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Supplementary Figures

1. Fig. S1: An example of SMOTE method, (a) before applying SMOTE method and (b) after applying
SMOTE method.

2. Fig. S2: An example of ITS method. (a) Original data; (b) After applying sampling step; (c) The
identified Tomek Links, (d) The dataset after removing Tomek links.

3. Fig. S3: ITS algorithm.

4. Fig. S4: Bagging Classifier Algorithm.
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Fig. S1 An example of SMOTE method, (a) before applying SMOTE method and (b) after applying SMOTE
method.
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Figure S1 illustrates an example of the SMOTE method. Figure S1(a) shows a typical imbalanced data distri-
bution, where the circles and squares represent samples of the majority and minority classes, respectively. In
this example, assume k£ = 4. Figure S1(a) shows the created samples along with the line segment between
x; and ;. These samples are highlighted by the green square shape. These synthetic samples increase the
number of minority samples and hence, significantly improves the performance of learning algorithm. Figure
S1(b) shows the synthesized samples that are highlighted by solid squares. However, in SMOTE algorithm, the
same number of the synthetic data are generated for each minority sample without consideration to neighboring
samples, which may increase the overlapping between classes.
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Fig. S2 An example of ITS method. (a) Original data; (b) After applying sampling step; (c) The identified
Tomek Links, (d) The dataset after removing Tomek links.

Figure S2 illustrates an example of the ITS method. This figure shows the difference between borderline,
safe and noisy samples (see Fig. S2 (a)). As shown in Fig.Fig. S2(a), the sample/point (A) when k = 5 or
k = 3 is not classified as a danger sample, while the sample is classified as a danger sample when & = 1.



On the contrary, the sample B is classified as a danger sample when £ = 1,3, or 5. Hence, in the sampling
step, when k£ = 5, the sample B is removed while sample A is preserved when the majority class samples are
under-sampled as shown in Fig. S2(b). Similarly, the danger points in minority class will not be replicated.
Figure S2(c) shows a data cleanup step. As shown in Fig. Fig. S2(c), there are three Tomek links are identified
and represented by a green dashed box. Figure S2(d) shows the data after the data cleaning step, where the
overlapping data samples are removed. As shown in Fig. S2(d), this step produces separated classes, which
improves the classification performance.
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Input: Given a set of majority class samples Sy, a set of minority class samples Sy, the number of nearest neighbors k=1,
N is the number of minority class samples and n* is the number of majority class samples.
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Fig. S3 ITS algorithm.
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Bagging Classifier Algorithm

Input: Given a training set X={(x1,y4),.....,(Xu,Ym)}, Where y; is the class label
of the sample x; and M denotes the total number of samples in the training set.
Training Step
while (t<Max,,), where Max,, is the maximum number of iterations) do
Select a sample S, from X.
Use S; to train the current weak learner C,.
end while

Testing Step

Given an unknown sample X

Classify x5 Using all weak learners (C,, i=1,.... ,MaXi,)-

Combine the outputs of all weak learners to determine the final prediction.

Fig. S4 Bagging Classifier Algorithm.



