RRID: AB_261888) and rabbit
monoclonal anti-PADI3/PAD3 (1:400, Abcam cat# ab172959)
for PADI3 detection and mouse monoclonal anti-Flag (1:5,000,

Sigma Aldrich cat# F1804; RRID: AB_262044) and rabbit poly-
clonal anti TGM3-C-terminal (1:250, Aviva Systems Biology cat#
OAAB12971) for TGM3 detection. Membranes were developed us-
ing the ChemiDoc MP imager (Bio Rad) for a maximum of 20 min.
Data in Figure 4A are representative of western blotting experi-
ments from three independent transfections of HaCaT cells with
PADI3 constructs. Data in Figures 7A and S7 emerge from six inde-
pendent transfections of HaCaT (1 x) and HEK293T (5 x) cells with
TGM3 constructs. The relative quantities of WT and mutated
TGM3 were assessed using Stain-Free technology that is based
on total protein normalization (Bio-Rad Laboratories).'”

Immunofluorescence Analysis in HaCaT and HEK293T
Cells

Transiently transfected HaCaT and HEK293T cells grown on cover-
slips were washed with 1x PBS for 5 min, permeabilized for 10 min
with 1% Triton X-100, and blocked for 1 hr in PBS containing 1%
bovine serum albumin, 10% normal goat serum, and 0.1% Triton
X-100. The cells were incubated with mouse monoclonal anti-V5
primary antibody (1:100, Sigma Aldrich cat# V8012; RRID:
AB_261888) or mouse monoclonal anti-Flag antibody (1:500,
Sigma Aldrich cat# F1804; RRID: AB_262044) for PADI3 and
TGMS3, respectively, for 3 hr at RT (or overnight at 4°C) and goat
anti-mouse-cy3 secondary antibody (1:500, Life Technologies
cat# A10521; RRID: AB_2534030) with DAPI (Sigma Aldrich cat#
D9542) for 40 min. The mounting was performed with Mowiol
4-88 (Roth). Images were captured with 63 x or 10x oil immersion
objectives using a Zeiss Axioplan 2 imaging microscope and the
Cytovision 7.4 software. Image] was used for the analyses by
applying the same brightness and contrast thresholds to all data.
Data presented in Figures 4B and 7B are representative of analyses
from four independent transfections of HaCaT cells with PADI3
constructs and five independent transfections of HaCaT (3x)
and HEK293T (2x) cells with TGM3 constructs, respectively.
Two to three coverslips were analyzed per construct at each
transfection.

Activity of PADI3 in HaCaT Cells

Transiently transfected HaCaT cells grown on coverslips were air-
dried. For indirect immunofluorescence, the cells were rehydrated
for 15 min in PBS and permeabilized for 10 min in PBS containing
1% Triton X-100, and then non-specific binding sites were blocked
with PBS containing 2% fetal bovine serum and 1% Triton X-100.
Slides were incubated with the following primary antibodies:
mouse monoclonal anti-V5 (1:100, Thermo Fisher Scientific cat#
R960-25; RRID: AB_2556564) and ACPA antibodies (6 ug mL™")
purified from a pool of sera of individuals affected by theumatoid
arthritis (MIM: 180300).'®' Sera were from informed and
consenting individuals attending the Rheumatology Center of
Toulouse and have been declared to and approved by the Comité
de Protection des Personnes Sud Ouest et Outre-Mer II (Toulouse,
France). After incubation with the corresponding secondary anti-
bodies, Alexa Fluor 488 Donkey anti-mouse IgG (1:10,000,
Thermo Fisher Scientific cat# A-21202; RRID: AB_2535788), Alexa
Fluor 555 Goat Anti-human IgG (H+L) (1:10,000, Thermo Fisher
Scientific cat# A21433; RRID: AB_1500626), and DAPI (Sigma-Al-
drich cat# D9542), slides were mounted in Mowiol 4-88 (Calbio-
chem Merck Millipore). Images were captured with 20x dry or
63x oil immersion objectives using a Zeiss apotome microscope
(Carl Zeiss). Image] was used for the analyses by applying
the same brightness and contrast thresholds to all data. Data
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Figure 1. Clinical Appearance of UHS

(A-G) Clinical presentation of UHS. Typical signs of UHS can be observed in three German girls (A-C), a German boy (D), a Swiss boy (E),
and a Danish girl (F and G), who were included in the study. The improvement of the phenotype with aging can be observed in the

Danish girl (G).

(H and I) SEM image of the Danish girl’s hair shaft showing the longitudinal groove (H) in comparison to a normal (I) hair shaft.
(J-M) The improved hair phenotype at age 15 (J) and the SEM findings (K and L) of the male sibling from the UK family. Shown are
longitudinal grooves (K) and heart-shaped cross section (L) of altered hairs, both indicative of UHS, in comparison to the circular cross

section from a control hair shaft (M).

Detailed information regarding the clinical histories can be found in the Supplemental Case Reports.

presented in Figure 5A are representative of analyses from two in-
dependent transfections of HaCaT cells with three coverslips for
each single PADI3 construct.

Activity of PADI3 Produced in Escherichia coli
E. coli strain BL21(DE3)-pLysS (Life Technologies) were trans-
formed with 5 ng of the recombinant expression plasmids
(pcDNA3.1/V5-His-TOPO-PADI3-WT, pcDNA3.1/VS5-His-TOPO-
PADI3-p.Leul12His, pcDNA3.1/V5-His-TOPO-PADI3-p.Arg294Val,
and pcDNA3.1/V5-His-TOPO-PADI3-p.Pro605Thr) and grown at
37°C overnight on agar-Luria Broth plates (MP Biomedicals) sup-
plemented with ampicillin (50 pg mL™") and chloramphenicol
(34 pg mL™Y). Four clones were selected for each plasmid. After
selection, the bacterial clones were grown in Luria Broth medium
supplemented with ampicillin (50 pg mL™Y at 37°C for 3 hr
and then overnight at 30°C. Harvested bacteria were sonicated
4% 8 s (6-10 W) on ice in a Tris-HCI (pH 7.6) buffer containing a
cocktail of bacterial protease inhibitors (Sigma Aldrich). After
centrifugation at 9,000 x g for 10 min, soluble proteins were
recovered in the supernatants (clarified extracts).

To measure an in vitro deimination activity, the clarified extracts
were incubated at 37°C in 100 mM Tris-HCI (pH 7.6) buffer con-
taining 10 mM CacCl, and 5§ mM DTT, for either 2 hr or overnight,

under agitation at 1,400 rpm.?° The deimination reactions were
stopped by boiling for 3 min in Laemmli’s sample buffer. The pro-
teins were then separated by SDS-polyacrylamide (10%) gel elec-
trophoresis and immunodetected with the V5 Epitope Tag mono-
clonal antibody (1:5,000, Thermo Fisher Scientific cat# R960-25;
RRID: AB_2556564) and the anti-modified citrulline anti-
bodies.?!"*” The blots were developed using the ECL prime system
(GE Healthcare) as described by the manufacturer. Immunoblot-
ting signals were recorded using a G:Box Chemi XT4 imager and
GeneTool analysis software (Syngene) for a maximum of 20 min.
After one bacteria transformation, two independent clones for
p-Leull12His, three for p.Pro605Thr, and four for WT and
p-Ala294Val were analyzed, with identical results; only those cor-
responding to two clones are illustrated. Data are representative of
two technical replicates. The V5-antibody detections of recombi-
nant PADI3 were confirmed using an anti-PADI3 antibody.?*

Padi3-Deficient Mice

All experiments with animals were approved by a local ethic com-
mittee (INSERM US006 CEEA-122) and carried out according to
our institution guidelines and EU legislation. Padi3-deficient
mice (B6NCrl;B6N-AM™1Brdpyjj3imlakOMPWisi gy apbreviated to
Padi3"1%) were generated by the Phenomin Program at the ICS
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Table 1. Individuals Carrying PADI3, TGM3, and TCHH Mutations

Country Gene Mutation Consequence Clinical Description
United Kingdom PADI3 ¢.881C>T, homozygous p-Ala294Val this study

Denmark PADI3 ¢.881C>T, homozygous p-Ala294Val Nissen and Svendsen®*
Germany PADI3 ¢.335T>A, homozygous p-Leull12His this study

Spain PADI3 ¢.881C>T, ¢.335T>A p-Ala294Val, p.Leul12His Novoa et al.”®
Germany PADI3 ¢.881C>T, ¢.335T>A p-Ala294Val, p.Leul12His this study

Germany PADI3 ¢.881C>T, ¢.335T>A p-Ala294Val, p.Leul12His this study

Germany PADI3 ¢.881C>T, ¢c.1813C>A p-Ala294Val, p.Pro605Thr this study

Germany PADI3 ¢.335T>A, c.1813C>A p-Leul12His, p.Pro605Thr this study
Switzerland PADI3 c.881C>T, c.1732A>T p.Ala294Val, p.Lys578* this study

Turkey TGM3 ¢.1351C>T, homozygous p.Gln451* Kilic et al.”®
Germany TCHH ¢.991C>T, homozygous p.GIn331* this study

Laboratory (Strasbourg, France). A promoter-less LacZ-reporter
cassette containing a neomycin-resistance gene and flanked by
two flippase recognition target sites was inserted between exons
4 and S of Padi3, with loxP sites flanking the exons 5 and 6. (See
International Mouse Phenotyping Consortium website in the
Web Resources for more details.) Mice were maintained in the
TAAM animal facility (CNRS UPS44, Orléans, France) under
pathogen-free conditions. They were killed by cervical dislocation.
All efforts were made to minimize suffering. The following
oligonucleotides were used for genotyping: Padi3 forward (5'-
CTTTATTGATAAACACAGGCAGGGAGC-3'), Padi3 reverse (5'-
CAATGGAATCCCTCTGTCCCTCACC-3'), and LacZ reverse (5'-
CCAACAGCTTCCCCACAACGG-3'). A wild-type PCR product of
241 bp and a tmla allele product of 365 bp were produced.
Genotyping was confirmed using the Padi3 forward (5'-CCC
TCTTTGAGGACCACAGGCTTATC-3') and reverse (5-GCACTCAA
GAAGCAGAGGCAGGC-3') primers, a wild-type PCR product of
369 bp, and a tmla allele product of 421 bp were produced.
No randomization was used. The SEM observations of whiskers
and hair coat were done in blind, by two independent scientists.

Transglutaminase Activity of TGM3

In order to compare the enzymatic activity of WT and mutant
TGM3 in cell extracts of transiently transfected HEK293T cells,
we adapted the transglutaminase assay described by Aufenvenne
et al.>® This assay is based on the incorporation of monodansylca-
daverine into casein by transglutaminase, which causes an
augmentation of fluorescence and an emission wavelength shift.
Lysates of cells transiently transfected with WT or mutant TGM3
constructs were prepared 48 hr after transfection as described in
the immunoblotting section. Lysates of mock-transfected cells
were used as a negative control. The translation of the target pro-
teins was always confirmed by immunoblotting. For the assay, the
lysates were incubated for 15 min in pre-warmed assay buffer
(50 mM Tris/HCI, 10 mM CaCl,, 10 mM reduced glutathione,
2.5% glycerol, 2.5% DMSO, 25 pM monodansylcadaverine,
20 mM N,N-dimethylcasein [pH 8]) at 37°C. Measurements were
then made for 10 min at 37°C using a LSS5 fluorescence spectrom-
eter (Perkin Elmer) with excitation and emission wavelengths of
332 nm and 500 nm, respectively, and a 5.0 nm slit. The linear

slopes of the measurements from technical triplicates of samples
emerging from five independent transfections were used as a mea-
sure of the transglutaminase activity.?* The activity data were not
normally distributed (p < 0.050, Shapiro-Wilk) and analyzed by a
Kruskal-Wallis test (one-way ANOVE on Ranks) with post hoc
Dunn’s pairwise multiple comparisons test.

Results

Identification of Mutations in PADI3, TGM3, and
TCHH

In this study, we identified UHS-causative mutations in
three functionally related genes in a total of 11 individ-
uals/families (Figure 1, Table 1; Supplemental Case Re-
ports). The first family originated from the UK and had
two affected and two unaffected siblings. The affected indi-
viduals reported typical hair problems in childhood with
improvement when growing older (Figure 1]); gross and
scanning electron microscopy observations were in line
with an UHS phenotype (Figures 1K and 1L). In order to
elucidate the genetic background of UHS in this family,
we performed whole-exome sequencing (WES) in both
of the affected siblings. We filtered the data for novel
and deleterious homozygous or potentially compound
heterozygous variants that are shared by the siblings and
identified a homozygous missense variant ¢.881C>T
(p-Ala294Val) within PADI3 (GenBank: NM_016233.2).
The mutation co-segregated with the disease phenotype
in the family (Figures 2A and S1).

Then, we Sanger sequenced PADI3 in 17 additional
case subjects and detected the above-mentioned muta-
tion as well as two other recurrent missense mutations,
¢.335T>A (p.Leul12His) and ¢.1813C>A (p.Pro60SThr),
in seven other individuals/families (Table 1, Figures 2B,
2C, and $2).>*?> We also identified an individual who
carries ¢.881C>T (p.Ala294Val) and a nonsense muta-
tion, ¢.1732A>T (p.Lys578*), that occurred only once in
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Figure 2. Mutations Causing UHS and Interplay of PADI3, TGM3, and TCHH

(A) The homozygous ¢.881C>T (p.Ala294Val) mutation in PADI3 identified by exome sequencing in the UK siblings was verified by
Sanger sequencing. The mutation co-segregates with the UHS phenotype in the pedigree as shown in Figure S1.

(B) Electropherograms show the PADI3 mutations c.335T>A (p.Leul12His), c.1813C>A (p.Pro605Thr), and c.1732A>T (p.Lys578*) in
comparison to the wild-type sequences.

(C) Schematic representation of PADI3 showing the various domains of the protein and the positions of calcium-binding sites (*) and of
major amino acids involved in the catalytic sites (v). The positions of the substitutions responsible for UHS are indicated by an arrow.
(D) Electropherograms show the homozygous TGM3 mutation ¢.1351C>T (p.GIn451*) identified in the Turkish male in comparison to
the wild-type sequence.

(E) Schematic representation of TGM3.

(F) Electropherograms show the homozygous TCHH mutation ¢.991C>T (p.GIn331*) identified in the German female in comparison to
the wild-type sequence.

(G) Schematic representation of TCHH.

(H) Cartoon depicting the cascade of interactions between TCHH, PADI3, and TGM3 in hair shaft biology. In trichohyalin granules (gray
areas), TCHH appears as a dimer with a long rod-shaped domain and a globular end domain. After deimination by PADI3, TCHH is less
structured, and the granules progressively dissolved. Citrullinated-TCHH (TCHH-Cit) interacts with keratin intermediate filaments
(black lines) organizing them, and becomes a substrate for TGM3. Cross-links of TCHH to itself (intra- or inter-chains), to keratins

and between keratins and the cornified cell envelope components are then catalyzed (green dash).

our UHS cohort (Table 1, Figures 2B, 2C, and S2). These
mutations were observed either in homozygous state or
in compound heterozygosity as confirmed by parental
DNA sequencing in three of the families (Figure S1).
The allele frequencies of the PADI3 substitutions from
Exome Aggregation Consortium (ExAC) data are pre-
sented in Table S5. The nonsense mutation was not
observed in ExAC.

As a next step, we performed WES in four further UHS-
affected case subjects with no PADI3 mutations. We identi-
fied the nonsense mutation ¢.1351C>T (p.GIn451%) in
TGM3 (GenBank: NM_003245.3) in a Turkish individ-
ual®® and the nonsense mutation ¢.991C>T (p-GIn331%)
in TCHH (GenBank: NM_007113.3) in a German indivi-
dual (Figures 2D-2G; Table S5). No homozygous loss-of-

function mutations were observed in TGM3 or TCHH in
~60,000 sequenced individuals of the ExAC database.

PADI3, TGM3, and TCHH Interplay in Hair Shaft
Formation

PADI3, a gene of the PADI family (PADI1-4 and 6), encodes
the 664-amino acid peptidylarginine deiminase type III
(Enzyme Commission: EC.3.5.3.15).>” This posttransla-
tional modification enzyme converts positively charged
L-arginine residues of proteins into neutral citrulline resi-
dues in the presence of calcium ions. The process is called
deimination or citrullination. PADI3 is mainly detected in
skin, including hair follicles where it modifies hair shaft
proteins.”®*?” Although the enzyme has already been a
focus of interest in hair biology, it could not be linked

The American Journal of Human Genetics 99, 1292-1304, December 1, 2016 1297



p.Leu112His p.Ala294Val

to any disorder until now. TGM3 encodes transglutami-
nase 3, a member of the transglutaminase family (Enzyme
Commission: EC.2.3.2.13), which catalyzes the calcium-
dependent formation of isopeptide bonds between gluta-
mine and lysine residues in various proteins including
the archetypal hair shaft protein trichohyalin, encoded
by TCHH. TCHH is a structural protein co-localized with
PADI3 in the inner root sheath of the hair follicle and
in the medulla of the hair shaft. Deimination by PADI3 re-
duces the overall charge of TCHH, and that enables its as-
sociation with the keratin intermediate filaments (KIF).
Then, TCHH and KIF are crosslinked together by TGM3.
KIFs are then stabilized, hardened, and linked to cornified
envelopes through further crosslinking by transglutami-
nases, particularly by TGM3 (Figure 2H).*°*? Thereby,
TCHH and its sequential modifications by PADI3 and
TGM3 have a very important role in shaping and me-
chanical strengthening of the hair. Of note, the TCHH
mutation we identified leads to the synthesis, if any, of
a very short protein, probably without any function in
KIF interaction, as the KIF interacting domain would be
almost entirely missing (Figure 2G).

Missense Mutations in PADI3 Affect the 3D Enzyme
Structure

We next investigated the consequences of PADI3 muta-
tions on the corresponding proteins. The p.Lys578* is
expected to induce the synthesis of a truncated protein
lacking the 87 amino acids of the carboxyl terminus, in
particular the Cys646 (Figure 2C, Table S6) absolutely
necessary for the enzyme activity.”® Intriguingly, we

Figure 3. Topological Tridimensional
Models of WT and Mutant PADI3

(A) Overall view of the tridimensional solid-
ribbon representation of calcium-bound
WT and three mutant PADI3 models.
The tridimensional solid residues Leull2,
Ala294, and Pro60S, with their respective
lateral chains, are reported on the proposed
model of the WT enzyme, as well as the
corresponding substituted amino acids on
the model of each mutant, p.Leull2His,
p.Ala294Val, and p.Pro605Thr. The four
amino acids involved in the catalytic site
are also shown. According to these models,
the p.Ala294Val and p.Pro605Thr sub-
stitutions induce a profound disorganiza-
tion of the predicted immunoglobulin-like
domains, with disappearance of several B
sheets and modification of some a helices
of the catalytic domain as compared to the
WT. The effect of the p.Leul12His substitu-
tion is more discrete.

(B) Zoomed view of the major amino acids
involved in the catalytic site. Its pro-
posed structure is clearly modified after
p-Ala294Val and p.Pro605Thr substitutions.
It should be noted that none of the
substituted amino acids are directly
involved in this site.

p.Pro605Thr

observed that the three PADI3 amino acids substituted as
a result of the missense mutations correspond to residues
that are conserved in the five human PADI proteins, and
also in the PADI3 from other species, suggesting that
they have an important role (Figure S3). However, none
of them is directly involved in the catalytic site or in one
of the five calcium-binding sites of PADI3 (Table S6).
Nevertheless, when we analyzed the effect of the PADI3
missense mutations on the predicted three-dimensional
structure of the enzyme,'® the mutations p.Ala294Val
and p.Pro605Thr were shown to induce clear modifica-
tions of B sheets and o« helices, in particular in the
immunoglobulin-like NH2 domains, and also around the
catalytic site and the calcium-binding sites. The effects of
the p.Leul12His substitution were less drastic (Figures 3,
S$4, and S5).

Aggregation and Reduced Enzymatic Activity of
PADI3 Mutants

We then cloned the WT PADI3 ¢cDNA into a mammalian
expression vector in order to induce the translation of a
C-terminally V5-tagged PADI3 protein. Mutant constructs
with the three recurrent missense mutations were gener-
ated by targeted mutagenesis. HaCaT cells were transiently
transfected (5%-10% transfection efficiency) with con-
structs encoding for WT and mutant forms of PADI3.
Immunoblotting of cell extracts showed that all of the con-
structs led to translation of a protein of about 70 kDa
(Figure 4A). The subcellular location of WT and mutated
proteins was determined by immunofluorescence ana-
lyses that showed, as expected, a diffuse homogeneous
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cytoplasmic distribution of the WT PADI3,** whereas in all
three mutants the proteins were observed to form large
aggregates throughout the cytoplasm (Figure 4B). To assess
the enzymatic activity of WT and mutated PADI3, we
performed double immunostaining with an anti-V5
monoclonal antibody and with human anti-citrullinated
protein autoantibodies (ACPA) from individuals with rheu-
matoid arthritis, these antibodies specifically detecting
citrullinated proteins.'®*? Although translation of the
WT PADI3 resulted in a strong labeling with the ACPA an-
tibodies, the signal in the cells producing the mutant pro-
teins was barely above background (Figure 5A). We also
produced the WT and mutant PADI3 in E. coli. After incu-
bation of the WT PADI3-containing bacterial extracts with
calcium for 2 hr, deiminated proteins were detected. By
contrast, when the extracts containing the mutated
PADI3 were incubated for 2 hr, and even up to 18 hr, no
deiminated proteins were detected (Figures 5B and S6).
Altogether, the results suggested that the mutated forms
of PADI3 are either not or only weakly active.

pA/agg ” Vay

Figure 4. WT and Mutant Forms of PADI3
Produced in HaCaT Cell Line

(A) Immunoblotting analysis shows the
translation of WT and mutant PADI3 in
transiently transfected HaCaT cells, which
were collected 48 hr after transfection.
Immunoblotting was performed with anti-
V5 and anti-PADI3 antibodies. Antibody-
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IB:PADI3 specific bands are indicated with an arrow
and a non-specific cross-reactive band
Merge around 55 kDa is indicated with an asterisk.

Full-length blot images can be seen in
Figure S9.

(B) Immunofluorescence analysis in HaCaT
cells transiently transfected with WT and
mutant PADI3 encoding plasmids shows
the homogeneous cytosolic localization of
WT PADI3 whereas the three mutant pro-
teins are observed in the form of large aggre-
gates. Scale bars represent 10 pm.

Padi3 Knockout Mice Show
Whisker and Hair Anomalies

In order to demonstrate the impor-
tance of PADI3 in hair shaft formation
and structure, we generated Padi3
knockout mice (Figures 6A and 6B).
Breeding mice heterozygous for the
Padi3"™?* mutation produced off-
spring with the three possible geno-
types at the expected Mendelian
ratios, showing that absence of Padi3
is compatible with life. Grossly, the
skin of 7-week-old null mice appeared
normal. A further characterization by
SEM revealed alterations in the
morphology of hair coat (Figure 6C)
and, less markedly, of whiskers. The
surface of the lower (proximal) part
of the vibrissae and the hairs on their entire length were
irregular and rough and appeared as if hammered.

Nonsense Mutation in TGM3 Leads to Reduced
Enzymatic Activity

We cloned the WT TGM3 ¢DNA into a mammalian ex-
pression vector in order to induce the translation of
an N-terminally FLAG-tagged TGM3 protein. Mutant
construct was generated by targeted mutagenesis. HaCaT
and HEK293T cell lines were transiently transfected with
WT and mutant TGM3 encoding constructs. WT TGM3
construct led to translation of a protein of about 70 kDa,
while the nonsense mutation resulted in a truncated pro-
tein of around 40 kDa with a lower detection level (Figures
7A and S7). Immunofluorescence analysis showed that
TGM3 is located in the cytoplasm and that the truncated
form is present in a dramatically lower number of cells
(Figure 7B) in accordance with the western blot results.
Generally these cells had a smaller cytosolic surface
area in comparison to those producing the WT TGM3
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Figure 5. Consequences of PADI3 Mutations on the Enzyme Activity

(A) Indirect immunofluorescence analysis of transfected HaCaT cells. HaCaT cells were double labeled with anti-V5 monoclonal anti-
body (green) and ACPA antibodies (red). Nuclei were labeled with DAPI (blue). Scale bars represent 10 pm. The WT PADI3 is clearly active
(merge image; yellow color) whereas the mutants display a low activity.

(B) WT PADI3 (bacterial clones 1 and 2) and the mutant forms, p.Leul12His (clones 7 and 8), p.Ala294Val (clones 11 and 12), and
p-Pro605Thr (clones 14 and 15), produced in E. coli, were extracted in Tris-HCI buffered salt. Soluble proteins were incubated for the
indicated period of time (t; in hours) with calcium, separated by electrophoresis, transferred to membranes, stained with Ponceau
Red, and immunodetected with either the anti-modified citrulline rabbit antibodies or anti-V5 antibody. Although citrullinated proteins
were detected when the WT-containing extracts have been incubated for 2 hr, no citrullinated proteins were detected in the mutant-con-
taining extracts, even after 18 hr of incubation. The substituted enzymes appear to be cleaved and a VS5-reactive doublet is observed.
Molecular mass markers are indicated on the right in kDa. Full-length blot images can be seen in Figure S9.

(Figure 7B). We performed a transglutaminase activity
assay”’ with HEK293T cell lysates containing WT and
mutated TGM3. The analysis results revealed that the WT
had a significantly higher transglutaminase activity in
comparison to the truncated protein and the latter did
not differ from the mock transfected negative control
(Figures 7C and S8).

Discussion

In this study we identified disease-causative mutations for
UHS in PADI3, TGM3, and TCHH, with the former two
genes encoding for posttranslational modification enzymes
that act on the structural hair protein trichohyalin encoded
by the latter gene. Our cell culture data show that the iden-
tified mutations in PADI3 and TGM3 lead to reduced or
no enzymatic activity and the phenotype of the Padi3
knockout mice we generated show structural alterations in

the whiskers and hair coat morphology. Our findings are
also supported by the phenotype of the already existing
Tgm3 knockout mice. These mice exhibit irregular, twisted
whiskers and, at birth, have a wavy hair coat, which im-
proves 4 weeks after birth.** Scanning and transmission
electron microscopy analyses of hairs from adult Tgm3 /-
mice reveal alterations such as irregular torsions, deformed
grooves, abnormal cuticle, and shorter KIE** It is also
convincing that both nonsense and missense mutations
in Tgm3 are responsible for the wellhaarig mouse pheno-
type, named for the curly whiskers and wavy coat of
the mutant animals.”> Based on the phenotype of the
Tgm3~'~ mice, John et al. have suggested that alterations
in TGM3 or its substrates could be related to recessive forms
of pili torti (MIM: 261900) or similar hair phenotypes,
which improve with age.>* Our findings validate this hy-
pothesis and furthermore identify UHS as the hair pheno-
type related to alterations not only in TGM3 but also in
the other proteins of the TCHH-PADI3-TGM3 cascade. In
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some affected individuals, TCHH would not be produced,
or produced as a truncated form unable to interact with
KIF; in others, because of a PADI3 activity defect, TCHH
would remain insoluble, preventing its interaction with
KIF; in the last group, TCHH/KIF interaction would not be
stabilized by TGM3-mediated crosslinks. Taken together,
this suggests that one of the particular processes in hair
shaft formation that leads to UHS when disturbed might
be the interaction of TCHH and KIF. This interaction is
known to be crucial for shaping and mechanical strength-
ening of the hair shaft. These findings also show that the
compromise of any one of the proteins that play a role in
this process would be enough to lead to the same

phenotype.
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Figure 6. Padi3 Gene Disruption in Mice

(A) Schematic representation of Padi3 and
the targeting vector. The exons are shown
by numbered gray rectangles. A cassette
containing the beta-galactosidase (LacZ)
and neomycin (neo) genes is inserted be-
tween exons 4 and 5. This results in the pro-
duction of a truncated Padi3 protein corre-
sponding to amino acids 1-136 fused to
B-galactosidase. The position of the inserted
loxP and flippase recognition target (FRT)
sites are indicated, as well as the splicing
acceptor site (SA) and the polyadenylation
sites (pA) of LacZ and neo. The positions of
the oligonucleotides (dashes) used for geno-
typing are shown, as well as the length of
the amplified PCR products in wild-type
(Padi3wt) and targeted (Padi3tm1la) alleles.
(B) PCR on genomic DNA from tail biopsies
of ten mice from the same littermate (five fe-
males [1-5] and five males [6-10]) showing
amplification of the 241 bp fragment for
the Padi3wt allele and the 365 bp fragment
for the Padi3tm1la allele.

(C) Representative pictures of SEM analysis
of back hair coat from the three WT and
three Padi3tmla/tmla mice (7 weeks old).
Most hairs of the knockout mice are rough,
with an irregular surface (white arrows).
This is evident for thick hairs (top and mid-
dle micrographs) but was also observed for
thin hairs (bottom). In some cases the hairs
are twisted. The boxed areas are enlarged in
the middle. At least 6 vibrissae and 200 hairs
were analyzed per animal. Scale bars repre-
sent 50 pm.

|~ 365 bp

It is intriguing that, despite the de-
fects affecting a structural component
of the hair shaft, the phenotype in
UHS is commonly reported to improve
with age, similar to the hair coat
phenotype of Tgm3~/~ mice. Interest-
ingly, improvement with age has also
been observed in other hair shaft disor-
ders (e.g., pili annulati, pili torti). The
improvement in UHS might be due
to the compensatory expression of
another isoform of peptidylarginine deiminase, transgluta-
minase, or other structural hair shaft components. On the
other hand, aging-related changes in hair follicles such as
increase in diameter and length can have mechanistic
influences that might account for this improvement.

TGM3 and PADI3 are strongly detected in the upper
epidermis. Nevertheless, no anomalies have been reported
in the interfollicular epidermis of individuals with isolated
UHS. Similarly, Tgm3~/~ mice show no obvious skin de-
fects.”* This is probably due to the fact that other isoforms
of these enzyme families are present in the epidermis,
which can compensate for the loss of PADI3 and TGM3 ac-
tivity, whereas these two are the only isoforms detected in
the hair cuticles and medulla.””**>°
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Figure 7. WT and Mutant Forms of TGM3 Produced in HaCaT and HEK293T Cell Lines

(A) Immunoblotting analysis shows the translation of WT and truncated TGM3 in transiently transfected HaCaT cells, collected 48 hr
post-transfection. Immunoblotting was performed with anti-Flag and anti-TGM3 antibodies. Antibody-specific bands showing the WT
(~70 kDa) and truncated TGM3 (~40 kDa) are indicated with an arrow and a non-specific cross-reactive band around 55 kDa is indicated
with an asterisk. The truncated TGM3 can be detected only with the antibody against the Flag epitope fused to the N terminus and
not with the antibody against the C terminus of TGM3 as expected. Full-length blot images can be seen in Figure S9. Immunoblotting
analysis with HEK293T cells is presented in Figure S7.

(B) Immunofluorescence analyses in HaCaT and HEK293T cells transiently transfected with WT and mutant TGM3 encoding constructs
are presented by images captured with 10x and 63 x objectives. The analyses show clear differences in the number of cells producing the
WT and mutant TGM3 (10X images). Scale bars represent 50 ym and 10 pm for 10X and 63X objectives, respectively.

(C) Transglutaminase activity of WT and mutated TGM3 produced in HEK293T cells. Mock-transfected cell lysates were used as negative
control. The transglutaminase activity, represented by the mean slope of 10 min long measurements from technical triplicates (given in
Figure S8), is presented as a dot plot. The enzymatic activity assay was performed with samples emerging from five independent trans-
fections. Horizontal lines represent the mean values (mean + SD; WT, 0.84 + 0.45; p.Gln451*, 0.10 = 0.04; mock, 0.07 + 0.02). Results
demonstrate that the mutated protein did not differ from the mock transfected negative control in terms of activity and WT TGM3 had a
significantly higher activity in comparison to both (*p < 0.05, Dunn’s test).

(p.-Ala294Val). UHS is a non-debilitating phenotype that
resolves with age and therefore, it is likely that these pre-

Up to now, both simplex and familial cases of UHS have
been reported with suggested autosomal-dominant and

-recessive inheritance with variable levels of penetrance.
In this study we consistently observed an autosomal-reces-
sive inheritance pattern in a total of 11 familial and sim-
plex cases. Based on the pedigrees reported in literature,
it is most likely that autosomal-dominant forms of this
condition exist”*®*” which might be underlined by de-
fects in other genes involved in hair shaft formation and
maintenance related processes. It would be of interest
then to investigate closely whether differences could be
observed in the phenotypes of these individuals in com-
parison to the individuals who carry recessive mutations
in PADI3-TCHH-TGM3 cascade.

An interesting observation was that 5 out of 60,659
individuals in ExXAC are homozygous for c.881C>T

sumably affected individuals had participated in the ExXAC
project as “healthy” controls. These data also indicate that
UHS is a more common phenotype than estimated.

In summary, we elucidated the molecular genetic back-
ground of UHS by identifying recessive mutations in
PADI3, TCHH, and TGM3. The three genes encode for pro-
teins that play an essential role during hair shaft formation
through their sequential interactions. This finding, in
combination with the data describing the functional ef-
fects of the mutations in PADI3 and TGM3, provides valu-
able information regarding the pathophysiology of UHS.
Furthermore, it contributes to a better understanding of
the protein interaction cascades in molecular histogenesis
of the hair. This could be of further value for cosmetic and
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pharmaceutic industries paving the way for development
of novel products.

Supplemental Data

Supplemental Data include nine figures and six tables and can be
found with this article online at http://dx.doi.org/10.1016/j.ajhg.
2016.10.004.
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Supplemental Note: Case Reports

Clinical data for individuals with PADI3 mutations

The English family has also been described in the manuscript. The female sibling was referred to the
Department of Dermatology in Brigthon at the age of 11 years with a lump in her right and left arm. The
clinical and later histological diagnosis was of pilomatrixomas. At the same appointment it was noted
that she had abnormal hair. This was first noticed by the parents after 8 weeks of hair shedding in early
childhood. The hair was then very slow growing, came out easily and painlessly. Her hair was hard to
brush or comb and she rarely had to have her hair cut. Teeth and nail development was normal. The
girl has recently been diagnosed as diabetic. Her brother was examined at the age of 15 years and
had white brittle nails. His hair when long was described as being like sheeps wool which had
improved with age (Figure 1J). The hair had a spangly appearance. The features of the hair shaft
observed by electron microscopy were diagnostic of uncombable hair with longitudinal running ridges

(Figure 1K), some twisting and triangular or heart shaped cross sections (Figure 1L).

A 3-year old Danish girl was referred for evaluation of abnormal hair (Figure 1F). Besides hair shaft
anomaly she was otherwise healthy. From birth she had sparse hair until the age of 1.5 years, when
the parents noted her dry and unruly hair which could not be properly combed. It was also noted that
she could never grow her hair long. Hair microscopy showed hair shaft anomalies with pilli canaliculi et
trianguli. When she was 4 years old biotin therapy 5 mg daily was given for 6 months, which apparently
improved the hair texture. Today the girl is 8 years old, and overall there has been also a spontaneous
improvement of the condition (Figure 1G). This clinical signs of this girl have been described in detail

elsewhere.!

A German boy was seen at the age of 3 and 8 years with unimproved wiry hair. The blond, lusterless
hair was closely cropped and irregularly stuck out from the scalp growing in lots of different directions.
Of interest, the hair originating from a congenital melanocytic nevus of 2.5 x 1.5 cm size at the right
temporal side of the scalp was not only darker but also appeared structurally normal without any signs

of uncombability (Figure 1D).

An 18-month old Swiss boy was referred to the Department of Dermatology in Zurich for the evaluation
of abnormal hair. From early infancy the parents noted dry, unruly and slow growing hair which did not
maintain its shape after styling. Apart from mild obstipation he was otherwise well. No one else in the
family hat any similar hair problems. On examination the boy's entire scalp was observed to be
covered with brown, dry, frizzy hair that projected outward and resisted any attempt to flatten it. On hair
shaft microscopy longitudinal grooving and triangular cross sections were observed, consistent with pili
canaliculi et trianguli. Today the boy is nearly 6 years old, and there is an improvement in the hair

phenotype (Figure 1E).

A Spanish girl was seen at the age of 4 years for ‘funny looking’ hair. Clinical examination revealed
normal brown light hair without any clear alteration on eyelashes nor eyebrows. Teeth and nails are
normal. Under the scanning and optical microscope typical finding of pili canaliculi were seen. This

clinical signs of this girl have been described in detail elsewhere.”



The scalp hair of a German girl was normal at birth and started to grow curly and badly combable from
the age of 3 months. Hair growth was claimed to be decelerated by the mother. On clinical examination
at the age of 3.5 years her shoulder-length light hair appeared dry and stood out in all directions. Hair

density was not reduced, and no other abnormalities could be identified (no picture available).

Another German girl presented with very fair, uncombable hair at the age of 6 years (Figure 1B).
Physical examination was within normal ranges. Until the age of 15 years the structure of the hair

remained unchanged.

Another German girl was examined at the age of 4 years because of uncombable hair from infancy on
(Figure 1A). Short hairstyles were preferred until spontaneous improvement occurred at the age of 10-
11 years, when scalp hair gradually became more flat and easier to manage. Today, at the age of 25

years, few untamable hairs are left over in the frontal area which are straightened with hair gel.

A little German girl presented with normal hair at birth; soon after birth, the regrowing hair was
noticeable, and UHS syndrome was diagnosed (Figure 1C). Nowadays, at the age of 10 years, the girl
has long pretty hair that is well combable. There are no other abnormalities, a sibling has normal hair.
No other individual in this family has abnormal hair structure.

Clinical data for the individual with the TGM3 mutation
The clinical signs of this young men have recently been described elsewhere.’

Clinical data for the individual with the TCHH mutation

The German girl with the TCHH mutation came to the clinics at the age of 19 years complaining that
her hair grows too slowly being otherwise healthy. Since her childhood, she haid brittle, curly hair,
which was barely combable. These symptoms improved until her 14th year of life.
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Figure S1
Co-segregation of the disease-causing mutations in pedigrees

(A) Discovery pedigree from the UK with two affected and two unaffected siblings. (B) Danish family
with an affected daughter. (C) Spanish family showing compound heterozygosity for the mutations
p.Leu112His and p.Ala294Val in the affected daughter. (D) Swiss family showing compound
heterozygosity for the mutations p.Ala294Val and p.Lys578* in the affected son. DNA was not
available from the healthy father and siblings. WT, wild type
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Figure S2

Cartoons depicting the positions of the mutations in PADI3, TGM3 and TCHH

The start/end positions of the genes are based on hg19. Direction of transcription is depicted with the
arrow heads. Squares indicate individuals carrying the respective mutation. Red squares denote
homozygotes. Black squares denote individuals carrying p.Leu112His and p.Ala294Val, grey square
denotes the individual carrying p.Ala294Val and p.Pro605Thr, grey square with a black frame denotes
the individual carrying p.Leu112His and p.Pro605Thr, and white square denotes the individual carrying
p-Ala294Val and p.Lys578*.
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Sequence alignments for PADI3

When we assessed evolutionary conservation of the three substituted amino acids, we found that all of
them were located (A) at well-conserved positions across various human PADIs and (B) across PADI3
from distinct species, thus suggesting that these mutations may alter the protein function. (A) The
sequences of human PADI3 and paralogous genes (GenBank accession numbers ABO033768,
AB03176, AB026831, AB017919 and AY422079) were aligned using MultAlin.* Amino acids conserved
at 90% and 50% are indicated in red and blue, respectively. The three mutated amino acids of PADI3
are surrounded. (B) Primary sequences of human PADI3 and Padi3 from other species (chicken,
mouse, sheep, dog (CANFA) and Tasmanian devil (SAHRA) were aligned using Clustal Omega

(European Molecular Biology Laboratory-European Bioinformatics Institute). The three mutated amino

acids of PADI3 are depicted in red.
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Figure S4

Topological tridimensional models of WT and mutant PADI3: Localization of the 4 major amino
acids involved in the catalytic sites and of the 3 amino acids involved in the UHS missense

mutations

Overall view of the tridimensional solid ribbon representation of calcium-bound PADI3 models,
including WT and three missense mutants. Residues Leu112, Ala294 and Pro605 are reported on the
model of the (A) WT enzyme, as well as the corresponding substituted amino acids on the structure of
the three mutants (B) p.Leu112His, (C) p.Ala294Val and (D) p.Pro605Thr. (A-D) The four major amino
acids involved in the catalytic site are also shown. According to these models, the (C) p.Ala294Val and
(D) p.Pro605Thr substitutions induce a profound disorganization of the immunoglobulin-likes domains,
with clear disappearance of several beta-sheets, and disruption of some alpha-helices in the catalytic

domain, as compared to the WT. Effects of the (B) p.Leu112His substitution are more discrete.
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Figure S5
Topological tridimensional models of WT and mutant PADI3: Predicted calcium binding sites

Zoom on the amino acids involved in the five calcium-binding sites (1-5). As previously published,5
these amino acids (Table S2) were defined by analogy, after a multiple alignment, to the residues of
the five calcium binding sites of PADI4 [MIM 605347].6 None of the substituted amino acids are directly
involved in calcium binding. Nevertheless, the predicted models of p.Ala294Val and p.Pro605Thr

mutants show clear spatial modifications of, at least, the calcium-binding sites 2-5.
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Figure S6

Absence of activity of mutant PADI3 produced in bacteria

Extracts of E. coli producing WT PADI3 were diluted either four (3’ and 4’) or eight times (3” and 4”) in
order to adjust the amounts of PADI3, as compared to undiluted extracts containing the mutant
enzymes, p.Leu112His (clones 7 and 8), p.Ala294Val (clones 11 and 12) and p.Pro605Thr (clones 14
and 15). The extracts were then incubated for 18 hours with calcium, as indicated. After incubations,
proteins were immunodetected with either the anti-V5 antibody or anti-modified citrulline antibodies.
While citrullinated proteins were detected in the WT-containing extracts, no citrullinated proteins were

detected in the mutant-containing extracts. Molecular mass markers are indicated on the right in kDa.
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Figure S7

Immunoblotting of HEK293T extracts producing WT and mutant TGM3

Immunoblotting analysis shows the detection of WT and truncated TGMS3 in transiently transfected
HEK293T cells, which were collected 48 h post-transfection. Cell extracts from independent
transfections (1-5), were concurrently immunoblotted (1-3, 4-5) with an anti-Flag antibody. Antibody-
specific bands showing the WT (~70 kDa) and truncated TGM3 (~40 kDa) are indicated with an arrow
and a non-specific cross-reactive band around 55 kDa is indicated with an asterisk. A persistent lower
detection level was observed for the mutated protein in comparison to the WT TGM3. Relative protein

quantification was performed using Stain-Free technology that is based on normalization by the total

lane protein content (Bio-Rad Laboratories).
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Figure S8
Transglutaminase activity of TGM3 produced in HEK293T cells

Fluorescence intensity augmentation by incorporation of monodansylcadaverine into casein. Measurements from five independent transfections are presented in

rows. Three technical replicates for each sample are depicted with color-coded lines. Linear slopes of the measurements represent the transglutaminase activity.
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Figure S9

Full-length gel and blot images from the main figures.

Full-length images of the blots/gels in (A) Figure 4A, (B) Figure 7A, (C) Figure 5B, (D) Figure S6 and
(E) Figure S7



Supplemental Tables

Table S1. Primers used for sequencing of PADI3

Amplicon Forward (5’-3’) Reverse (5’-3’)

PADI3_Ex1 CTGAGCTCTCAGCTCTGGGA TCTTCTACCTGGCTCAGCC
PADI3_Ex 2 GCTTGACTCGCAGGAGCTTA TCTGTAACTTGCAGAGCTGG
PADI3_Ex 3 GGCACAGAGGAGGTTAAAGAA TCCATTTGTGGAGGCTTAGC
PADI3_Ex 4 CCTCTTGGATGGTGTCTCCTT AGTCCAGAAGGTCTTGATCCC
PADI3_Ex 5 GCCATTGACATGTCTTGAGAA AGCATCGAGGTGTGTCTGG
PADI3_Ex 6 CAGCTGGCTATGCCACACT TTCTGACTGTTCTTACTGCG
PADI3_Ex 7 CCACTGTGTATTACCTGTCCT ;gég%ggﬁggg%ﬁg;ﬁ%ﬁég*
PADI3_Ex 8/9 GGTTCATTTCCATCTTGCAGA TGTTGAATCCAGGATCAGC
PADI3_Ex 10 CTGACCTGGGCACATTTATG TTTAGGGCTGCCAGATTCAG
PADI3_Ex 11 CTCAGGCTCCATGTCCGAT AATGATCTCTTAGGTCTCTGC
PADI3_Ex 12/13 g%ﬁgg;g?g g %iZ\GCG;%C;—?(GBP AGTCCATGTCCACCTTCTATC
PADI3_Ex 14/15 GGCTGCTGACTCGGCAAGA TCCCAGCTGATGCCATGTGC
PADI3_Ex 16 CCAGAGTGAGTTCTGCGGAT AAGTCTGAGAACCACATGGG

Primer pairs are used both for amplicon generation and Sanger sequencing reactions. *Additional primers were

used for the cycle sequencing reaction in order to cover the whole region.




Table S2. Primers used for sequencing of TGM3

Amplicon Forward (5’-3’) Reverse (5’-3’)
GATGTCCAGCTGCACTGAACA
TGM3_Ex 1 AGGCAATCCTTGGCAGCCTG AAGGCAGGCAGCTGTCCTGG*
TGM3_Ex 2 AGGATGCACAGAGGTTCAGC AGAGATGGACAGCAACTTGC
TGCTTAAGTGTCAGAGCTCC
TGM3_Ex 3 GTTGTATTGGAACCTGGTCT TAGGCCAGGGCTGAGAGTGTG*
TGM3_Ex 4 AAGCAGCTGTCTGAGTGTGG ACACTAAGGAAGTGTCATCGC
TGM3_Ex 5 TCAGTAGCTCTCAGTTCCAG TACTCACTGTGTGCCTCAGG
AGACTAGCAGACCGCAGAGC
TGM3_Ex 6/7 ACTGTGACAGCAGTGATAGCC GTGAGAGCGAGAAGCCACTCA*
TGM3_Ex 8 ACTCACTCGATGCATGTTGTC AGGCTCTGTGCAGCAACAGTG
TGM3_Ex 9 TTGCAGTGGTCCTGGAAGGC AGGCAGAACTGGCTGCCAGTG
TGM3_Ex 10 TCCGGTTAAGACAGGCGAGC TGTGCCATAGCTATGAACTGC
TGM3_Ex 11 TGGCCCAAGGAGGGCTCAGTC TGGGAGAGCTGTGGCTCACAG
TGM3_Ex 12 AGCACAGGATAATGTCCTGG AGATTCTAGAGTTCCAAGACC
TGM3_Ex 13 AACAGGACAGGAGGTCACAG TCCATGGTGAGCTCTCCCTG

Primer pairs are used both for amplicon generation and Sanger sequencing reactions. *Additional primers were
used for the cycle sequencing reaction in order to cover the whole region.




Table S3. Primers used for sequencing of TCHH

Primer Name Sequence (5°-3°)

TCHH_EX 2F GGTGGAGAGCTGGAAGAAAGACA
TCHH_EX 2R TGGGGGATGTAGTGTAGACCTGTT
TCHH_EX 3F TGAGCTCTTCATGGGACATTACCACA
TCHH_EX 3R TGCACTTTCCACAAGATGGGTCA
TCHH_SF1 GCTCTGAATGTCTCTTGAATGTCA
TCHH_SF2 CAAAGGCAAGAATGGCAAGAA
TCHH_SF5 CTAGCTGAGGAGGAGCAGGAACA
TCHH_SF6 GTGGCAACTAGAAGAAGAAAGGA
TCHH_SF8 CAAAGGCAGAGAGAATGAACAGTT
TCHH_SF16 CAGCAGCGGGAACAACGGTTTICT
TCHH_SF20 CGAACAGGAACTGCGCAGTCAGGA
TCHH_SF23 GAGCAGCTGCTGAGAGAGGAACA
TCHH_SEQ1F TGGAGCGGCAAGAGCTGAG
TCHH_SEQ3F TCGGAAGGATAAGAAGCTG
TCHH_SEQ5F AGAGTCGTCGTGAGGAACAAG
TCHH__ EX3.2F CGCAGGCAGAAGAGGCAGGAA
TCHH__ EX3.3F GCGGTTGAGGAGCGAGCAAC
TCHH__ EX3.4F CCAGCAGCGGGAACAACGGT
TCHH__ EX3.5F GCGGGAGAGGCAGTATCGGG
TCHH__ EX3.6F CAGCGCGACAGGCATTICC

TCHH__ EX3.7F CAACAGCTGCGTCACGACCG
TCHH_EX3.1R CTGTCTTGCCGCTCTCGCCT
TCHH_EX3.3R CTTGGCGTACAGCGTGTGGC
TCHH_EX3.4R TGTCGCGCAGCTGGGAATCT
TCHH_SR2 TCCTTTCTTCTTCTAGTTGCCAC
TCHH_SR3 CAGCTTCTTATCCTTCCGA
TCHH_SR4 AACTGTTCATTCTCTCTGCCTTTG
TCHH_SR5 CTTGTTCCTCACGACGACTCT
TCHH_SR9 GACGGAGCTGCTCTTCCTCTAGGAT
TCHH_SR10 CCAGCGATACTTTCCGTCACGCTGTT
TCHH_SR11 GAGGAAGAACAGCTGGAGCGAGA

Primer pairs used for amplicon generation are given in bold and primers used for cycle sequencing reactions are
given in italic. Presence of TCHH mutations in the coding sequence in screened individuals could not be entirely
excluded as overlapping and/or individual regions could not be sequenced in different individuals due to technical
limitations arising from the repetitive regions.



Table S4. Primers used for cloning and mutagenesis

Construct Primers

PADI3 WT PADI3-WT-F: 5 accATGTCGCTGCAGAGAATCGTG &
PADI3-WT-R: 5 GGGCACCATGTTCCACCAC 3

PADI3 PADI3-Mut-p.L112H-F: 5 CCTATGCGGTGCTCTACCACACCTGTGTTGACATCTC 3'
p.Leu112His | PADI3-Mut-p.L112H-R: 5' GAGATGTCAACACAGGTGTGGTAGAGCACCGCATAGG 3

PADI3 PADI3-Mut-p.A294V-F: 5 GTGGTGTTCCGAGTGGTACCCTGGATCATGACG 3'
p.Ala294Val | PADI3-Mut-p.A294V-R: 5' CGTCATGATCCAGGGTACCACTCGGAACACCAC 3’

PADI3 PADI3-Mut-p.P605T-F: 5 CCCCAAGCCCTTTGGGACCATCATCAATGGCTG 3
p.Pro605Thr | PADI3-Mut-p.P605T-R: 5 CAGCCATTGATGATGGTCCCAAAGGGCTTGGGG 3

TGM3 WT TGM3-WT-F: 5’ accatggattacaaggatgacgacgataagccaggaccaATGGCTGCTCTAGGAGTCC 3”
TGM3-WT-R: 5 TCATTCGGCTACATCGATG ¥

TGM3 TGM3-Mut-p.Q451*-F: 5 GCTCTGACCAGGAAAGATAAGTGTTCCAAAAGGCT 3
p.GIn451* TGM3-Mut-p.Q451*-R: 5 AGCCTTTTGGAACACTTATCTTTCCTGGTCAGAGC 3’

The N-terminal flag tag sequence fused to TGM3 is given in italic. The locations of the mutations are given in bold
in the respective mutagenesis primers. WT; wild type; Mut, mutant; F; forward; R; reverse



Table S5. PADI3, TGM3 and TCHH mutations in ExAC database

Variant” | Gene | Consequence | S8 | UL | MRCERONS | trequency
! :(:szff;g‘;gg/)A PADI3 | pleuli2His | 459 | 111360 0 0.004122
! :(15715213&?3326/; PADI3 | pAla294val | 809 | 121318 5 0.006668
1 :(gffjgffgs’)/* PADI3 | p.Pro605Thr 51 | 113490 0 0.0004494
2‘()r527371 gfggo%f TGM3* | p.GIn451* 1 114212 0 0.000008756
1:1( :3322%%2%% 5337 ; Al TcHH |  p.GIn331* 43 112892 0 0.0003809

@Variants are annotated by genomic location based on hg19, nucleotide substitution and their dbSNP IDs.* None
of the sequenced individuals in ExXAC database carry a loss of function mutation in homozygous state in these
genes.



Table S6. Amino acid residues and positions# involved in the 5 calcium binding sites and the
catalytic site of PADI3

Calcium binding sites Residue-position

1 GIn-349 / Glu-353 / Phe-407 / Leu-410 / Glu-411

2 Glu-351 / Asp-369 / Ser-370 / Asn-373

3 Asn-153 / Asp-155 / Asp-157 / Asp-165 / Asp-176 / Asp-179
4 Asp-155 / Asp-157 / Asp-179 / Asp-388

5 Asp-165 / Asp-168 / His-170

Catalytic site* Asp-350 / His-470 / Asp-472 | Cys-646

*Positions of calcium-coordinating and catalytic site residues are reported according to the PADI3 primary

sequence (GenBank accession number AB026831) after a multiple alignment, as previously described.” They

have been defined by analogy to the analysis of PADI4 crystal structure analysis.6 *The 4 major amino acids of the

catalytic site are mentioned.
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