
1 Probabilistic Following Noisy Local Advice (PF-NLA)

In this section we present our navigation model on graphs, called Probabilistic Following of Noisy
Local Advice (PF-NLA), which is a special case of the very general Random Walk in Random
Environment model (see Section 2). The PF-NLA model is composed of two intertwined components,
the underlying Noisy Local Advice component which provides unreliable navigation instructions
(road signs), and the Probabilistic Following component which describes the responsiveness of the
navigating entity to these navigation instructions. We first start with some basic definitions.

Let G = (V,E) be an unweighted undirected graph over n nodes, where V represents the set of
nodes of G and E represents the set of edges. Let τ ∈ V be a specified target destination node. Let
dist(·, ·) be the distance function relative to G, that is, dist(x, y) = k if the shortest path from x

to y in G contains precisely k edges. The set of neighbors of each node x is divided into correct
neighbors and incorrect neighbors. Specifically, correct neighbors of x are those closer to τ than x,
or in other words, y is a correct neighbor of x if dist(y, τ) = dist(x, τ)− 1. All other neighbors of
x are called incorrect.

A mobile agent A is initially placed on one of the nodes σ ∈ V and aims at reaching the
destination node τ by traversing the edges of G. Each traversal of an edge takes one unit of time.
The goal of the agent is to reach τ as fast as possible as a function of d = dist(σ, τ), its initial
distance to the target. A-priori, the agent has no knowledge of where the target node is and may
furthermore have very limited knowledge regarding the structure of the graph G. At any time
during its navigation, the agent may use guiding information held by its current hosting node. This
guiding information, termed advice, is randomly chosen with a certain bias towards the correct
direction of movement, as described below.

Noisy Local Advice. The model is specified by a mistake-parameter µ ∈ [0, 1]. Each node
x ∈ V is assigned an advice a(x) that is a pointer pointing to one of x’s neighbors in G. Specif-
ically, with probability 1 − µ, and independently of all other nodes, the advice a(x) is correct
and otherwise it is incorrect. Correct advice at x points at a correct neighbor of x, chosen uni-
formly at random among the correct neighbors of x. Similarly, incorrect advice at x points at
an arbitrary incorrect neighbor of x, chosen uniformly at random among the incorrect neighbors of x.

Remark 1 (Reliability parameter). Note that in the numerical simulations, we use a slightly
different convention: with probability 0 < p < 1, called the reliability parameter, the advice a(x)
at each node x points at a correct neighbor of x (chosen uniformly at random among the correct
neighbors), and otherwise, with probability 1 − p, it points at an arbitrary neighbor of x, chosen
uniformly at random among all neighbors of x (in contrast to choosing it only among incorrect
neighbors). While this convention is slightly more intuitive than the convention that uses the language
of the mistake-parameter µ, the latter is slightly more general as is also allows for the case in which
the majority of advice is incorrect.

The parameter µ governs the unreliability of the advice. Specifically, when µ = 0, all advice
is completely reliable, as it always leads toward a node on the shortest path to τ . In this case,
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the strategy of always following the advice results in the agent reaching the target node τ in the
shortest possible time, namely, d. Note, however, that when µ > 0, the strategy of always following
the advice can be detrimental by creating deadlocks. For example, on the 1-dimensional line graph,
if there is one node with incorrect advice on the way to the target node, then an algorithm that
always listens to advice will never reach the target. On the other extremity, when µ = 1, the advice
at any node becomes useless, and no strategy employed by the agent can allow for short traversal
time even on very simple graphs.

The Probabilistic Following (PF) algorithm. Both extreme strategies, of always following
the advice, or always ignoring it, fail when advice is unreliable. Instead, we suggest the basic
strategy of following the advice with some fixed probability and ignoring it otherwise. Specifically,
the Probabilistic Following (PF) algorithm is specified by a listening-parameter λ, where 0 ≤ λ ≤ 1.
At any given time t during the execution and for any node x, if the agent is at x at time t, then the
neighbor y of x to be visited on the next hop is chosen at random, as follows:

• With probability λ, the next neighbor y of x to visit is the neighbor specified by the advice a(x).

• With probability 1− λ, the neighbor y is chosen uniformly at random among x’s neighbors.

Note that PF is a memoryless algorithm. That is, the decision at each node x regarding the next
hop is based only on the current advice at x. In particular, no information from the agent’s history
is available to the algorithm.

Remark 2 (Concerning continuous models). The noisy local advice model assumes that each node
has a single pointer advice. An alternative could consider that each node has several advice pointers
at different strengths, pointing at different neighbors. In such cases, one would need to specify how the
bias to the correct direction is manifested. One example could be that the strongest pointer is guaran-
teed to point at a correct direction with probability at least 1− µ. This model can be reduced to our
noisy local advice model, by considering the strongest advice as the single advice of the node. In gen-
eral, one may view our model as a discretization of such models, and as a first approximation to them.

Remark 3 (Concerning worst-case adversarial models). The model of navigation with advice was
introduced in [4] and further studied in [3]. The main difference between the model of [3, 4] and our
model is that in the model therein, the nodes holding incorrect advice (called liars in the terminology
of [3, 4]) are chosen by an adversary, while in our model, which is better suited as a biologically
driven model, they are chosen independently at random. This difference between the worst case
placement of liars as assumed in [3, 4] and the average case scenario we use here is, in fact,
substantial. For example, on the line graph our PF algorithm executed in the underlying NLA model
can handle a linear number of nodes with incorrect advice and still reach the destination in linear
time. In contrast, in the adversarial model of [3, 4], a worst-case placement of a linear number of
liars will result in exponential hitting time for any memoryless algorithm.
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2 The model of Random Walks in Random Environments (RWRE)

In this section we describe the general model of Random Walks in Random Environments (RWRE).
For more information, see the surveys [2, 5].

Consider a graph G. Informally, an environment ω is a distribution at each node x, indicating,
for each neighbor y of x, the probability ωx(y) of moving from x to y. That is, whenever the
particle is at x at some time t, it will move to y at the next hop with probability ωx(y). The given
environment ω is chosen at random. That is, there is a governing distribution Px at each node
x, from which the distributions at x are sampled. The movement of the agent (typically called
particle in the terminology of RWRE) is then analyzed taking expectation over the environments ω
and walks in those environments. Note that once an environment ω is fixed, the movement of the
particle is Markovian. However, without conditioning on the environment, the movement in not
Markovian — this is a major source of technical difficulties in the analysis of RWRE.

We next provide a formal definition of the RWRE model. Our exposition is based on the surveys
[2, 5]. For the sake of simplicity we will omit measurability related questions.

2.1 Definitions and notations

Consider a graph G = (V,E). We denote by x, y, z . . . ∈ V vertices of G. We denote by dist the
graph distance on G and by ∂A the boundary of a set A ⊆ V . In symbols:

∂A = {x : dist(x,A) = 1}

In this section G will in fact be restricted1 to be the grid Zd for some d ∈ N, but we define the
model on a general graph in anticipation of what we want to do next.

For each x ∈ V , let Px denote a set of probability distributions supported on ∂x. In other words,
for each distribution in Px only neighbors of x have positive mass.

Definition 4 (environment). An environment ω is an element of the environment space Ω =
(Px)x∈V . In other words, an environment ω = (ωx)x∈V is a collection of probability laws indexed by
x ∈ V . For each x ∈ V , ωx is a probability distribution over the neighbors of x.

Definition 5 (random walk in the environment ω). Let ω ∈ Ω be an environment, and assume that
a particle is initially located at x. We denote by (Xt)t∈N the Markov Chain on G whose transitions
are given by ω. More precisely:

Pω,x(X0 = x) = 1, (1)
Pω,x(Xt+1 = y′ | Xt = y) = ωy(y′). (2)

and we call it the random walk in random environment ω started at x. In particular, note that
entails that

∑
y′ ωy(y′) = 1.

1Although RWRE can apply for any graph, the literature on this subject has been focusing mostly on grid graphs
of different dimensions.
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So far we only have one source of randomness, Pω,x. To complete the model of RWRE, it
remains to specify a law for the environment. We denote by P a measure on Ω. In words, P
corresponds to averaging over the environment, and Pω,x to averaging over the walk, conditioning on
the environment. Overloading notation, we also write Px in place of P× Pω,x. Thus Px corresponds
to averaging both over the environment and the walk. 2 As mentioned, one of the difficulties arising
in the study of RWRE is that under Px, the walk is generally no longer Markovian. We will write
Ex,ω to denote expectation under Pω,x, and Ex to denote expectation under Px.

We will further make two standard assumptions on the law of the environment.

2.1.1 Assumptions

(IID) Under P, the distributions (ωx)x∈V are independent (and identically distributed if the graph
G is the grid).

(EC) There exists a constant κ > 0 such that:

P
(

min
(x,y)∈E(G)

ωx(y) ≥ κ
)

= 1.

We call the maximal constant κ appearing in (EC) the ellipticity constant. This condition implies
that the probability to move from every node to any of its neighbors is bounded from below by κ.

2.2 The PF-NLA model as a sub-model of RWRE

The Probabilistic Following Noisy Local Advice (PF-NLA) model is a special case of RWRE.
Specifically, given the underlying setting of NLA with mistake-parameter µ and the PF algorithm
with listening-parameter λ, the walk of the agent is specified as an instance of RWRE defined as
follows.

A graph G is given, together with a collection of advice (ax)x∈V . For each x ∈ V , recall
that ax ∈ V is some neighbor of x which we think of as a recommendation. If x is “ correct”
dist(ax, τ) = dist(x, τ)− 1. Given the collection of advice (ax)x∈V for each point x, we define the
environment ω as the collection of transition probabilities (ωx)x∈V , defined as follows.

• ωx(ax) = λ+ (1− λ)/∆x, where ∆x denotes the number of neighbors of x.

• ωx(z) = (1− λ)/∆x, for every other neighbor z 6= ax of x.

Note that in the PF-NLA model, the environment ωx defined above corresponds to the transition
probabilities of the agent at x that executes PF, given the advice ax. The law according to which
each environment ωx is chosen is then specified by the law of the advice ax, as given by the underlying
NLA setting.

2In the RWRE literature, Pω,x is often referred to as the quenched law of the walk, and Px as the averaged or
annealed law.
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3 Results on the line

In this section, we consider the line graph H = 0, 1, . . . , d. The agent starts at the source node
σ = 0 and wishes to reach the target node τ = d. The agent executes PF with listening-parameter
λ over an underlying NLA setting with mistake-parameter µ. The following theorem characterizes
the conditions that allow linear expected hitting time.

Theorem 6. For any mistake-parameter µ < 1/2, there is a C > 0 (which depends on µ only) such
that for any fixed listening-parameter λ ∈ (0, 1− 2µ) guarantees the expected hitting time is less than
C · d.

Remark 7. By essentially the same proof, we would get that the same result holds even if H is
infinite to the left. We emphasize that the advice gives an advantage with respect to simple random
walk as a simple random walk would only get a hitting time of d2 to reach d from 0 on a finite line
and ∞ to reach d from 0 on the infinite line.

To prove the theorem, we adapt known arguments and results from the theory of RWRE on the
line to the context of our advice setting. For this purpose, we view the PF-NLA as a sub-model of
RWRE, see Section 2.2. A PF-NLA model with a mistake-parameter µ and a listening-parameter
0 < λ < 1 corresponds to a random environment ω for the line. For any x ∈ H let us denote by
qx = ω(x, x− 1) and px = ω(x, x+ 1). We also define the following important notion as in [7].

Definition 8. [governing ratio] For any point x, the governing ratio of x is ρx = qx

px
.

Note that the expectation E(ρx) is the same for all x. Therefore, for convenience we term this value
as E(ρ) and call it the governing ratio. Solomon [6] proved that for the infinite line, if E(ρ) < 1 then
the speed of the walker is positive and equal to 1−E(ρ)

1+E(ρ) (going to +∞). In Lemma 9 we show that
the same result holds on the finite case and in Lemma 11 we show that if the mistake-parameter
µ < 1/2, then there exists a listening-parameter 0 < λ < 1 such that the resulting PF-NLA model
has E(ρ) < 1. Combining these two lemmas we obtain the theorem.

Lemma 9. Consider a random walk on a random environment on the line graph H. The random
environment is summarized through the parameter α := E(ρ).

• If α < 1 then the expected time to hit d is linear, i.e., of the form c(α)d for some function c(·).

• If α > 1 then the expected time is exponential in d, i.e. equivalent to c(α)αd when d→∞ for
some function c(·).

• Else, if α = 1 it is quadratic (in d).

To prove Lemma 9, we use a convenient phrasing of a standard formula (see Proposition 3 in
Chapter 5 of [1]). For completeness, we also give a proof of that formula, since it is rather short.
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Lemma 10. Consider a birth and death chain on [0, 1 . . . , d] specified by the parameters (qx, px)x∈[d]
(which collectively correspond to an environment ω following our terminology). Then:

E0,ω(T (d)) = d+ 2
∑
i<j≤d

j∏
x=i

ρx.

For i ∈ [d], let θi := Ei,ω(T (i + 1)) be the expected time to reach i + 1 starting at i. In
expectation, 1/pj − 1 = ρj excursions from j are needed before moving to j + 1 and the length of
one such excursion is 1 + θj−1 so it easily follows that, for j ≥ 1

θj = (1 + θj−1) · ρj + 1,

which yields

θj = 2
∑
i≤j

∏
i≤x≤j

ρx + 1,

and we get the formula by using E0,ω(T (d)) =
∑d−1
j=0 θj . This completes the proof of Lemma 10.

Proof: [Proof of Theorem 6] We use the formula in Lemma 10 to prove Lemma 9. Under the (IID)
assumption (see Section 2.1.1), we have that:

E0(T (d)) = EE0,ω(T (d)) = d+ 2
d∑
j=1

j∏
x=i

E(ρx). (3)

If we write α := E(ρ), we get that:

E0(T (d)) = d+ 2
d∑
j=1

j∑
i=0

αj−i = d+ 2
d∑

k=1
(d− k)αk. (4)

If α < 1 then Equation 4 translates to

E0(T (d)) ≤ d(1 + 2
∑
k≥1

αk) = d

(1 + α

1− α

)
,

which proves the first part of Lemma 9.

Also, Equation 4 states that E0(T (d)) > αd−1, which is exponential in d if α > 1. Let us compute
more precisely the asymptotics when d→∞, using Equation 4.

d∑
k=1

(d− k)αk = d
α− αd+1

1− α − α
[
α− αd+1

1− α

]′
= αd+1 1

(1− α)2 + d
α

1− α + α

(1− α)2 . (5)

We see that the leading term is an exponential in d with base α and the second one a linear term in
d. This proves the second part of Lemma 9, with c(α) = 1

(1−α)2 . Finally, if α = 1 then Equation 4
states that E0(T (d)) = Θ(d2). This completes the proof of Lemma 9.

Theorem 6 will follow by combining Lemma 9 with the following lemma.
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Lemma 11. If the mistake-parameter µ < 1/2, for any choice of λ < 1− 2µ, the resulting PF-NLA
model has E(ρ) < 1

To prove the lemma, consider some listening-parameter 0 < λ < 1. Observe first that the
governing ratio ρ = q/p satisfies: ρ = 1−λ

1+λ with probability 1− µ and ρ = 1+λ
1−λ with probability µ.

Hence, the expected value of the governing ratio is:

E(ρ) = 1− λ
1 + λ

(1− µ) + 1 + λ

1− λµ. (6)

It follows that:

E(ρ) < 1

⇔ µ

(1 + λ

1− λ −
1− λ
1 + λ

)
< 1− 1− λ

1 + λ

⇔ µ

( 4λ
(1 + λ)(1− λ)

)
<

2λ
1 + λ

⇔ µ <
1− λ

2
⇔ λ < 1− 2µ .

Hence, setting the listening-parameter λ to any positive number strictly less than 1 − 2µ yields
expected hitting time O(d). This completes the proof of Lemma 11 and Theorem 6.

The formula from Lemma 10 used in our context allows to compute the optimal choice of λ for
any given µ, as we show in the following proposition.

Proposition 12. Given a mistake-parameter µ < 1/2, the listening-parameter λ∗, which minimizes
the expected hitting time of the target, satisfies

1− λ∗

1 + λ∗
=
√

µ

1− µ .

λ∗ =
1−

√
µ

1−µ

1 +
√

µ
1−µ

Proof: As the expression in Equation (4) shows, the speed is decreasing with E(ρ) (recall that
α = E(ρ) in that expression). We thus maximize the speed by minimizing E(ρ). As expressed in
Equation 6, for a fixed µ the optimal listening-parameter λ is given by minimizing:

1− λ
1 + λ

(1− µ) + 1 + λ

1− λµ .

We differentiate w.r.t. λ to find that the optimal choice λ∗ is such that:

−2
(1 + λ∗)2 (1− µ) + 2

(1− λ∗)2µ = 0,
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which implies that the best algorithm listens with probability λ∗ satisfying: 1−λ∗
1+λ∗ =

√
µ

1−µ . In other
words, we have:

λ∗ =
1−

√
µ

1−µ

1 +
√

µ
1−µ

.

Remark 13. The case of correlated advice. Consider again the line graph H, and divide it to
intervals of length k, namely: [0, k− 1], [k, 2k− 1], etc. (for simplicity assume that d− 1 is divisible
by k). Now consider the case that all advice on each interval are simultaneously either wrong (with
probability µ) or correct (with probability 1 − µ), independently of all other intervals. An agent
that executes PF with any constant listening parameter λ > 0, would then need to spend exp (Ω(k))
expected time to pass each wrong interval in the correct direction. Since there are a linear number of
wrong intervals in expectation for each positive mistake parameter µ, we get that any non-trivial
PF algorithm will require expected hitting time of d exp (Ω(k)). This shows that many areas with
correlated bad advice, can be devastating for the performance of PF.

4 Results on the d-dimensional grid

In this section, we consider a variant of our PF-NLA model on the d-dimensional infinite grid Zd.
In this variant, which is more consistent with the literature on RWRE, there is no particular target
node and instead the mobile agent is interested in going to the “east”. At any point x, the correct
neighbor of x is the one to its “right” (i.e., pointing to the east) and all other neighbors are incorrect.
In addition, we do not evaluate performances by the hitting time, and instead we are concerned
with the speed of the agent, as defined in the following theorem.

Theorem 14. Let δ > 0 be a fixed parameter. Consider the PF-NLA model on the d-dimensional
infinite grid Zd. There exists a sufficiently small mistake-probability 0 < µ < 1 (dependent on d),
such that for any choice of listening parameter in the PF model λ ∈ [1

2 , 1− δ) allows for a positive
speed to the east. This means that there exists a deterministic vector v = (vx, vy) with vx > 0 and
vy = 0, such that P0 almost surely3:

Xt

t
→t→∞ v .

Proof: The proof boils down to applying a very powerful result about RWRE’s to guarantee that
there exists a vector v as in the statement of the theorem (see Theorem 17). We then argue by a
simple symmetry consideration that vy = 0 (see Lemma 20).

Let us first comment on the spirit of the RWRE result, for walks in a d dimensional grid, with
d ≥ 1. On the line, i.e., d = 1, we saw that the dynamics of the walk is governed by essentially one
parameter, which we coined the governing ratio. We will soon define an analogous ratio for the grid.

3This means, that on an event of P0 measure 1 we have the following convergence. In words, this can be phrased as
“for almost all environments and walk trajectories”, where the meaning of “all” is to be understood with respect to P0.
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Theorem 17, which we will take as a black box, states that the behavior of the ratio is related to
the behavior of the walk, much in the same way as on the line.

There is one difference however. On the line (under the (IID) assumption), we were able to
compute the governing ratio by looking at just one point. This time the ratio is a little bit more
involved, though it is still a “local” parameter. It depends on a big finite box (as defined later).

We next introduce the notations and definitions we need in order to state Theorem 17. By
translation invariance, the behavior does not depend on the starting point, so we may assume
without loss of generality, that the starting point is 0 ∈ Zd.

Definition 15 (ballisticity and speed). We say that a RWRE is ballistic in direction ` ∈ Sd if P0
a.s.

lim inf
t→∞

Xt · `
t

> 0 ,

and we say that its speed is v if:

lim
t→∞

Xt

t
= v .

The known results on Zd are criteria on the environment ensuring that the walk is ballistic. The
main conditions known to imply ballisticity are known as Snitzman (T ) conditions [5]. They are
about the bias in the exit side of (arbitrarily large) slabs or boxes. They are also asymptotic in
nature and thus hard to check. Fortunately, Snitzman was also able [7] to give a local criterion (see
Definition 16) which he could connect to his other (T ) conditions, hence showing that it implies
ballisticity.

The local criterion is much easier to check, and this is the only result we will state4 (see
Theorem 17). In a sense, it offers an explicit connection to the one-dimensional case, and suggests
that even in grids of arbitrary dimension, the walk remains essentially one-dimensional.

Assume ` ∈ Sd−1 is our candidate direction. Let L be a real number. For a subset A ⊆ Zd we
denote by TA the hitting time of A, that is:

TA := inf{t : Xt ∈ A}.

We define the box BL as follows

BL :=
{
x ∈ Zd : x ∈ −(L− 2), (L+ 2)× (−L,L)d−1)

}
.

The constant 2 appearing in the previous expression is not relevant for the computations we are
going to do next so we will omit it and refer to BL as the cube of length L. We also define the
“good exit side” as ∂+B

∂+B = {x ∈ B : e1 · x > L, ∀j ∈ [2, d], |ej · x| ≤ L}.
4In fact we state a weaker form of the general result.
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We can now define ρB(ω), analogously to the 1D case as the probability to exit through one of the
bad sides over the probability to exit through the good side. In symbols,

ρB(ω) :=
Pω,0(T∂B 6= T∂+B)
Pω,0(T∂B = T∂+B) .

Definition 16 (effective criterion). We say that the effective criterion with respect to ` holds if, for
some L > c1 we have that

inf
L

{
c2 ln

(
κ−1

)3(d−1)
L4(d−1)+1E[ρBL

]
}
< 1.

Recall that κ is the ellipticity constant (see 2.1.1). The constant c1 is not explicit.

Theorem 17. The effective criterion with respect to ` implies the strongest of Snitzman’s conditions
(known as (T ′) | `) which in particular implies the walk is ballistic in direction ` and it has speed v
with v · ` > 0, where · denotes the scalar product.

Remark 18. In fact, stated like this, Theorem 17 is a combination of Remark 3.12 Theorem 3.17
and Theorem 3.26 in [2].

Now that we have introduced the result from RWRE theory, let us see how it applies for our
particular choice of RWRE, namely the PF-NLA model. We will check the following.

Lemma 19. For the PF-NLA model, the effective criterion, as defined in Definition 16, holds with
` = (1, 0), where λ is an arbitrary constant (that we set to 1

2 for convenience), and µ is a small
constant.

Let us assume for now that the Lemma 19 holds (for conveniently chosen parameters) with correct di-
rection being the “East”. Theorem 17 implies that the rescaled walk Xt/t almost surely (with respect
to the law of the environment and the walk itself) converges to a constant v = (v1, v2, . . . , vd) ∈ Rd.
All we need to check to complete the proof of Theorem 14 is that vj = 0, for all j ≥ 2, which we do
by a symmetry argument.

Lemma 20. Under the previous assumptions, we have that vj = 0, for all j ≥ 2 necessarily.

Proof: [Proof of Lemma 20] To be formal, we will use a coupling argument. Let ω be an environment
on the grid, we introduce its reflection ω̃ where the transition to North and South are exchanged at
each point. In symbols,

ω̃(x, x+ u) = ω(x, x+ u) if u ∈ {(−1, 0), (1, 0)},
ω̃(x, x+ u) = ω(x, x− u) otherwise. (7)

Notice that if ω has the PF-NLA law with correct direction being (1, 0) (the ”east”), then so does ω̃
by definition.
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Let ω, ω̃ be a pair of reflected environments, and let X,Y be a pair of walks, such that X follows
environment ω and Y is built from X by exchanging any step (0, 1) by (0,−1) and a step (0,−1) by
(0, 1). It can be checked using (7) that Y follows ω̃.

On the one hand, we know that Xt
t → v and also Yt

t → v′ for some deterministic vectors
v, v′ ∈ Rd. Moreover, the two walks X and Y are linked so that all coordinates of v but the first
should be the opposite of v′. But since ω and ω̃ both have the PF-NLA law, it must be that v = v′.
So for j ≥ 2, vj = −vj and this implies that vj = 0.

Proof: [Proof of Lemma 19] We next prove that the effective criterion given by Definition 16 applies
if µ is a small enough constant. For this purpose, we will show how to apply Theorem 17 for the
PF-NLA model on Zd [compare also [7], section 4].

Observe that the ellipticity constant is κ = 1−λ
2d . To verify that the criterion of Theorem 17 is

satisfied it is enough to check the following:

inf
L

((
log 1

κ

)3
L4dE(ρB)

)
< ε, (8)

where ε = ε(d) is a small dimension dependent constant.

We will ignore the +2 and −2 in the definition of B and also set L̃ = L, so we will refer to the
box B as the cube of length L.

BL := [−L,L]d.

We will show that for some choice of L and if µ is a small enough constant (dependent on d), then
Eq. 8 holds.

In order to check Criterion (8), we start by a standard fact about random walks in Z.

Lemma 21. Let Yt be a simple possibly lazy, unbiased random walk on the line. Then, for any
α > 0 there exists a constant c(α) = c > 0 (which doesn’t depend on the laziness parameter) such
that, if t is big enough,

P
(

sup
0≤s≤t

|Ys| ≥ αt
)
≤ exp(−ct).

Proof: By a comparison argument, it is enough to check the statement if Y is not lazy. A standard
fact relates the distribution of the maximum at time t to the position at time t as follows

P( sup
0≤s≤t

|Ys| ≥ αt) = 2 [P(Yt = αt) + 2P(Yt > αt)] ≤ 6P(Yt ≥ αt).

The term appearing on the right hand side is bounded by e−ct, if t is big enough using the Chernoff
bound.

We now proceed to checking that Equation (8) holds. We will distinguish two cases. The first is
when there are no mistakes inside the box we are considering.
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Lemma 22 (No mistakes in the cube). If there are no mistakes inside the cube BL of length L,
then ρBL ≤ 2d · e−cL, for some c > 0.

Proof: Remember that we set λ = 1
2 . Consider the PF-NLA walk X induced by the ”no mistakes”

environment in the cube BL. Namely, at any step X jumps to the right with probability λ+(1−λ)/2d
and to any other point with probability (1− λ)/2d. It is then easy to check that, for any j ∈ [d],
(Xt − λe1) · ej is a simple lazy random walk on the line (we denote by · the scalar product). Hence,
for any j ∈ [d], Lemma 21 yields

P
(

sup
0≤s≤3L

|(Xs − λe1) · ej | ≥ 0.3L
)
≤ exp(−cL).

Using a union bound, we get

P
(
∀j ∈ [d], sup

0≤s≤3L
|(Xs − s/2e1) · ej | ≥ 0.3L

)
≤ d exp(−cL).

In particular, under the complementary of the event appearing in the left hand side, the walk exits
through the correct side. Indeed at time 3L, X3L · e1 is guaranteed to be in [3λL− 0.3L, 3λL+ 0.3L]
which is outside of the cube, since we picked λ ≥ 1/2. Also, for any j ≥ 2 and any time s ≤ 3L,
|Xs ·ej | is never bigger than 0.3L < L. This implies that the walk exited through the east necessarily.

Thus we can bound the ratio ρBL as follows ρBL ≤ de−cL

1−de−cL ≤ 2de−cL.

Lemma 22 gives a bound on ρ when the advice has no mistakes inside B. The following obser-
vation, which is a very crude bound, settles all other cases. Remember that we denote by κ the
ellipticity constant defined in Section 2.1.1. It is the smallest transition probability in any direction
for any point and any environment, P almost surely. In our case it is 1−λ

2d .

Lemma 23 (Worst-case for the advice configuration inside BL). No matter what the advice is in B,
the ratio is always at most ρBL ≤ κ−L = ( 2d

1−λ)L.

Proof: Indeed, it is always possible to exit by going straight to the correct side, in L steps. Each
step has probability at least κ = 1−λ

2d .

To conclude it only remains to estimate EρBL . The probability that there are no mistakes in the
cube BL is (1− µ)(2L)d

. We thus obtain

EρBL ≤ 2d exp(−cL) +
( 2d

1− λ

)L
(1− (1− µ)(2L)d). (9)

Recall that λ ∈ (1
2 , 1− δ). Remember that all we need to do is find an L so that for µ small enough(

log 1
κ

)3
L4dEρBL ≤ ε,
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for some small constant ε > 0. Remember that 1
κ = 2d

1−λ ≤
2d
δ . From Equation 9, we know it is

enough to show that for one choice of parameters L, µ we have,(
log 1

κ

)3
L4d

(
2d exp(−cL) +

( 2d
1− λ

)L
(1− (1− µ)(2L)d)

)
≤ ε.

The function L 7→ LC exp(−cL) goes to 0 as X goes to infinity, so it is possible to choose L = L0
big enough so that (

log 2d
δ

)3
L4d (2d exp(−cL)) ≤ ε/2,

and then pick µ small enough (this depends on the parameter δ), such that(
log 2d

δ

)3
L4d

0

(2d
δ

)L0

(1− (1− µ)(2L0)d) ≤ ε/2.

Remark 24. The question whether results similar to those we presented on the line, i.e. estimates
on the hitting time of a designated target under the PF-NLA model, can be obtained for general
(finite) graphs seems to be beyond the scope of currently known techniques. In particular, arbitrary
finite graphs lack the symmetry of the grid making it unclear how to use renormalization arguments
(i.e. induction) such as in the proof of Theorem 17. Establishing such results for general graphs
remains open for further theoretical study.

5 Quantitative comparison to experimental measurements

Using the long obstacle experiments as depicted in figure 5A-B of the main text, we found that the
ant-team turns to move against the direction of the nearby scent marks once every 37.4 cm. In our
theoretical model, a step corresponds to the persistence length of motion. Denoting this persistence
by ` (measured in cm) implies turning against the advice once per 37.4

` steps. This translates to a
following probability of listening λ = 1− `

37.4 .

In the case of the modified obstacle in which all scent marks are misleading the carrying-
team requires exponential time to distance itself from the slit (see figure 5C of the main text).
Experimentally, we found that, in this case, first passage times to distance d scales as e0.33D.
Descretizing D into units of the persistence length ` we obtain a passage time that is proportional
to e0.33·`·D

` = (e0.33`)d, where d is the distance with step units. Using the equation in the second
bullet of Lemma 9, this scaling corresponds to

αd = E(ρ)d =
(1 + λ

1− λ

)d
where the equality E(ρ) = 1+λ

1−λ follows from the fact that µ = 1 (all advice is misleading), and using
Equation 6.
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In order for these two different measurements to agree the following equations have to simulta-
neously satisfied:

1 + λ

1− λ = e0.33` and λ = 1− `

37.4

Plugging the second equation into the first yields persistence length ` = 6.9cm and a listening
probability λ = 0.81.
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