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SUMMARY

Hematopoietic stem cells give rise to all blood cells in
a differentiation process that involveswidespreadep-
igenome remodeling. Here we present genome-wide
reference maps of the associated DNA methylation
dynamics. We used a meta-epigenomic approach
that combines DNA methylation profiles across
many small pools of cells and performed single-cell
methylome sequencing to assess cell-to-cell hetero-
geneity. The resultingdataset identified characteristic
differences between HSCs derived from fetal liver,
cord blood, bone marrow, and peripheral blood.
We also observed lineage-specific DNA methylation
between myeloid and lymphoid progenitors, charac-
terized immature multi-lymphoid progenitors, and
detected progressive DNA methylation differences
in maturing megakaryocytes. We linked these pat-
terns to gene expression, histone modifications,
and chromatin accessibility, and we used machine
learning to derive a model of human hematopoietic
differentiation directly from DNA methylation data.
Our results contribute to abetter understandingof hu-
man hematopoietic stem cell differentiation and pro-
vide a framework for studying blood-linked diseases.

INTRODUCTION

All blood cells originate from hematopoietic stem cells (HSCs),

which represent the apex of a differentiation cascade of pro-
808 Cell Stem Cell 19, 808–822, December 1, 2016 ª 2016 The Auth
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genitor cell types that gives rise to billions of new cells every

day. HSC differentiation is believed to progress through step-

wise restriction of lineage potential, a concept that is summa-

rized by the classical tree model of murine hematopoiesis

(Spangrude, 1991; Till and McCulloch, 1980).

HSC differentiation in human is less well understood than in

mouse. Despite recent progress (reviewed in Doulatov et al.,

2012; Theocharides et al., 2016; Vedi et al., 2016), several as-

pects of human hematopoiesis have remained controversial

(Chen et al., 2014; Doulatov et al., 2010; McCracken et al.,

2013; Notta et al., 2016; Park et al., 2008; Tanner et al., 2014;

Woolthuis and Park, 2016).

We sought to use DNA methylation for in vivo dissection

of human hematopoiesis. DNA methylation is well suited

for studying cellular differentiation because its patterns

are cell-type-specific and retain an epigenetic memory of a

cell’s developmental history. For example, cell-of-origin-specific

DNAmethylation patterns are detectable among induced plurip-

otent stem cells (Kim et al., 2011; Polo et al., 2010), and such

patterns of epigenetic tissue memory predict primary tumor

location in metastatic cancers (Fernandez et al., 2012; Moran

et al., 2016).

Previous studies have established a close connection between

stem cell differentiation and widespread epigenome remodeling.

DNA methylation has been studied in early mammalian develop-

ment (Smallwood et al., 2011; Smith et al., 2012), mouse HSC

differentiation (Bock et al., 2012; Cabezas-Wallscheid et al.,

2014; Ji et al., 2010), neural differentiation (Lister et al., 2013),

pluripotent stem cells (Bock et al., 2011; Habibi et al., 2013),

and a broad collection of human tissue samples (Kundaje et al.,

2015; Ziller et al., 2013). Chromatin accessibility has been map-

ped using the assay for transposase-accessible chromatin with

high throughput sequencing (ATAC-seq) in multiple cell types of
or(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Charting the DNA Methylation Landscape of Human Hematopoietic Differentiation

(A) Conceptual outline of human hematopoietic differentiation, highlighting the 17 hematopoietic cell types whose genome-wide DNA methylation patterns were

profiled in this study. Arrows denote established differentiation trajectories, dashed arrows indicate uncertainty about the in vivo differentiation potential of

lymphoid progenitors, and the inset illustrates the sorting of four subsets of immature multi-lymphoid progenitors.

(B) Fluorescence-activated cell sorting panel used to purify 10 stem and progenitor cell types from peripheral blood.

(legend continued on next page)
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the human blood lineage (Corces et al., 2016), and three recent

studies used chromatin immunoprecipitation sequencing (ChIP-

seq) to map histone modifications in the developing mouse

embryo (Dahl et al., 2016; Liu et al., 2016; Zhang et al., 2016).

To establish a basis for epigenome-wide analysis and

data-driven modeling of the human hematopoietic lineage,

we applied our protocol for low-input and single-cell whole

genomebisulfite sequencing (Farlik et al., 2015) to 17 hematopoi-

etic cell types (Figure 1A). HSCs and multipotent progenitors

(MPPs) were sorted from fetal liver, cord blood, bone marrow,

and peripheral blood. Eight additional progenitor cell types and

six differentiated cell types were sorted from peripheral blood,

and megakaryocytes were sorted from bone marrow. For

each stem and progenitor cell type, we sequenced an average

of 32 low-input methylomes from three individuals, and we bio-

informatically integrated them into meta-epigenomic profiles

(Wijetunga et al., 2014). Additionally, we sequenced an average

of 26 single-cell methylomes for seven cell types (HSC, MPP,

common lymphoid progenitor [CLP], common myeloid progeni-

tor [CMP], immature multi-lymphoid progenitor [MLP0], granulo-

cyte macrophage progenitor [GMP], and megakaryocytes) to

assess cell-to-cell heterogeneity.

Based on this dataset, which constitutes a community

resource of the BLUEPRINT project (Adams et al., 2012) and

the International Human Epigenome Consortium (IHEC; http://

ihec-epigenomes.org), we compared DNA methylation between

HSCs derived from different sources, and we studied changes in

DNA methylation associated with commitment to the myeloid

and lymphoid lineages. We also characterized novel subpopu-

lations of immature multi-lymphoid progenitors and investigated

the DNA methylation dynamics of megakaryocytes undergoing

endomitotic replication. We linked the observed differences in

DNA methylation to changes in gene expression, histone modi-

fications, and chromatin accessibility, and we used machine

learning to infer a model of human hematopoiesis directly from

the DNA methylation data. These results highlight the power of

DNA methylation analysis for in vivo dissection of cellular

differentiation.

RESULTS

Comprehensive DNA Methylation Maps of Human
Hematopoietic Stem and Progenitor Cell Types
We established fluorescence-activated cell sorting panels for 10

hematopoietic stem and progenitor cell types that are present in

the peripheral blood of healthy individuals (Figures 1A and 1B;

Supplemental Experimental Procedures). Each cell type was

sorted from three donors to account for inter-individual hetero-

geneity. To enhance data quality for these rare cell types, we

processed many small pools of cells in parallel and combined
(C) Violin plots and boxplots showing the distribution of DNA methylation levels i

(D) Distribution of DNA methylation levels across cell types for different sets of ge

islands are from the UCSC Table Browser, enhancer elements are from Ensemb

(E) Distribution of average DNA methylation levels across cell types for putative r

(F) DNA methylation at putative regulatory regions for illustrative gene loci.

Regulatory Build, and dashed horizontal black lines indicate sample medians for

DNA methylation levels that have been measured in any sample of the indicated

dis, distal element; prox, proximal element; TSS, transcriptional start site. See al
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the results. Specifically, for each donor and cell type, we sorted

and sequenced eight pools of 10 cells, two pools of 50 cells, and

one pool of 1,000 cells (or a lower cell number where the target of

1,000 cells could not be reached).

DNA methylation libraries were generated by whole genome

bisulfite sequencing (WGBS) using the mWGBS protocol

(Farlik et al., 2015) and sequenced at low coverage to mini-

mize the number of PCR duplicates. In total, 639 DNA methyl-

ation libraries passed quality control, and 3.1 terabases of

sequencing data were produced (Table S1). DNA methylation

profiles clustered predominantly by cell type (Figure S1A),

indicating that neither technical biases arising from the

different cell numbers nor inter-individual variation between

donors had a strong influence on our investigation of cell-

type-specific DNA methylation patterns. For further analysis,

the DNA methylation profiles of all replicates of a given cell

type were computationally combined into meta-epigenomic

maps that provide consensus DNA methylation levels as well

as an initial assessment of variability within cell types and

among individuals.

The distribution of DNA methylation levels was similar across

all stem and progenitor cell types, while we observed a shift to-

ward lower levels in differentiated cells of the myeloid lineage

(Figure 1C). Genome-wide DNA methylation patterns followed

the well-established characteristics observed in mammalian

genomes (Suzuki and Bird, 2008), including high levels of DNA

methylation in most parts of the genome (as illustrated by 5-kb

tiling regions) and locally reduced levels at gene promoters

and CpG islands (Figure 1D).

To provide a robust and biologically meaningful basis for

analyzing DNA methylation differences between cell types, we

aggregated all DNAmethylation data at the genomic region level

based on the BLUEPRINT version of the Ensembl Regulatory

Build (Zerbino et al., 2015). The BLUEPRINT Regulatory Build

integrates epigenome data across many cell types into region

sets that reflect the organizing principles of the human genome,

thus facilitating the detection of meaningful DNA methylation

differences (Bock, 2012). This catalog comprises six types

of putative regulatory regions, which exhibit broadly varying

DNA methylation levels in our dataset (Figure 1E).

The BLUEPRINT Regulatory Build also provides a frame-

work for visualization (Figure 1F) and interactive analysis

(http://blueprint-methylomes.computational-epigenetics.org) of

DNA methylation at individual genomic loci. For example, two

CTCF sites and a distal element inside the KCNH2 gene (encod-

ing a key factor for erythroid development) show decreased

DNA methylation in the myeloid lineage, consistent with

increased expression levels in CMP and GMP cells (Figure S1B).

A putative enhancer of the myeloid-linked TREML1 gene dis-

plays decreased DNA methylation in HSCs, MPPs, and myeloid
n 5-kb tiling regions for hematopoietic cell types sorted from peripheral blood.

nomic regions. Gene and promoter annotations are based on GENCODE, CpG

l, and tiling regions were calculated with a custom script.

egulatory regions annotated by the Ensembl BLUEPRINT Regulatory Build.

Black bars denote the position of regions annotated by the BLUEPRINT

the respective regions. Colored vertical bars connect the highest and lowest

cell type.

so Figure S1 and http://blueprint-methylomes.computational-epigenetics.org.
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Figure 2. Comparison of DNA Methylation Maps for HSCs and MPPs Isolated from Four Different Sources

(A) HSCs and MPPs were sorted from the peripheral blood of three healthy donors (Figures 1A and 1B), and in addition from fetal liver (HSCs only), cord blood

(HSCs and MPPs), and bone marrow (HSCs and MPPs).

(B) Bar plots showing the numbers of differentially methylated regions in pairwise comparisons between HSCs and MPPs from different sources, based on the

BLUEPRINT Regulatory Build regions (FDR-adjusted p% 0.05, absolute differenceR 0.167 percentage points), calculated with RnBeads (Assenov et al., 2014).

(C) Region set enrichment analysis for genomic regions with lower DNA methylation in peripheral blood-derived HSCs compared with bone-marrow-derived

HSCs. Enrichment was determined using LOLA (Sheffield and Bock, 2016). Each dot represents one ChIP-seq dataset, and the horizontal dashed line corre-

sponds to a significance threshold of 0.05 on the adjusted p-value calculated by LOLA using Fisher’s exact test.

(D) Source-specific DNA methylation at the IKBKE gene locus. Reduced DNA methylation levels in peripheral blood-derived HSC at two putative regulatory

regions (BLUEPRINT Regulatory Build) is associated with detectable expression of the IKBKE gene specifically in this cell population (bar plot).

(E) Heatmap showing DNAmethylation levels for regions that have lower DNAmethylation in peripheral blood-derived HSCs than in bone-marrow-derived HSCs

and also overlap with CTCF binding sites in the LOLACore database (left). The second heatmap (right) shows the overlap of these regions with transcription factor

binding sites that a LOLA analysis of this region set identified as enriched. Rows were arranged by hierarchical clustering with complete linkage based on the

Euclidean distances between the DNA methylation profiles.

See also Figure S2 and http://blueprint-methylomes.computational-epigenetics.org.
progenitors, which correlates with increased RNA expression

levels. CTCF sites in the lymphoid-linked SUSD3 gene show

lower DNA methylation in lymphoid progenitors, reflecting high

expression in MLP0. Finally, a promoter-associated regulatory

region in the EXOC6 gene illustrates the frequently observed

case of large DNA methylation differences that occur in the

absence of detectable changes in gene expression.

DNA Methylation Distinguishes HSCs from Fetal Liver,
Cord Blood, Bone Marrow, and Peripheral Blood
HSCs are rare in peripheral blood, whereas they exist in higher

frequencies in fetal liver, cord blood, and bone marrow. HSCs

obtained from these different sources have been shown to

vary in their differentiation capacity (Notta et al., 2016), which

prompted us to search for concomitant differences in their
DNA methylation profiles. We obtained CD34+ cells from fetal

liver, cord blood, and bone marrow, and we sorted HSCs and

MPPs in the same way as for peripheral blood (Figure 2A).

DNA methylation analysis identified many more differences be-

tween peripheral blood and any of the other three sources (fetal

liver, cord blood, and bone marrow) than between any two of the

latter (Figure 2B; Table S2). Most of the genomic regions with

source-dependent differences showed lower DNA methylation

levels in HSCs and MPPs from peripheral blood, as compared

with those obtained from the other sources.

We tested the regions that were specifically hypomethylated

in peripheral blood HSCs for associations with transcription

factor binding and regulatory elements using LOLA enrichment

analysis (Sheffield and Bock, 2016). Significant overlap was

observed with binding sites of CTCF, members of the cohesin
Cell Stem Cell 19, 808–822, December 1, 2016 811
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Figure 3. DNA Methylation Differences Associated with Myeloid-Lymphoid Lineage Commitment

(A) Scatterplot showing average DNA methylation levels for myeloid progenitors (CMP, MEP, GMP) and lymphoid progenitors (CLP, MLP0, MLP1, MLP2, MLP3)

across BLUEPRINT Regulatory Build regions (Pearson’s r = 0.97). Differentially methylated regions were identified with RnBeads (FDR-adjusted p % 0.05,

absolute difference R 0.167 percentage points).

(legend continued on next page)
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complex (RAD21, SMC1A, SMC3), and the transcription factors

RUNX3 and ZNF143 (Figure 2C; Table S3). We detected similar

patterns for both HSCs and MPPs, whereas no such enrichment

could be found, for example, for regions differentially methylated

between MPPs in bone marrow and cord blood (Figure S2B).

An illustrative example of peripheral blood hypomethylation of

CTCF binding sites is given by the IKBKE gene (Figure 2D), which

encodes a key kinase for NF-kB activation.

To identify additional transcription factors that may be associ-

ated with this CTCF-linked difference in DNA methylation, we

performed LOLA analysis on all regions with lower DNA methyl-

ation in HSCs from peripheral blood than from bone marrow that

also overlapped CTCF-bound regions (Figure 2E). This analysis

confirmed the strong enrichment of cohesin complex proteins,

while also detecting significant overlap for transcriptions factors

relevant for hematopoietic development (FOXA1, GATA3,MAFK)

and immune cell function (ARID3A, CEBPB, RFX5).

Myeloid-Lymphoid Lineage Choice Is Marked by DNA
Methylation Depletion at Key Transcription Factor
Binding Sites
After the initial transition from HSC to MPP, one major step of

hematopoietic differentiation is the commitment to either the

myeloid or the lymphoid lineage. DNA methylation levels at reg-

ulatory regions were on average lower in myeloid progenitors

(CMP, megakaryocyte erythrocyte progenitor [MEP], GMP)

than in lymphoid progenitors (MLP0, MLP1, MLP2, MLP3,

CLP), and the same was true for differentiated cells of the

two lineages (Figure S3A). Focusing again on the BLUEPRINT

Regulatory Build (Figure 3A; Table S2), we also identified many

more genomic regions with lower DNA methylation in myeloid

cells (n = 607) than in lymphoid cells (n = 101). On average, these

regions retained their differential DNA methylation in differenti-

ated cells of the two lineages (Figure 3B).

Differentially methylated regions between myeloid and

lymphoid progenitors were enriched for binding sites of 11 tran-

scription factors and for RNA polymerase II binding in hemato-

poietic cells (Figure 3C; Table S3). The most striking overlap

was observed between regions with lower DNA methylation in

myeloid cells and binding sites of myeloerythroid transcription

factors such as GATA1 and TAL1. In contrast, regions with lower

DNA methylation levels in lymphoid progenitors did not show
(B) Average DNA methylation in each cell type relative to the mean over all samp

genitors (top) and myeloid progenitors (bottom). Error bars correspond to the sta

(C) Region set enrichment analysis for regions with lower DNA methylation in lym

mined using LOLA. Colored dots represent ChIP-seq experiments for transcript

the numbers in the legend (‘‘X/Y’’) refer to significantly enriched region sets (X)

significance threshold (adjusted p % 0.05).

(D) Mean-adjusted DNAmethylation relative to the average CpGmethylation level

peaks for GATA1 (left) and TAL1 (right). ***p % 0.001 (two-tailed Wilcoxon test).

(E) Two-dimensional projection of all 10-, 50-, and 1,000-cell samples from perip

DNA methylation across all transcription factor binding datasets identified by L

rentheses indicate the percentage of variance explained.

(F) Heatmap displaying mean-adjusted DNA methylation for all single-cell DNA m

arranged by hierarchical clusteringwith Euclidean distance and complete linkage.

major branches of the row dendrogram.

(G) Distribution of HSC (top) and MPP (bottom) samples derived from fetal live

projected onto the first principal component from (E).

p.p., percentage points. See also Figure S3 and http://blueprint-methylomes.com
such strong enrichment patterns for any transcription factor

binding sites annotated in the LOLACore database. The average

DNA methylation levels across all binding sites of the myeloid-

specific transcription factors were reduced in myeloid progeni-

tors when compared with lymphoid progenitors (Figures 3D

and S3B). For about half of the transcription factors, the lower

DNA methylation in myeloid (as opposed to lymphoid) progeni-

tors was mirrored in higher expression levels in myeloid progen-

itors (Figure S3B).

The average DNA methylation depletion at the enriched tran-

scription factor binding sites enabled consistent grouping of

the individual replicates (10-, 50-, and 1,000-cell pools) accord-

ing to their cellular lineage (Figure 3E), whereas the segregation

by lineage was less clear when we performed the same analysis

on all transcription factors in the LOLA Core database (Fig-

ure S3C). The first five principal components calculated from

the mean-adjusted DNA methylation at the enriched transcrip-

tion factor binding sites accounted for 82.3% of the observed

variation (Figure S3D), whereas this value was much lower

when focusing on all transcription factor binding sites (63.4%)

or on all regions in the LOLA Core database (29.6%).

Averaging across pre-defined regulatory region sets is also a

powerful method for analyzing single-cell data (Bock et al.,

2016a; Farlik et al., 2015), and we applied this method to our

set of 122 single-cell DNA methylation profiles comprising

HSCs and MPPs, two myeloid progenitors (CMP and GMP),

and two lymphoid progenitors (MLP0 and CLP). Plotting all

single-cell profiles based on their mean-adjusted DNA methyl-

ation at enriched transcription factor binding sites (Figure 3F),

we observed that region sets with low levels of DNA methylation

in myeloid progenitors had much higher levels in HSCs. About

half of these region sets were highly methylated in lymphoid pro-

genitors, whereas the other half showed low levels of DNA

methylation in some lymphoid progenitors (MLP0).

Finally, we investigated how the source-specific differences

in DNA methylation among HSCs and MPPs (Figure 2) relate to

differences between the myeloid and lymphoid lineage. To this

end, we projected the DNA methylation data for HSCs and

MPPs onto the first principal component identified in our analysis

of mean-adjusted DNA methylation at transcription factor

binding sites (Figure 3E), and we plotted the distribution along

the first principal component, which was most informative for
les aggregated over all regions with lower DNA methylation in lymphoid pro-

ndard error.

phoid progenitors (left) or myeloid progenitors (right). Enrichment was deter-

ion factors in the indicated lineage. Dot size denotes the log-odds ratio, and

versus all analyzed region sets (Y). The horizontal dashed line represents the

s for each individual 10-, 50-, and 1,000-cell sample averaged across ChIP-seq

heral blood using principal component analysis based on the mean-adjusted

OLA. The first two principal components are shown, and the numbers in pa-

ethylation profiles across the same region sets as in (E). Rows and columns are

The labels on the right summarize the transcription factors and cell types for the

r (FL), cord blood (CB), bone marrow (BM), and peripheral blood (PB) when

putational-epigenetics.org.
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the myeloid-lymphoid separation (Figure 3G). DNA methylation

patterns in HSCs and MPPs from peripheral blood and cord

blood were more similar to those of lymphoid progenitors,

whereas cells from bone marrow and fetal liver showed higher

similarity to myeloid progenitors.

Immature Multi-lymphoid Progenitors Show
Characteristic DNA Methylation and Distinct
Differentiation Propensities
Recent research identified a population of immature multi-

lymphoid progenitors (MLPs) that may be ancestral to CLPs in

the differentiation hierarchy (Doulatov et al., 2010, 2012; Goar-

don et al., 2011; Kohn et al., 2012). We sorted MLPs using the

published set of surface markers (Doulatov et al., 2010) and

further subdivided this cell population into four subtypes based

on their CD10 and CD7 levels (Figures 4A and S4A).

To put the MLP subtypes into context with their differentiated

progeny, we performed an unsupervised principal component

analysis based on DNA methylation for all region sets contained

in the LOLA Core database (Figure 4B). The first principal

component segregated the MLP0 population (CD10�, CD7�)
from the other progenitors and differentiated cell types. The sec-

ond principal component discriminated between differentiated

cell types of the myeloid and lymphoid lineage, placing the four

MLP populations in an intermediate position.

We identified the region sets in the LOLA Core database that

were most strongly associated with the first two principal com-

ponents (Figure 4C). The first principal component comprised

binding sites of broadly active transcription regulators and chro-

matin proteins (EP300, HDAC1, POL2, RBBP5, TAF1), whereas

the second principal component included binding sites of tran-

scription factors that are important for lymphoid and myeloid

cell function (FOXA1, KAP1/TRIM28, MYC, STAT1, STAT3,

TCF12).

We also assessed the differentiation capability of the lymphoid

progenitors using in vitro colony formation assays (Figures 4D

and S4B). CLPs from peripheral blood gave rise not only

to lymphoid-restricted colonies, but also to a small number of

myeloid and mixed myeloid and lymphoid colonies. This is in

contrast with a previous analysis of cord-blood-derived cells

(Doulatov et al., 2010) and highlights that the differentiation

potential of progenitor populations in human is dependent on

the cell source and stage of ontogeny (Notta et al., 2016). All

MLP populations displayed higher proportions of mixed myeloid

and lymphoid colonies than observed for the CLPs. The differen-

tiation potential was similar among the four MLP subtypes,

although MLP0 gave rise to the smallest number of myeloid-

only colonies (Figure 4D) and had the highest potential for B cells

and granulocytes (Figure 4E).

Endomitotic Replication of Megakaryocytes Is
Accompanied by Progressive Changes in DNA
Methylation Patterns
In the myeloid lineage, megakaryocyte maturation involves

endomitotic replication and an exponential increase in cell ploidy

(Figure 5A). Megakaryocytes are thought to be derived from

MEPs, although evidence for mouse and human suggests an

alternative origin directly from HSCs (Haas et al., 2015; Notta

et al., 2016; Sanjuan-Pla et al., 2013). We collected mega-
814 Cell Stem Cell 19, 808–822, December 1, 2016
karyocytes from the bone marrow of three donors, sorted them

according to their ploidy (2N, 4N, 8N, 16N, 32N), and performed

DNA methylome sequencing on 61 single cells and ten 5-cell

pools (Table S1). The results were highly consistent between

the single-cell and 5-cell samples (Figures S5A and S5B),

arguing against technical biases caused by different DNA

amounts influencing our analysis.

Comparing DNA methylation for all LOLA Core region sets

between diploid (2N) and polyploid (32N) megakaryocytes, we

observed strong correlation (Pearson’s r = 0.99) and highly

similar distributions of DNA methylation values (Figures 5B,

S5A, and S5B), indicating that megakaryocyte maturation does

not involve any large genome-wide changes in DNA methylation

as previously observed for mouse erythroblast maturation

(Shearstone et al., 2011). Nevertheless, a small number of region

sets were differentially methylated, and these regions underwent

consistent and progressive changes across the different ploidy

stages of megakaryocyte maturation (Figure 5C).

Progressively increasingDNAmethylation levelswereobserved

for DNase I hypersensitive sites specific to hematopoietic cells

and for binding sites of NFE2, which is a regulator of megakaryo-

cyte maturation and platelet production (Lecine et al., 1998).

Conversely, decreasing DNA methylation occurred in DNase I

hypersensitive sites from a broader set of cell types and at

the binding sites of hematopoietic transcription factors with an

established role in megakaryocyte-erythroblast differentiation,

including GATA1, SMAD1, and TAL1 (Tijssen et al., 2011).

The region sets that showed progressively decreasing DNA

methylation levels in maturing megakaryocytes were on average

more highly methylated in other progenitor cell types than

in megakaryocytes (Figure S5C). In contrast, region sets with

progressively increasing DNA methylation levels during mega-

karyocyte maturation moved toward the average levels in

other progenitors rather than away from it.

DNA Methylation Differences Are Linked to Cell-type-
Specific Transcription Levels and Chromatin Signatures
DNA methylation at gene promoters can be associated with

transcriptional repression, although the genome-wide corre-

lation between DNA methylation and gene expression is

low (Jones, 2012; Suzuki and Bird, 2008). To investigate this

association in our dataset, we generated RNA-seq data

for 100-cell pools of stem and progenitor cell types sorted

from peripheral blood (Table S1) (http://blueprint-methylomes.

computational-epigenetics.org), and we identified 656 genes

thatwere differentially expressedbetweenmyeloid and lymphoid

progenitors (false discovery rate [FDR]-adjusted p % 0.05,

jlog2FCj R 1). Gene Ontology analysis revealed an enrichment

for genes associated with lymphocyte function in lymphoid

progenitors and for genes associated with hemostasis in

myeloid progenitors (Figures 6A and 6B).

When we linked the observed differences in gene expression

to DNA methylation differences at associated promoters, we

found only a small number of genes with strong and concordant

changes (Figure 6C), which is consistent with previous observa-

tions for mouse hematopoiesis (Bock et al., 2012). Among the

genes whose promoters were less methylated and more highly

expressed in myeloid progenitors were myeloid regulators

such as TAL1, MYB, MARCKS, and ICAM4. Conversely, several

http://blueprint-methylomes.computational-epigenetics.org
http://blueprint-methylomes.computational-epigenetics.org
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Figure 4. Characterization of MLP Populations by DNA Methylation and In Vitro Differentiation Assays

(A) Sorting panel for purifying four MLP populations from peripheral blood.

(B) Two-dimensional projection of all 10-, 50-, and 1,000-cell MLP samples using principal component analysis based on the mean-adjusted DNA methylation

relative to the average CpG methylation levels across all region sets in the LOLA Core database. The first two principal components are shown, the numbers in

parentheses indicate the percentage of variance explained, and the density plots (top and right) summarize the distribution of cell types along the two principal

components.

(C) Heatmap displaying themean-adjusted DNAmethylation for all MLP samples across the 23 25 genomic region sets that contributedmost strongly to the first

principal component (PC1, top) and the second principal component (PC2, bottom). Rows and columns are arranged by hierarchical clustering with Euclidean

distance and complete linkage. The row labels indicate the cell type and ChIP-seq target of the corresponding LOLA region sets.

(D) Differentiation potential of CLPs and four MLP populations measured by in vitro culture of single cells on MS-5 stromawith cytokines promoting lymphoid and

myeloid differentiation. The percentage of colonies that show lymphoid (CD19+ or CD56+) as well as myeloid (CD14+ or CD15+) markers was determined by flow

cytometry.

(E) Differentiation potential of theMLP populations measured as the percentage of colonies containing B cells (CD19+), granulocytes (CD15+), or NK cells (CD56+)

in flow cytometry. *p % 0.05 (Fisher’s exact test).

See also Figure S4 and http://blueprint-methylomes.computational-epigenetics.org.
genes that play a role in lymphocyte function—including ITGAL,

DUSP1, and MX1—were less methylated and more highly ex-

pressed in lymphoid progenitors (Figure 6C).
We also investigated the link between DNA methylation and

histone modifications. Using ChIP-seq profiles for differentiated

blood cells types, which have been generated as part of the
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Figure 5. DNA Methylation Analysis of

Megakaryocyte Maturation

(A) Conceptual outline of megakaryocyte devel-

opment from MEPs via a maturation phase

involving endomitotic genome replication and a

concomitant increase in ploidy.

(B) Scatterplot comparing mean-adjusted DNA

methylation (relative to the average CpG methyl-

ation level in each sample) for all region sets in the

LOLA Core database between megakaryocyte at

the 2N and at the 32N stage of ploidy. Region sets

that were significantly less methylated in 32N

(n = 14, bottom right) or in 2Nmegakaryocyte (n = 6,

top left) are highlighted with filled circles (p% 0.05,

Wilcoxon test, absolute differenceR 10 p.p.). Point

colors indicate the magnitude of difference, and

the size is proportional to statistical significance

[�log10(p)].

(C) Mean-adjusted DNA methylation in region sets

that gain (top) or lose DNA methylation (bottom) as

identified in (B), plotted across ploidy stages of

megakaryocyte maturation. Error bars correspond

to the standard error.

p.p., percentage points. See also Figure S5

and http://blueprint-methylomes.computational-

epigenetics.org.
BLUEPRINT project (Adams et al., 2012), we calculated con-

sensus maps for three histone modifications (H3K4me1,

H3K27ac, and H3K27me3) in myeloid and lymphoid cells.

Regions with lower DNA methylation levels in myeloid progeni-

tors showed higher H3K4me1 levels in differentiated myeloid

cells, and the opposite was true for regions with lower DNA

methylation in lymphoid progenitors (Figure 6D). For H3K27ac,

we observed consistently higher levels in lymphoid cells

than in myeloid cells, whereas the observed differences for

H3K27me3 were less pronounced than for the other marks.

Finally, we compared our DNAmethylation datawith a recently

published chromatin accessibility dataset (Corces et al., 2016).

This dataset includes ATAC-seq profiles for several hematopoi-

etic stem and progenitor cell types, from which we derived cell-

type-specific regions of open chromatin. Genomic regions with

HSC-specific open chromatin had low DNA methylation levels

across all cell types (Figures 6E–6G, S6A, and S6B), regions

with open chromatin in differentiated cells showed reduced

DNA methylation levels only in the corresponding cell type while

being highly methylated in progenitors, and regions with acces-

sible chromatin in myeloid or lymphoid progenitors were hypo-

methylated only in differentiated cells of the respective lineage.

Computational Modeling Identifies Predictive
Epigenetic Signatures that Support Data-Driven
Lineage Reconstruction
Having identified characteristic DNA methylation dynamics in

several branches of the human hematopoietic lineage, we em-

ployed machine learning methods in order to predict cell types

from DNA methylation patterns, to quantify epigenetic similarity,

and to infer cellular differentiation landscapes. We based this

analysis on classifiers that were trained to predict cell type

from genome-wide DNA methylation profiles in putative regula-

tory regions (Figure 7A).
816 Cell Stem Cell 19, 808–822, December 1, 2016
Specifically, we used elastic net-regularized general linear

models (Friedman et al., 2010) for predicting the cell type of

each individual stem and progenitor sample in our dataset.

These classifiers were trained on the DNA methylation levels

of all BLUEPRINT Regulatory Build regions in each 10-, 50-,

and 1,000-cell sample, and the model performance was evalu-

ated using 10-fold cross-validation (Figures 7B and S7A).

We observed high prediction accuracies for all cell types, with

receiver operating characteristic (ROC) area under curve (AUC)

values for individual cell types ranging from 0.85 to 1.00 (Fig-

ure S7A). Highest accuracies were obtained for myeloid progen-

itors (CMP, GMP, and MEP) and for the MLP0 population.

Lymphoid progenitors (CLP, MLP1, MLP2, and MLP3) were

more difficult to distinguish, consistent with their similar

DNA methylation profiles (Figure S1A) and similar functional

properties (Figure 4E). Lowest AUC values were observed for

the HSC and MLP2 cell populations, which were frequently

confused with MPPs and CLPs, respectively (Figure 7B).

The regularized classifiers weigh all genomic regions by

their discriminatory power, thus establishing a measure of their

importance for cell-type prediction. Based on this measure, we

identified a set of 1,234 signature regions whose DNA methyl-

ation levels collectively distinguished hematopoietic cell types

with high accuracy and robustness (Figure 7C; Table S4). Indi-

vidual DNA methylation differences were small for most of these

regions, highlighting that many weak but complementary differ-

ences can support accurate cell-type prediction.

LOLA enrichment analysis for the signature regions identified

significant overlap with the binding sites of key hematopoietic

transcription factors such as FLI1, GATA1/2, MYB, RUNX1,

and TAL1 (Figure 7D). Unsupervised analysis based on the

signature regions identified strong separation between myeloid

and lymphoid progenitors, but no clear clustering within each

group (Figure 7E). Moreover, differentiated cell types of the

http://blueprint-methylomes.computational-epigenetics.org
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myeloid and lymphoid lineage formed separate clusters in the

vicinity of their corresponding progenitors.

To quantify the similarity between cell types, we trained 10

additional classifiers, each excluding one of the stem and pro-

genitor cell types (‘‘leave-one-out-classifiers’’), and we calcu-

lated the class probabilities for the samples that were withheld

from the analysis (see Experimental Procedures). These class

probabilities (Figure S7B; Table S5) define a data-driven network

model of the human hematopoietic lineage, which emerges from

the characteristic DNAmethylation patterns of each cell type and

their relationship with each other (Figure 7F).

DISCUSSION

We established genome-wide maps of the DNA methylation dy-

namics in human hematopoietic differentiation, which comprise

17 cell types, four different sources of HSCs, and a total of 639

DNAmethylation profiles. This resource, accessible via public re-

positories and a dedicated website (http://blueprint-methylomes.

computational-epigenetics.org), provides insights into the role of

epigenetic regulation in HSCs and their differentiating progeny,

and it constitutes a reference for biomedical research focusing

on diseases of the blood.

A key outcome of our study is the high accuracy with which

DNA methylation profiles predict cell type throughout the

human hematopoietic lineage. This is not merely due to the cor-

relation between DNA methylation and gene expression (which

was low in our dataset), but rather suggests that DNA methyl-

ation itself reflects a cell’s differentiation trajectory at the

epigenetic level. We showed that prediction based on DNA

methylation in regulatory regions can place sorted cell popula-

tions into a developmental context. DNA methylation analysis

thus complements studies of human hematopoietic differentia-

tion that were based on gene expression profiling (Chen et al.,

2014; Notta et al., 2016; Novershtern et al., 2011) and chro-

matin accessibility mapping (Corces et al., 2016).

To illustrate the value of our dataset for biological hypothesis

generation and for guiding mechanistic studies on specific as-

pects of hematopoietic differentiation, we focused on four areas

of the human hematopoietic lineage.
Figure 6. Integrative Analysis of Gene Expression, Histone Modificatio

(A) Heatmap showing row-normalized expression levels for 656 differentially exp

genitors (CMP, GMP) and lymphoid progenitors (CLP, MLP0, MLP1, MLP2, M

arranged by hierarchical clustering with Euclidean distance and complete linkag

(B) Top 10 most highly enriched Gene Ontology terms associated with genes ov

Enrichr software (Kuleshov et al., 2016).

(C) Density scatterplot contrasting myeloid-lymphoid differences in DNAmethylat

Selected genes with strong differences in DNA methylation (absolute difference

(D) Boxplots showing histone modification levels for open chromatin-associa

H3K27me3 in regions that were differentially methylated betweenmyeloid and lym

multiple ChIP-seq datasets for myeloid cells (neutrophils, monocytes, and macro

blue). Brackets identify two-tailed Mann-Whitney U tests. *p % 0.05, ***p % 0.00

(E) Heatmap showing DNA methylation levels (columns) in regions with cell-ty

hematopoietic cell types (rows). Numbers in parentheses denote the number of

(F) Distribution of DNA methylation levels across regions with cell-type-specific c

(G) Composite plots showing DNA methylation averages across regions with c

regions were annotated with coordinates relative to their start and end (x axis). C

region, respectively, and the coordinates �1 and 2 correspond to one region le

smoothing of DNA methylation levels per cell type across accessible regions.

p.p., percentage points; n.s., not significant. See also Figure S6 and http://bluep
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First, we compared HSCs from four different sources. Periph-

eral blood is readily accessible and therefore highly relevant for

clinical diagnostics. To establish a broadly useful reference, we

thus based most of our dataset on stem and progenitor cell pop-

ulations purified from the peripheral blood of healthy donors.

Nevertheless, the microenvironment of peripheral blood differs

markedly from that of bone marrow, cord blood, and fetal liver,

which are commonly used sources of HSCs in basic research.

HSCs from peripheral blood showed lower DNA methylation

levels at the binding sites of CTCF and cohesin complex proteins

than HSCs from other sources, which may reflect changes in

chromatin 3D architecture that influence gene expression. These

differences stress the importance of taking cell source and

microenvironment into account when studying human hemato-

poietic stem and progenitor cells.

Second, we investigated the DNA methylation dynamics of

myeloid-lymphoid lineage choice, observing an asymmetric

pattern: regulatory regions that showed reduced DNA methyl-

ation levels in myeloid progenitors were enriched for binding

sites of transcription factors associated with hematopoietic

differentiation, myeloid lineage fate, and leukemia as well as lym-

phoma, whereas there was no strong enrichment among regions

that had reduced DNA methylation levels in lymphoid progeni-

tors. This observation is consistent with DNA methylation data

for mouse hematopoiesis (Bock et al., 2012), and together with

the finding that lymphoid differentiation is compromised in trans-

genic mice with impaired maintenance DNAmethylation (Bröske

et al., 2009), it supports the view that DNA methylation may

epigenetically shield lymphoid progenitors from the default

program of myeloid differentiation.

Third, we combined DNAmethylation mapping and in vitro dif-

ferentiation assays to characterize four populations of immature

multi-lymphoid progenitors that appear to constitute epigeneti-

cally and functionally distinguishable cell types. MLP0 (CD7�

CD10�) showed the most distinctive DNA methylation signature

and highest levels of multi-lineage differentiation potential from

individual cells. The observed patterns of multi-lineage differen-

tiation among MLPs and CLPs may reflect an underappreciated

level of epigenetic plasticity in human hematopoietic differentia-

tion (Notta et al., 2016; Paul et al., 2015).
ns, and Chromatin Accessibility

ressed genes (FDR-adjusted p % 0.05, jlog2FCj R 1) between myeloid pro-

LP3) determined using DEseq2 (Love et al., 2014). Rows and columns were

e.

erexpressed in lymphoid (top) and myeloid (bottom) progenitors based on the

ion at gene promoters with expression differences of the corresponding genes.

R 10 p.p.) and gene expression (jlog2FCj R 1) are highlighted.

ted H3K4me1, active enhancer-linked H3K27ac, and polycomb-associated

phoid progenitors (Figure 3A). Histonemodification levels were calculated from

phages, in red) and lymphoid cells (NK cells, B cells, and CD4+/CD8+ T cells, in

1.

pe-specific chromatin accessibility based on published ATAC-seq data for

chromatin accessible regions specific to each cell type.

hromatin accessibility.

ell-type-specific chromatin accessibility. CpGs in the neighborhood of these

pGs with a relative coordinate of 0 and 1 are located at the start and end of a

ngth upstream and downstream of the region. The curves show cubic spline

rint-methylomes.computational-epigenetics.org.
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Figure 7. Data-Driven Reconstruction of the Human Hematopoietic Lineage using Machine Learning

(A) Conceptual outline of the machine learning approach used to predict cell type, to identify signature regions, and to infer cellular differentiation landscapes.

(B) Confusion matrix showing the frequency of misclassification based on 10-fold cross-validation of cell-type classifiers trained and evaluated on 319 stem and

progenitor samples (all 10-, 50-, and 1,000-cell pools) from peripheral blood.

(C) Heatmap showing averageDNAmethylation levels ofmerged replicates (one column for each cell type in each donor) for the 1,234 signature regions extracted

from a classifier trained on all peripheral blood-derived stem and progenitor samples. Regions (rows) were arranged using hierarchical clustering with Euclidean

distance and complete linkage.

(D) Region set enrichment analysis for the signature regions using LOLA. Colored dots represent ChIP-seq experiments for transcription factors in the indicated

lineage. Dot size denotes the log-odds ratio, and the numbers in the legend (‘‘X/Y’’) refer to significantly enriched region sets (X) versus all analyzed region sets (Y).

The vertical dashed line represents the significance threshold (adjusted p % 0.05).

(E) Two-dimensional projection of merged replicates (one point for each cell type in each donor) using principal component analysis based on average DNA

methylation levels in the signature regions. The first two principal components are shown, and the numbers in parentheses indicate the percentage of variance

explained.

(F) Hematopoietic lineage reconstruction using the prediction propensities of DNA methylation-based classifiers as a measure of similarity between cell types.

Nodes in the graph represent cell types, and edges are weighted by class probabilities of cross-prediction. An automated edge-weighted graph layout algorithm

was used to define the positions of the nodes.

See also Figure S7 and http://blueprint-methylomes.computational-epigenetics.org.
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Fourth, we analyzed the DNA methylation dynamics over the

course of megakaryocyte maturation, which involves multiple

rounds of endomitotic replication and consequent increases in

ploidy. Whereas the cellular morphology of maturing megakar-

yocytes changes dramatically, DNAmethylation levels at regula-

tory regions showed only mild, but consistent and progressive,

changes. Certain genomic regions (counter-intuitively including

NFE2 binding sites) started off with low levels in 2N megakaryo-

cytes but gained DNA methylation up to a level comparable

with HSCs, whereas the majority of region sets started with

myeloid-like DNA methylation levels that were lost during

maturation.

In summary, we have established a comprehensive catalog of

DNA methylation in human hematopoietic differentiation, which

provides a resource and framework for studying the different

cell types of the blood, as well as their associated diseases.

Given the medical relevance (Laird, 2003) and technical feasi-

bility (Bock et al., 2016b) of using DNA methylation as a clinical

biomarker, it is expected that detailed DNA methylation analysis

of immunodeficiencies, cardiovascular diseases, and blood cell

malignancies will help advance precision medicine.

EXPERIMENTAL PROCEDURES

Sample Preparation Summary

Peripheral blood cells were isolated from apheresis filters of healthy platelet

donors belonging to the National Institute for Health Research (NIHR) Cam-

bridge BioResource after informed consent and with ethical approval (REC

12/EE/0040). Cells were stained with antibodies and sorted on either BD Influx

or BD FACSAria III fluorescence-activated cell sorting instruments. Library

preparation followed the mWGBS/scWGBS protocol as described previously

(Farlik et al., 2015). A detailed description of the sample collection, purification,

library preparation, and sequencing is provided in the Supplemental Experi-

mental Procedures.

Data Analysis Summary

Bisulfite sequencing reads were aligned with Bismark v0.12.2 (Krueger and

Andrews, 2011) and processed with RnBeads v1.5 (Assenov et al., 2014) to

aggregate DNA methylation values on regulatory regions annotated by the

August 2015 release of the BLUEPRINT Ensembl Regulatory Build (Zerbino

et al., 2015). Elastic net-regularized general linear models implemented in

the R package glmnet (Krishnapuram et al., 2005) were used for cell-type pre-

diction, and the cell-type similarity graph (Figure 7F) was derived from average

class probabilities assigned by leave-one-class-out classifiers trained sepa-

rately for each cell type. A detailed description of the sequencing data pro-

cessing, differential DNA methylation analysis, genomic region enrichment

analysis, single-cell DNA methylation analysis, and cell-type prediction is

provided in the Supplemental Experimental Procedures.

Data Availability and Accession Numbers

The presented dataset can be accessed through five alternative and comple-

mentary sources:

1. A supplemental website with additional diagrams and tables, which

also contains direct links to the other data sources, is available at

http://blueprint-methylomes.computational-epigenetics.org.

2. The genome browser track hub, which is linked at http://

blueprint-methylomes.computational-epigenetics.org, provides the

processed DNA methylation data for interactive visualization and

processing with online tools such as Galaxy.

3. Preprocessed data (DNA methylation calls and gene expression

levels) can be downloaded without any restrictions from GEO:

GSE87197.

4. The raw sequencing data from which the DNA methylation calls and

gene expression levels have been derived are available from the Euro-
820 Cell Stem Cell 19, 808–822, December 1, 2016
peanGenome-phenome Archive (EGA): EGAS00001002070 (controlled

access to protect patient privacy).

5. The dataset is included in the epigenome registry of IHEC (http://

www.ebi.ac.uk/vg/epirr, accession numbers IHECRE00002734 to

IHECRE00002810), the DeepBlue Epigenomic Data Server (http://

deepblue.mpi-inf.mpg.de), and the IHEC Data Portal (http://

epigenomesportal.ca/ihec).
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and five tables and can be found with this article online at

http://dx.doi.org/10.1016/j.stem.2016.10.019.
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Supplemental Figures 

 

 

Figure S1. DNA methylation and gene expression profiles of blood stem and progenitor cells 

A) Unsupervised multidimensional scaling (MDS) analysis of DNA methylation profiles for 10-cell, 50-cell, and 

1,000-cell samples of hematopoietic stem and progenitor cell types sorted from peripheral blood. DNA 

methylation levels were aggregated at region level based on the BLUEPRINT Regulatory Build. The anal-

ysis results are dominated by two compact clusters comprising lymphoid and myeloid cells, while HSC 

and MPP profiles are separated and more dispersed. The number of cells in each pool did not have a 

strong effect on the grouping. 

B) Gene expression levels of KCNH2, TREML1, SUSD3, and EXOC6 in the indicated stem and progenitor 

cell types measured by RNA-seq. 

Related to Figure 1. 
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Figure S2. DNA methylation differences for HSCs and MPPs isolated from different sources 

A) Distribution of average CpG methylation levels for HSCs (left) and MPPs (right) isolated from different 

sources. FL: fetal liver, CB: cord blood, BM: bone marrow, PB: peripheral blood. 

B) Enrichment of CTCF, RAD21, and SMC3 binding sites for regions with lower DNA methylation in peripheral 

blood-derived MPPs than in bone-marrow-derived MPPs (left), or with lower DNA methylation in cord 

blood-derived MPPs than in bone-marrow-derived MPPs (right). Enrichment was determined using LOLA 

(Sheffield and Bock, 2016). Each dot represents one ChIP-seq dataset, and the dashed line corresponds 

to a significance threshold of 0.05 on the adjusted p-value calculated by LOLA using Fisher’s exact test. 

Enrichment p-values were high for comparisons that involved peripheral blood-derived HSCs (Figure 2C) 

and peripheral blood-derived MPPs (top right), while they were lower in other comparisons of similar size 

(bottom right).  

Related to Figure 2. 
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Figure S3. DNA methylation differences between myeloid and lymphoid progenitors 

A) Distribution of average DNA methylation levels across BLUEPRINT Regulatory Build regions in progeni-

tors and differentiated cell types of the myeloid and lymphoid lineages. 

B) Mean-adjusted DNA methylation relative to the average CpG methylation levels for each individual 10-

cell, 50-cell, and 1,000-cell sample averaged across ChIP-seq peaks for all enriched transcription factors 

shown in Figure 3C. The bar plots on the right of each diagram show the average gene expression levels 

of the corresponding transcription factors in HSCs/MPPs, in lymphoid progenitors (CLP, MLP0, MLP1, 

MLP2, MLP3), and in myeloid progenitors (CMP, MEP, GMP). Error bars correspond to the standard error. 

Brackets indicate two-tailed Wilcoxon tests with FDR-adjusted p-values. ***: p ≤ 0.001, **: p ≤ 0.01, n.s.: 

p ≥ 0.05, p.p.: percentage points. 

C) Two-dimensional projection of all 10-cell, 50-cell, and 1,000-cell samples from peripheral blood using prin-

cipal component analysis based on the mean-adjusted DNA methylation across all 2,968 ChIP-seq region 

sets in the LOLA Core database. The first two principal components are shown, and the numbers in pa-

rentheses indicate the percentage of variance explained. 

D) Cumulative percentage of variance explained by the first five principal components calculated from the 

mean-adjusted DNA methylation across all regions in the LOLA Core database (blue line), across 75 ran-

domly selected datasets from this database averaged over 100 random samplings (light blue line), across 

all transcription factor binding sites (TFBS) from ENCODE and CODEX (green line), across 75 randomly 

selected datasets from these databases averaged over 100 random samplings (light green line), or across 

75 transcription factor binding sites relevant to myeloid/lymphoid differentiation (red line) as in Figure 3C. 

Related to Figure 3. 
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Figure S4. Sorting and in vitro differentiation of immature multi-lymphoid progenitors 

A) Immature multi-lymphoid progenitor cells (MLP0, MLP1, MLP2, MLP3) were sorted from the CD34+, 

CD45RA+ fraction of peripheral blood based on the expression of CD10 and CD7. 

B) Bar plots summarizing the clonogenic efficiency determined by in vitro colony formation assays for the four 

MLP populations. The total number of tested cells of each type is indicated. 

Related to Figure 4. 
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Figure S5. DNA methylation differences between megakaryocytes at different stages of ploidy 

A) Violin plots showing the distribution of DNA methylation levels at BLUEPRINT Regulatory Build regions in 

megakaryocytes sorted according to their ploidy level (x-axis).  

B) Violin plots showing the distribution of DNA methylation levels averaged across region sets in the LOLA 

Core database in megakaryocytes sorted according to their ploidy level (x-axis). 

C) Distribution of mean-adjusted DNA methylation (relative to the average CpG methylation in each sample) 

across the region sets shown in Figure 5C. Megakaryocytes (MK) at different ploidy stages are compared 

to HSCs and MPPs sorted from bone marrow (BM) and peripheral blood (PB), and to myeloid progenitors 

(CMP, MEP, GMP) as well as lymphoid progenitors (CLP, MLP0, MLP1, MLP2, MLP3) sorted from pe-

ripheral blood. 

Related to Figure 5. 
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Figure S6. DNA methylation in regions with cell-type-specific chromatin accessibility 

A) Boxplots showing the distribution of DNA methylation levels in regions with cell-type-specific chromatin 

accessibility based on published ATAC-seq data for hematopoietic cell types (GEO accession: 

GSE74912). The panel is an extended version of Figure 6F. 

B) Composite plots showing DNA methylation averages across regions with cell-type-specific chromatin ac-

cessibility (numbers in parentheses). The panel is an extended version of Figure 6G. 

Related to Figure 6. 
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Figure S7. Prediction performance and class probability distributions for cell type classifiers 

A) Receiver operating characteristic (ROC) curves and area under curve (AUC) values summarizing the pre-

diction performance of elastic net-regularized general linear models that predict cell type from DNA meth-

ylation levels at BLUEPRINT Regulatory Build regions. The ROC curves plot the average true positive rate 

across 10-fold cross-validation against the false positive rate. They are based on one-versus-all prediction 

for each class, sliding a threshold along a value calculated as the difference of the class probability and 

the largest class probability excluding that class. Error bars correspond to standard deviations across the 

10-fold cross-validation. Diagonal dashed lines indicate the expected performance of random guessing 

(AUC = 0.5). 

B) Distribution of class probabilities by ten classifiers (shown in separate plots) trained on datasets that ex-

cluded all samples of one specific cell type (“leave-one-class-out classifiers”). 

Related to Figure 7.  
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Supplemental Tables 

 

Table S1. Sample annotations and sequencing statistics 

Table listing the annotation data and sequencing details for 639 DNA methylation profiles based on the 

µWGBS / scWGBS protocol and for 13 gene expression profiles based on the Smart-seq2 protocol. 

Related to Figure 1. 

 

Table S2. Differentially methylated regions between hematopoietic cell types and lineages 

Table listing all regulatory regions from the BLUEPRINT Regulatory Build that were differentially methylated 

in at least one pairwise comparison between HSCs and MPPs derived from four different sources or between 

the myeloid and lymphoid lineages in peripheral blood. An extended version of this table with additional com-

parisons is available from http://blueprint-methylomes.computational-epigenetics.org. 

Related to Figures 2 and 3. 

 

Table S3. Enrichment analysis for differentially methylated regions and cell type signature regions 

Region set enrichment analysis for differentially methylated regions (Table S2) and cell type signature regions 

(Table S4) calculated using the LOLA software tool and the LOLA Core database. 

Related to Figures 2, 3, and 7. 

 

Table S4. Signature regions identified by the cell type classifier 

Table listing all regulatory regions from the BLUEPRINT Regulatory Build that contributed to the cell type 

classifier trained on 319 stem and progenitor samples (all 10-cell, 50-cell, and 1,000-cell pools) from peripheral 

blood, together with the average DNA methylation level of each region in each sample. 

Related to Figure 7. 

 

Table S5. Classifier-based similarity among the stem and progenitor cell types  

Class probabilities for each stem and progenitor sample based on ten classifiers trained on datasets that ex-

cluded all samples of one specific cell type (“leave-one-class-out classifiers”). 

Related to Figure 7. 

  

http://blueprint-methylomes.computational-epigenetics.org/
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Supplemental Experimental Procedures 

Sample collection 

Peripheral blood cells were isolated from apheresis filters of healthy platelet donors belonging to the NIHR 

Cambridge BioResource at the NHS Blood and Transplant, Cambridge, after informed consent and with ethical 

approval (REC 12/EE/0040). Bone marrow for megakaryocyte sorting was obtained from otherwise healthy 

patients undergoing elective heart valve replacement at Barts Health NHS Trust, London, after informed con-

sent and with ethical approval (REC 13/LO/1760). Bone-marrow-derived CD34+ cells for HSC/MPP sorting 

were purchased from Lonza, cat. 2M-101D (lots 0000536591, 0000476376 and 0000536050). Cord blood was 

collected at the Rosie Maternity Hospital, Cambridge University Hospitals, after informed consent and with 

ethical approval (REC 12/EE/0040). Fetal liver-derived CD34+ cells were purchased from StemExpress, cat. 

FL0001C (lots 1508211059, 405585112, and 1602050036).  

 

Cell purification overview 

Peripheral blood cells were extracted from apheresis filters and layered on a Ficoll-Paque gradient to isolate 

the fraction of mononuclear cells. After washing, the cells were processed by autoMACS (Miltenyi) to enrich 

for the CD34+ fraction using the posseld2 program. Cells were then stained with antibodies described below 

for 45 minutes at 4°C and subsequently sorted on either BD Influx or BD FACS Aria III fluorescence-activated 

cell sorting instruments. Bone-marrow-derived and fetal liver-derived CD34+ cells were thawed in a water bath 

at 37°C and resuspended in PBS1x plus DNase (10 mg/ml). After washing, the cells were stained as described 

above. Megakaryocytes were isolated from bone marrow as follows: A bone marrow scraping was taken after 

median sternotomy using a Volkmann’s spoon. The sample was transported to the University of Cambridge 

for processing as whole bone marrow in phosphate buffered saline (PBS) containing 10% human serum albu-

min (HSA) and 1.8 mg/ml EDTA on ice. The cellular content was flushed out of the bone marrow using 

megakaryocyte buffer (PBS containing 1.2% HSA, 1.8 mg/ml EDTA), and red cells were lysed using ammo-

nium chloride lysis. The cells were stained for megakaryocyte-specific cell surface markers with mouse APC 

conjugated antibody against CD41a (BD), mouse PE conjugated antibody against CD42b (BD), and for ploidy 

analysis with 1ug/ml Hoechst 33342 (Invitrogen). After incubation at 37°C for 30 minutes the cells were kept 

at 4°C before sorting using a BD FACS Aria instrument.  

The cell populations were sorted using the following surface markers: HSC: Lin- CD34+ CD38- CD90+ 

CD45RA- CD49f+; MPP: Lin- CD34+ CD38- CD90- CD45RA- CD49f-; CMP: Lin- CD34+ CD38+ CD45RA-

CD123 low; MEP: Lin- CD34+ CD38+ CD45RA- CD123- FLT3- CD36- CD110+ CD41-; GMP: Lin- CD34+ 

CD38+ CD45RA+ CD123+ CD10-; CLP: Lin- CD34+ CD38+ CD45RA+ CD7- CD10+; MLP0: Lin- CD34+ 

CD38- CD90- CD45RA+ CD7- CD10-; MLP1: Lin- CD34+ CD38- CD90- CD45RA+ CD7- CD10+; MLP2: Lin- 

CD34+ CD38- CD90- CD45RA+ CD7+ CD10-; MLP3: Lin- CD34+ CD38- CD90- CD45RA+ CD7+ CD10+; 

Megakaryocyte: CD41a+ CD42b+ Hoechst; Monocyte: CD14+ CD16- CD45+ CD64+; Neutrophil: CD16+ 

CD45+ CD66b+; NK cell: CD3- CD16+ CD56 low; B cell (naïve): Cd19+ CD27- IgD+; CD4 T cell (naïve): CD3+ 

CD4+ CD25- CD45RA+ CD62l+; CD8 T cell (naïve): CD3+ CD8+ CD25- CD45RA+ CD62L+. 

 

Cell purification details 

Isolation of CD34+ cells from apheresis filters  

 Remove blood from filter into 50 ml falcon tube  

 Dilute the blood up to 50 ml with room temperature Buffer 1  

 Add 12.5 ml of Ficoll-Paque to two 50 ml falcon tubes  

 Carefully pipette 25 ml of cell suspension on the Ficoll  

 Spin 15 minutes, 800 g ↑3 ↓0  

 Carefully remove the mononuclear cell layer using a 5 ml pastette  

 Transfer the mononuclear cells into a fresh 50 ml tube  

 Fill the tubes to 50 ml with Buffer 1 (to remove more platelets)  

 Spin 6 minutes, 600 g ↑5 ↓3 (cold)  

 Remove the supernatant  

 Pool tubes into one 50 ml falcon tube and re-suspend in a total of 50 ml of cold Buffer 4  
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 Count the cells  

 Spin for 6 minutes at 600 g ↑5 ↓3 (4°C)  

 Remove the supernatant  

Magnetic labelling and CD34+ enrichment  

 Re-suspend pellet in 150μl of Buffer 4 per 108 cells (e.g., 9.6x108 1440 µl)  

 Add 50 μl of FcR blocking reagent per 108 cells (e.g., 9.6x108 480 µl)  

 Add 50 μl of CD34 microbeads per 108 cells  

 Put the cells in 4°C for 30 minutes  

 Add 20 ml of Buffer 4  

 Spin for 6 minutes at 300 g ↑5 ↓3  

 Remove supernatant  

 Re-suspend pellet in 500 μl of Buffer 4 per 108 cells (e.g., 9.6x108 4.8 ml)  

 Run sample on autoMACS using program posseld2  

 Count the cells  

 Stain with 1 test per 106 cells  

Materials  

 Ficoll-Paque density 1.077 (GE Healthcare, cat. 17-5442-03) 

 CD34 MicroBead Kit human (Miltenyi Biotec, cat. 130-046-703) 10 ml 

 PBS (Sigma, cat. D8537) 500 ml  

 HAS (Gemini Bio Products, cat. 800-121) 

 EDTA (Sigma, cat. E7889) 50 ml  

 BSA (Sigma, cat. A9576)  

Buffer 1  

 PBS (Sigma, cat. D8537) 500 ml  

 1 M TriSodium Citrate 6.6 ml  

 HSA 20% (0.2% final) 5 ml  

Buffer 4  

 PBS (Sigma, cat. D8537) 500 ml  

 0.5 M EDTA (Sigma, cat. E7889 50 ml) 2 ml (2 mM final)  

 HSA 20% (0.2% final) 5 ml  

 

Cell purification antibodies  

Conjugate Antigen Name Manufacturer Product number Concentration 

AF700 CD3 OKT3 BioLegend 317339 5 µl/test 

AF700 CD56 B159 BD Biosciences 557919 5 µl/test 

AF700 CD8 SK1 BioLegend 344723 5 µl/test 

AF700 CD14 61D3 BD Biosciences 56-0149-42 5 µl/test 

AF700 CD11B CBRM1/5 BD Biosciences 56-0113-42 5 µl/test 

AF700 CD19 H1B19 BioLegend 302225 5 µl/test 

PE CD90 5E10 BD Biosciences 561970 5 µl/test 

PE CY 5 CD49F G0H3 BD Biosciences 551129 20 µl/test 

APC CY 7 CD34 581 Molecular Probes A14948 5 µl/test 

APC CD10 HI10A BD Biosciences 332777 5 µl/test 

FITC CD45RA L48 BD Biosciences 335039 20 µl/test 

PE CY 7 CD38 HB7 BD Biosciences 335825 5 µl/test 

PB CD7 MT701 BD Biosciences 642916 20 µl/test 

PerCP-Cy 5.5 CD123 7G3 BD Biosciences 560904 20 µl/test 

 

Clonal expansion assays 

Sorted single cells of the CLP, MLP0, MLP1, MLP2, and MLP3 cell populations were cultured on MS5 stroma 

(Itoh et al., 1989) for three weeks in conditions that support myeloid, B cell, and NK cell differentiation (Laurenti 

et al., 2013). Colonies were harvested, and differentiated cell types were scored by high-throughput flow cy-



11 
 

tometry using the LSR II High Throughput Sampler (Becton Dickinson) with the following antibodies (Bio-

legend): CD45 PECy5 (1:300), CD41 FITC (1:1000), GlyA PE (BD, 1:1000), CD11b APCCy7 (1:300), CD56 

APC (1:200), CD19 FITC (1:200), CD19 Alexa700 (1:300). 

 

Whole genome bisulfite sequencing 

Sequencing libraries for DNA methylation mapping were prepared using the µWGBS protocol (Farlik et al., 

2015). Starting directly from lysed cells in digestion buffer, proteinase K digestion was performed at 50°C for 

20 minutes. Custom-designed methylated and unmethylated oligonucleotides were added at a concentration 

of 0.1% to serve as spike-in controls for monitoring bisulfite conversion efficiency. Bisulfite conversion was 

performed using the EZ DNA Methylation-Direct Kit (Zymo Research, D5020) according to the manufacturer’s 

protocol, with the modification of eluting the DNA in only 9 µl of elution buffer. Bisulfite-converted DNA was 

used for single-stranded library preparation using the EpiGnome Methyl-Seq kit (Epicentre, EGMK81312) with 

the described modifications (Farlik et al., 2015). Quality control of the final library was performed by measuring 

DNA concentrations using the Qubit dsDNA HS assay (Life Technologies, Q32851) on Qubit 2.0 Fluorometer 

(Life Technologies, Q32866) and by determining library fragment sizes with the Agilent High Sensitivity DNA 

Analysis kit (Agilent, 5067-4626) on Agilent 2100 Bioanalyzer Station (Agilent, G2939AA). All libraries were 

sequenced by the Biomedical Sequencing Facility at CeMM using the 2x75bp paired-end setup on the Illumina 

HiSeq 3000/4000 platform (see Table S1 for sequencing statistics). 

 

DNA methylation data processing 

Sequencing adapter fragments were trimmed using Trimmomatic v0.32 (Bolger et al., 2014). The trimmed 

reads were aligned with Bismark v0.12.2 (Krueger and Andrews, 2011) with the following parameters: --minins 

0 --maxins 6000 --bowtie2, which uses Bowtie2 v2.2.4 (Langmead and Salzberg, 2012) for read alignment. 

The GRCh38 assembly of the human reference genome was used throughout the study, in a version for se-

quence alignment obtained from NCBI. Duplicate reads were removed as potential PCR artefacts, and reads 

with a bisulfite conversion rate below 90% or with fewer than three cytosines outside a CpG context (required 

to confidently assess bisulfite conversion rate) were removed as potential post-bisulfite contamination. The 

Bismark extractor was used to estimate DNA methylation levels for each CpG. Replicates belonging to the 

same individual and cell type were merged by summing up the total number of methylated and unmethylated 

reads per CpG across all replicates. Merged and unmerged datasets were processed further using RnBeads 

v1.5 (Assenov et al., 2014) to generate standard analysis reports for data exploration and quality control 

(http://blueprint-methylomes.computational-epigenetics.org), and to aggregate DNA methylation values of in-

dividual CpGs based on genomic tiling regions (width: 5 kilobases) and based on regulatory regions annotated 

by the August 2015 release of the BLUEPRINT Ensembl Regulatory Build (Zerbino et al., 2015). The DNA 

methylation tables produced by RnBeads were the basis for further data analysis with custom R scripts. 

 

Differential DNA methylation analysis 

We analyzed differential DNA methylation for regulatory regions defined by the August 2015 release of the 

BLUEPRINT Ensembl Regulatory Build (Figure 2B, 3A, Table S2). All pairwise comparisons were performed 

with the differential methylation module in RnBeads (Assenov et al., 2014), which uses the limma method for 

statistical analysis (Ritchie et al., 2015). Potential confounding factors such as flowcell, gender, and number 

of cells sequenced were statistically accounted for in the RnBeads analysis. Regions were considered differ-

entially methylated if they had an FDR-adjusted p-value below 0.05 and an absolute change in DNA methyla-

tion that was among the top 5% strongest absolute differences observed across all pairwise comparisons 

(which corresponds to a difference in absolute DNA methylation levels of at least 16.7 percentage points). We 

further removed regions that had not been covered in at least three samples and regions that had not been 

covered with at least three reads in at least one sample. 

 

http://blueprint-methylomes.computational-epigenetics.org/
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Region set enrichment analysis 

We used LOLA (Sheffield and Bock, 2015) to identify significant overlaps of differentially methylated regions 

and cell type signature regions with empirically defined transcription factor binding sites based on ChIP-seq 

datasets obtained from ENCODE (Harrow et al., 2012) and from the CODEX database (Sánchez-Castillo et 

al., 2015). Fisher’s exact test was used with a significance threshold of 0.05 on Benjamini-Yekutieli adjusted 

p-values. Figure panels include all transcription factors that were enriched in at least one of the relevant com-

parisons, while also showing enrichment data for these transcription factors in cell types where they were not 

enriched. To facilitate visualization and interpretation, we manually grouped the annotations into broader cat-

egories. All enriched results together with their original and curated annotations are available in Table S3. 

ChIP-seq datasets for malignant cell populations were excluded from the figures given the study’s focus on 

normal hematopoietic differentiation (but they are included in Table S3). 

 

Single-cell DNA methylation analysis 

To compensate for the sparseness of low-input and single-cell DNA methylation data, several analyses (Figure 

3D-G, S3B-D, 4B, 4C, 5B, 5C, S5B, S5C) employed a region set analysis strategy described previously (Farlik 

et al, 2015). This bioinformatic method is based on the observation that characteristic cell-type-specific DNA 

methylation differences can be identified by calculating average DNA methylation levels across sets of func-

tionally related regions (e.g., across binding sites of a transcription factor or enhancer elements active in a 

certain cell type). We used the LOLA Core database (Sheffield & Bock, 2015), a large catalog of experimentally 

identified regulatory region sets, as our reference. For each stem and progenitor dataset we calculated average 

DNA methylation levels across each region set. We adjusted these values for differences in global DNA meth-

ylation levels between cell types by subtracting, in each sample, the global DNA methylation average across 

all CpGs from the region set values. Analyses based on individual low-input and single-cell samples used 

these region set estimates of mean-adjusted DNA methylation (relative to the average CpG methylation level 

in each sample) in the same way as analyses based on pooled replicates used region-level DNA methylation 

data for the BLUEPRINT Regulatory Build. We used Wilcoxon rank sum tests and considered region sets with 

a p-value ≤ 0.05 and an absolute change in mean-adjusted DNA methylation of at least 10 percentage points 

as differentially methylated. 

 

RNA sequencing 

Cells were sorted directly into lysis buffer containing 0.2% Triton X-100 and RNase inhibitor. The cDNA syn-

thesis and poly(A) enrichment were performed following the Smart-seq2 protocol (Picelli et al., 2014). ERCC 

spike-in RNA (Ambion) was added to the lysis buffer in a dilution of 1:1,000,000. Library preparation was 

performed on 0.5 ng cDNA using the Nextera XT library preparation kit (Illumina) following the manufacturer 

instructions. All libraries were sequenced by the Biomedical Sequencing Facility at CeMM using the 1x50 bp 

single-read setup on the Illumina HiSeq 3000/4000 platform (see Table S1 for sequencing statistics).  

 

Gene expression analysis  

Sequencing adapter fragments were trimmed using Trimmomatic v0.32 (Bolger et al., 2014). The trimmed 

reads were aligned to the cDNA reference transcriptome (GRCh38 cDNA sequences from Ensembl) using 

Bowtie v1.1.1 (Langmead et al., 2009) and the following parameters: -q -p 6 -a -m 100 --minins 0 --maxins 

5000 --fr --sam --chunkmbs 200. Duplicate reads were removed, and transcript levels were quantified with 

BitSeq v1.12.0 (Glaus et al., 2012). Transcript-level expression estimates were loaded into R and collapsed 

into gene-level estimates by using the most highly expressed transcript variant. DESeq2 (Love et al., 2014) 

was used for statistical analysis of the read counts. Genes with an FDR-corrected p-value ≤ 0.05 and at least 

a two-fold change in expression (|log2FC| ≥ 1) were considered as differentially expressed. Gene expression 

estimates for visualization and reporting were adjusted by variance stabilization.  
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Integration of histone modification data 

We processed all histone data of the September 2015 BLUEPRINT release (seventh data release) using a 

similar approach as in the Roadmap Epigenomics analysis (Ernst and Kellis, 2015; Kundaje et al., 2015). 

Briefly, we selected all samples for which the input control and at least three of the six histone modifications 

(H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me3) were available and generated genome-

wide tracks for the ChIP-seq signal enrichment over input using MACS2 v2.1.0 (Zhang et al., 2008). These 

tracks were used as input to ChromImpute v1.0.0 (Ernst and Kellis, 2015), imputing all missing data and merg-

ing replicates. The p-values calculated by MACS2 were used as intensity estimates for the boxplots. 

 

Integration of open chromatin data 

We downloaded peak regions and fragment counts from ATAC-seq experiments (GEO accession GSE74912) 

for hematopoietic cell types (Corces et al., 2016) and transformed the peak coordinates to genome assembly 

GRCh38 using the UCSC liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Average DNA methylation 

levels across samples were computed for all ATAC-seq peaks. We used the one-sided Wilcoxon rank sum 

test to identify cell-type-specific regions of open chromatin. Specifically, for each cell type in the ATAC-seq 

data set we selected those peak regions in which samples of that cell type exhibited a significantly higher 

ATAC-seq fragment count than samples not belonging to that cell types (FDR adjusted p-value ≤ 0.05). 

 

Cell type prediction 

Samples were classified using elastic net-regularized general linear models as implemented in the R package 

glmnet (Friedman et al., 2010; Krishnapuram et al., 2005). Classifiers were trained on 319 stem and progenitor 

samples (all 10-cell, 50-cell, and 1,000-cell pools) from peripheral blood, using their DNA methylation profiles 

across regulatory regions from the BLUEPRINT Ensembl Regulatory Build as prediction variables. Missing 

values were imputed with the impute R package (https://bioconductor.org/packages/release/bioc/html/im-

pute.html) using 5-nearest neighbor averaging. Elastic net regularization was applied to a multinomial logistic 

regression classifier. The regularization parameter λ was obtained by nested 10-fold cross-validation, and α 

was set to 0.5 to stipulate equal mixing of the lasso and ridge penalty terms. Class importance was defined as 

the L2 norm aggregate of per-class coefficients in the model. Class probabilities were defined as fitted proba-

bilities from the logistic regression model. For assessing model quality, 10-fold cross validation was performed 

and misclassification rates were averaged over the cross-validation test sets. Per-class ROC curves and area 

under curve (AUC) values were obtained by evaluating the class probabilities in the one-versus-all setting for 

each class, i.e., by sliding a threshold along the score resulting from the difference of the class probability and 

the largest class probability excluding that class. Signature regions were defined as those regulatory regions 

that were assigned a non-zero class importance value in the model trained on the entire dataset (Table S4). 

For quantifying class probabilities of individual cell types (Figures S7B, Table S5), the samples of one class 

were excluded from the training, and the resulting model applied to the samples excluded from training (“leave-

one-class-out classifiers”).  

 

Inference of cell type similarity graph 

In the cell type similarity graph (Figure 7F), nodes represent cell types and edges represent probabilities of 

predicting one cell type as another using the corresponding “leave-one-class-out” classifier. Specifically, for 

each pair of source and target cell type, the edge weight is the average class probability assigned by the leave-

one-class-out classifier to all peripheral blood samples of the source cell type to the target cell type. The graph 

shows the directed edge pairs for each pair of nodes as trapezoids in which the widths at the target and source 

node correspond to weights of the directed edges. For example, the predictor that did not include HSCs as-

signed a higher probability to classify HSCs as MPPs than the probabilities the predictor which did not include 

MPPs assigned to predicting MPPs as HSCs. Differentiated cell types (circles) were predicted based on the 

classifier trained on all 319 stem and progenitor samples from peripheral blood and are connected by grey 

edges in the graph. Edges with a prediction probability below 0.1 were pruned. The graph layout was auto-

matically generated using the Fruchterman-Reingold algorithm as implemented in the R package igraph. 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://bioconductor.org/packages/release/bioc/html/impute.html
https://bioconductor.org/packages/release/bioc/html/impute.html
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