Supplementary information

Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial

Community in Beijing

Bing Yan^{1,2}, Junsheng Li^{2*}, Nengwen Xiao², Yue Qi^{1,2}, Gang Fu^{1,2}, Gaohui Liu², Mengping Qiao³

¹College of Water Sciences, Beijing Normal University, Beijing, China

²Chinese Research Academy of Environmental Sciences, Beijing, China

³School of Environment and Natural Resources, Renmin University of China, Beijing, China

^{*}Correspondence and requests for materials should be addressed to J.L. (lijsh@craes.org.cn)

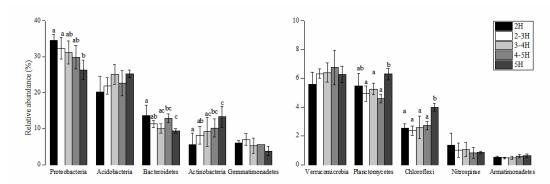


Figure. S1 Relative abundance (means \pm SD) of the most abundant phyla in different ring areas. Different letters denote significant differences between groups.

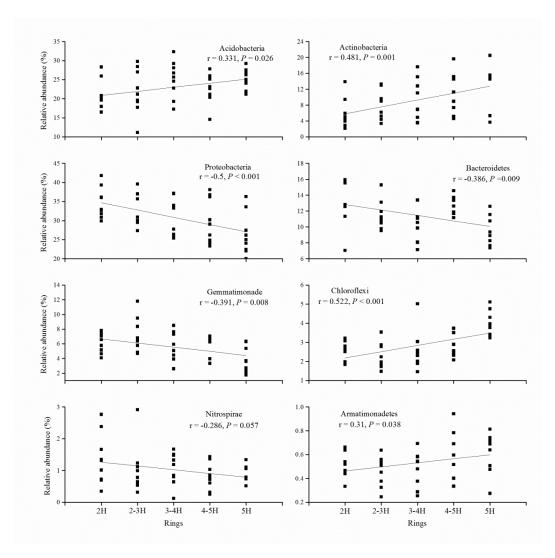


Figure. S2 Relationship between relative abundances of dominant bacterial phyla and ring roads.

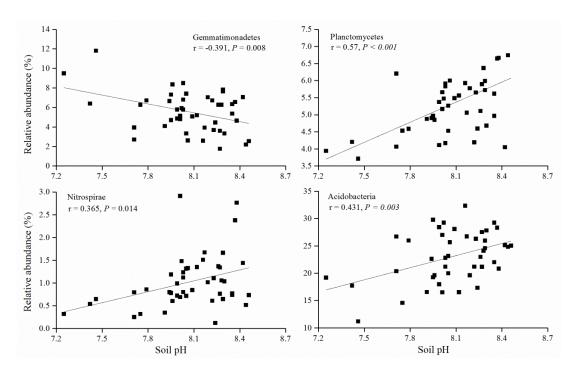
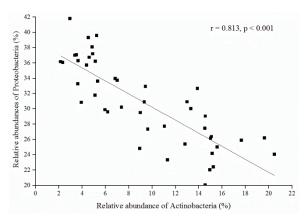



Figure. S3 Relationship among relative abundances of dominant bacterial phyla and soil pH.

 $\textbf{Figure. S4} \ \textbf{Relationship between the relative abundance of Proteobacteria and Actinobacteria.}$

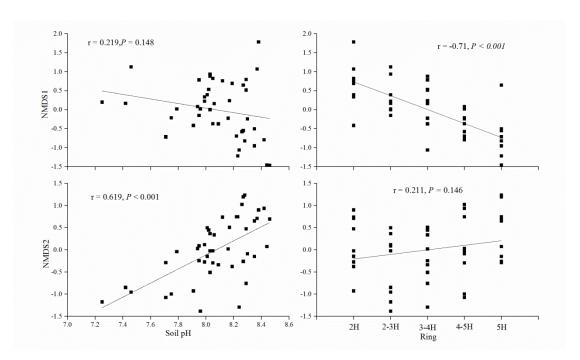


Figure. S5 Pairwise regression of NMDS scores and soil pH value for urban ring road areas.

Table S1 Soil physical and chemical properties used for this study

Sample	pН	Moisture(%)	EC	SBD	Total C	Total N
			(ds m ⁻¹)	$(g cm^{-3})$	$(g kg^{-1})$	$(g kg^{-1})$
2H	8.15±0.17ab	18.42±6.19a	1.15±0.32b	1.325 ±0.11a	31.67±9.36a	1.77±0.80a
2-3H	$7.88 \pm 0.31c$	15.42±3.38ab	$1.37 \pm 0.32b$	1.334±0.12a	29.44 ±9.12a	$1.45 \pm 0.38ab$
3-4H	$8.11 \pm 0.11ab$	11.72±4.79bc	$1.43 \pm 0.43b$	1.360±0.09a	$31.38\pm17.69ab$	$1.42\pm0.78ab$
4-5H	8.10±0.25b	12.43 ± 2.8 bc	$2.69 \pm 1.17a$	$1.238 \pm 0.42a$	24.92 ±6.66ab	$1.20\pm0.62ab$
5H	$8.31\pm0.11a$	$9.27 \pm 5.86c$	$2.24\pm1.18a$	1.434±0.13a	19.79 ±4.30b	$1.07 \pm 0.40b$

Means of nine replicates per sites are presented (with standard deviation).

Different letters in the same column indicate significant difference between sites (P < 0.05).

Table S2 Spearman's correlations (r) between urban ring roads and soil characteristics.

	· /		
	r	p	
pН	0.384	0.009	_
EC	0.535	< 0.001	
SBD	0.273	0.069	
TC	-0.449	0.002	
TN	-0.411	0.005	
Moisture	-0.497	0.001	

TC, total carbon; TN, total nitrogen; SBD, soil bulk density; EC, electrical conductivity.

Table S3 Classified phyla from all the soil samples collected from Beijing

Table 55 Classified phyla from an the son samples confeded from Beijing.						
predominant phyla (relative	low abundant phyla (relative	fewer phyla (present	rare phyla (present in			
abundance>5%)	abundance >0.1%)	in most of the	several of the samples)			
		samples)				
pProteobacteria	<pre>pPlanctomycetes</pre>	<pre>pSpirochaetes</pre>	pAC1			
<pre>pAcidobacteria</pre>	pChloroflexi	pTM6	pAD3			
pBacteroidetes	pNitrospirae	<pre>pTenericutes</pre>	pAncK6			
pActinobacteria	<pre>pArmatimonadetes</pre>	pWPS-2	<pre>pDeferribacteres</pre>			
pGemmatimonadetes	pOD1	pWS2	pFCPU426			
pVerrucomicrobia	pCyanobacteria	pThermi	<pre>pFusobacteria</pre>			
	pTM7	pNKB19	pGN04			
	pWS3	pOP11	pGOUTA4			
	pOP3	pBHI80-139	pKazan-3B-28			
	pFirmicutes	p_BRC1	<pre>pLentisphaerae</pre>			
	pElusimicrobia	pChlamydiae	pNC10			
	pFBP	<pre>pFibrobacteres</pre>	pPAUC34f			
		pGN02	pSBR1093			
		p_GAL15	pSR1			
		pMVP-21	pZB3			
			pCaldithrix			
	·					

Table S4 Pearson correlations(r) between bacterial diversity (Faith's PD, OTUs) and soil and site characteristics.

r	Rings	TC	TN	pН	SBD	Moisture	EC
PD	-0.128	-0.078	-0.042	0.401**	-0.017	0.199	-0.219
OTUs	0.03	-0.099	-0.092	0.446**	0.028	0.01	-0.25

TC, total carbon; TN, total nitrogen; SBD, soil bulk density; EC, electrical conductivity; **P<0.01.